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Abstract: Cryptography is a method that has been developed to ensure the secrecy of messages and transfer data 

securely. Advanced Encryption Standard (AES) has been made as the first choice for many critical applications 

because of the high level of security and the fast hardware and software implementations, many of which are 

power and resource constrained and requires reliable and efficient hardware implementations. Naturally 

occurring and maliciously injected faults reduce the reliability of Advanced Encryption Standard (AES) and may 

leak confidential information. In this paper, a lightweight concurrent fault detection scheme for the AES is 

presented. In the proposed approach, the composite field S-box and inverse S-box are divided into blocks and the 
predicted parities of these blocks are obtained. For high speed applications, S-box implementation based on 

lookup tables is avoided. Instead, logic gate implementations based on composite fields are utilized. A compact 

architecture for the AES Mix-columns operation and its inverse is also presented. This parity-based fault 

detection scheme reaches the maximum fault coverage when compared to other methods of fault detection. The 

proposed fault detection technique for AES encryption and decryption has the least area and power consumption 

compared to their counterparts with similar fault detection capabilities.  

Index terms: AES, composite fields, parity prediction, fault detection, S-box. 

 

I. INTRODUCTION 
     The Advanced Encryption Standard (AES) has been accepted by NIST [1] as the symmetric key 

standard as a replacement for the previous standards because of its good characteristics in terms of security, cost, 

and efficient implementations for encryption and decryption of blocks of data. In encryption, under the influence 

of a key, a 128-bit block is encrypted by transforming it in a unique way into a new block of the same size. AES 

is symmetric since the same key is used for encryption and the reverse transformation, decryption. The only 

secret necessary to keep for security is the key. AES may be configured to use different key-lengths, the standard 

defines 3 lengths and the resulting algorithms are named AES-128, AES-192 and AES-256 respectively to 

indicate the length in bits of the key. After 10 rounds, the cipher text is generated where each encryption round 

(except for the final round) consists of four transformations. The four transformations of round of encryption are 

explained below. 

 The 128 bits of input (and output) of each transformation are considered as a four by four matrix, called 

state, whose entries are eight bits. Except for the last round, the first transformation in each round is the bytes 
substitution, called SubBytes, which is implemented by 16 S-boxes. Shift-Rows is the second transformation in 

which the four bytes of the last three rows of the input state are cyclically shifted. The third transformation is 

Mixcolumns in which the columns are considered as polynomials over GF(28) and multiplied by a fixed 

polynomial. The final transformation is AddRoundKey in which a roundkey is added to the input by 128 two-

input XOR gates.  

 Among the transformations in the AES, the S-boxes in the encryption and the inverse S-boxes in the 

decryption are alone nonlinear. Fault detection in the AES hardware implementation is important in order to 

make the standard robust to the internal and malicious faults. There exists various fault detection schemes for the 

AES hardware implementation. For fault detection of the encryption or decryption in AES redundant units may 

be used [12], [14], where algorithm-level, round-level and operation-level concurrent error detection for the AES 

is used. A number of fault detection schemes based on the error detecting codes, also exists. For high 
performance AES implementations, using ROMs may not be preferable. The proposed fault detection approach 

is applied to the composite field AES encryption and decryption. There exist a number of fault detection 

approaches which are specific to composite field S-boxes and inverse S-boxes. In the scheme of [13], the fault 

detection of the multiplicative inversion of the S-box is considered. In [12], predicted parities have been used for 

the multiplicative inversion of a specific S-box using composite field and polynomial basis. Furthermore, the 

transformation matrices are also considered. In [12] and [6], the composite field S-boxes and inverse S-boxes 

(using polynomial basis) have been divided into sub-blocks and parity predictions are used for their fault 

detection.  
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 In the schemes proposed in [15] and [22], all the search space of composite fields is considered for 

presenting optimum lightweight fault detection schemes. The scheme presented in [8] is for all the 

transformations in the AES encryption/decryption independent of the ways these transformations are 

implemented. Moreover, the scheme presented in [7] uses double-data-rate computation for counteracting the 

fault attacks. Additionally, a fault detection scheme based on the Hamming and Reed-Solomon codes for 

protecting the storage elements within the AES is proposed in [11]. It is also noted that, for the logic elements, 

the scheme in [2] and the use of the partial duplication of the most vulnerable elements are proposed in [11].  
 

 

Fig. 1. The S-box (the inverse S-box) using composite fields and polynomial basis and their fault detection blocks. 

 

 

Fig. 2. The S-box (the inverse S-box) using composite fields and normal basis and their fault detection blocks. 

 

        All the S-boxes (respectively the inverse S-boxes) occupy much of the total AES encryption 

(respectively decryption) area and their power consumption is around three fourths of that of the entire AES [16].  

LUTs can be utilized for the AES S-boxes and inverse S-boxes in hardware implementation. This work involves 

low-area implementation of the AES encryption and decryption using composite fields.  
The contributions of this paper are as follows. 

 The S-box and the inverse S-box has been designed to obtain low power and low area.  

 An alternative lightweight design for both forward and inverse mixcolumns operation required in the AES 

hardware implementation is also presented. 

 A low-cost parity-based fault detection scheme for the S-box and the inverse S-box using composite fields is 

presented, for increasing the error coverage. The predicted parities of the five blocks of the S-box and the 

inverse S-box are obtained (three predicted parities for the multiplicative inversion and two for the 

transformation and affine matrices). 

 The actual parity is obtained from the blocks using XOR gates. The predicted parity is compared with the 

actual parity. The error gets indicated using the error indication flag.  

 The proposed fault detection scheme is simulated and maximum error coverage is obtained compared to 
existing methods. It is shown that the power and area of the proposed technique is least compared to the 

schemes that have the same fault detection capabilities. 

 

II.     S-BOX AND INVERSE S-BOX IN COMPOSITE FIELDS 
In this section, the S-box and the inverse S-box operations and their composite-field realizations are 

described. The S-box and the Inverse S-box are nonlinear operations which take 8-bit inputs and generate 8-bit 

outputs. In the S-box, the  irreducible polynomial of P(x) = x8 + x4 + x3 + x +1 is used to construct the binary 

field GF(28). Let 𝑋 =   𝑥7
𝑖=0 iα

i  ∈ 𝐺𝐹(28) and 𝑌 =   𝑦7
𝑖=0 iα

i  ∈ 𝐺𝐹(28) be the input and the output of the S-box, 

respectively, where α is a root of  P(x), i.e. P(α)=0. Then, the S-box consists of the multiplicative inversion, i.e., 

X-1 ∈ GF(28), followed by an affine transformation. Moreover, let Y-1 ∈ GF(28) and X-1 ∈ GF(28) be the input and 
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the output of the Inverse S-box, respectively. Then, the Inverse S-box consists of an inverse affine transformation 

followed by the multiplicative inversion. 

         The composite fields can be represented using normal basis or polynomial basis. The S-box and inverse S-

box for the polynomial and normal bases are shown in Figs. 1 and 2, respectively. For the S-box using 

polynomial basis (respectively normal basis), the transformation matrix ψ (respectively ψ') transforms a field 

element X in the binary field GF(28) to the corresponding representation in the composite fields GF(28) / GF(24). 

It is noted that the result of X= ηh u+ ηl is obtained using the irreducible polynomial      u2+ τu + υ for 
polynomial basis method in Fig.1 and            X= η'h u

16+ η'lu is obtained using the irreducible polynomial u2+ τ'u 

+ υ for normal basis method in Fig.2. 

 The multiplicative inversion in Fig.1 consists of composite field multiplications, additions and an 

inversion in the sub-field GF(24) over GF(2) / x4 + x + 1.The decomposition can be further applied to represent 

GF(24) as a linear polynomial over GF(22) and then GF(2) using the irreducible polynomial υ2+Ωυ+υ and 

w2+w+1, respectively. As a result, it is understood that the implementation of the multiplicative inversion can be 

performed using the field represented by GF((24)2) or the field represented by GF(((22)2)2). For normal basis, the 

decomposition is performed using the irreducible polynomials of  υ2 + Ω'υ + υ'  and w2 + w + 1, respectively. 

For calculating the multiplicative inversion, the most efficient choice is to let Ω = τ = 1 (Ω' = τ' = 1) in the 

above irreducible polynomials. Then, the multiplicative inversion of the S-box using polynomial basis  and 

normal basis are respectively,  
 ( ηh u +  ηl )

-1  =  [(( ηh+ ηl ) + ηh
2 υ )-1 ηh] u  

     + (( ηh+ ηl ) + ηh
2 υ )-1 ( ηh+ ηl )          (1)  

( η'h u
16 +  η'l u )-1 =  [(  η'h η'l + (η'h

2 + ƞ'l
2) υ')-1) η'h] u

16 

   + [( η'h η'l + (η'h
2 + ƞ'l

2) υ')-1) η'l] u         (2) 

It is noted that one can replace ƞ(ƞ') with σ(σ') to obtain (1) and (2) for the inverse S-box.  

 

III.  MIX COLUMN IMPLEMENTATION USING POLYNOMIALS 
 The forward mix column transformation (in encryption process), called mix columns, operates on each 

column individually. Each byte of a column is mapped into a new value that is a function of all four bytes in that 

column. The transformation can be defined by the following matrix multiplication on State. 

 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

  

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 =  

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

  

 Each element in the product matrix is the sum of products of elements of one row and one column. In 

this case, the individual additions and multiplications are performed in     GF (28). The mix columns 
transformation on a single column j (0≤ j≤ 3) of State can be expressed as 

𝑠′0, 𝑗 =  2 ∗ 𝑠0, 𝑗 ⊕  3 ∗ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ 𝑠3, 𝑗 
𝑠′1, 𝑗 = 𝑠0, 𝑗 ⊕  2 ∗ 𝑠1, 𝑗 ⊕(3*𝑠2, 𝑗) ⊕ 𝑠3, 
𝑠′2, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕  2 ∗ 𝑠2, 𝑗 ⊕  3 ∗ 𝑠3, 𝑗  

𝑠′3, 𝑗 =  3 ∗ 𝑠0, 𝑗 ⊕ 𝑠1, 𝑗 ⊕ 𝑠2, 𝑗 ⊕ (2 ∗ 𝑠3, 𝑗)        (3) 

 As mix columns only requires multiplication by {02} and {03}, which, as we have seen, involved 

simple shifts, conditional XORs, and XORs. This can be implemented in a more efficient way that eliminates the 

shifts and conditional XORs. Equation Set (3) shows the equations for the mix columns transformation on a 
single column. Using the identity 

{03} ・ x = ({02} ・ x) x, we can rewrite equation Set (3) as follows: 

𝑇𝑚𝑝 = 𝑠0, 𝑗 ⊕  𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ⊕  𝑠3, 𝑗  
𝑠′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠0, 𝑗 ⊕  𝑠1, 𝑗 ] 
𝑠′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ] 
𝑠′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠2, 𝑗 ⊕  𝑠3, 𝑗 ] 
𝑠′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕ [ 2 ∗   𝑠3, 𝑗 ⊕  𝑠0, 𝑗 ]        (4) 

 Multiplication by 02 equivalents to multiply by x [2]. The gate count of this implementation (using 

combinational circuits only) is as shown in fig.(4) is as follows: 8 XORs to calculate ( s0,j ⊕ s1,j) in equation 

(4.1), so 32 XORs are required for the same calculations in equations 4. 

Additional 8 XORs are needed to calculate Tmp. 3 XORs are required to calculate 2*(s0,j s1,j) in equation (4.1) 

so we need 12 XORs for the same calculations in equations 4. Finally we need an 8 XORs (with 3 inputs) OR 16 

XORs (with 2 inputs) to calculate (s’0,j) in equation (4.1), so we need 32 XORs (with 3 inputs) OR 64 XORs 

(with 2 inputs) to calculate equations 4. Finally we can implement Forward mix columns transformation using 
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32+8+12+64 = 116 XORs with 2 inputs, OR (52 XORs with 2 inputs + 32 XORs with 3 inputs with total 84 

XORs).  

 

 
               Fig. 3. Forward mix columns operation 

 

         Additional 8 XORs are needed to calculate Tmp. 3 XORs are required to calculate 2*(s0,j s1,j) in equation 

(4.1) so we need 12 XORs for the same calculations in equations 4. Finally we need an 8 XORs (with 3 inputs) 

OR 16 XORs (with 2 inputs) to calculate (s’0,j) in equation (4.1), so we need 32 XORs (with 3 inputs) OR 64 

XORs (with 2 inputs) to calculate equations 4. Finally we can implement Forward mix columns transformation 

using 32+8+12+64 = 116 XORs with 2 inputs, OR (52 XORs with 2 inputs + 32 XORs with 3 inputs with total 

84 XORs).  

       In fig. 3, the block labeled Mul by (2) means multiply its input by 2 using the implementation shown in [2]. 
Each arrow represent 8 bits and each block such as s’1,j represent 8 wires holds values of s’1,j. The inverse mix 

column transformation (in decryption process), called InvMix Columns, is defined by the following matrix 

multiplication: 

 

0𝐸 0𝐵 0𝐷 09
09 0𝐸 0𝐵 0𝐷
0𝐷 09 0𝐸 0𝐵
0𝐵 0𝐷 09 0𝐸

  

𝑠0,0 s0,1 𝑠0,2 𝑠0.3
𝑠1.0 𝑠1,1 𝑠1,2 𝑠1,3
𝑠2,0 𝑠2,1 𝑠2,2 𝑠2,3
𝑠3,0 𝑠3,1 𝑠3,2 𝑠3,3

 =  

𝑠′0,0 s′0,1 𝑠′0,2 𝑠′0.3
𝑠′1.0 𝑠′1,1 𝑠′1,2 𝑠′1,3
𝑠′2,0 𝑠′2,1 𝑠′2,2 𝑠′2,3
𝑠′3,0 𝑠′3,1 𝑠′3,2 𝑠′3,3

  

 

Each element in the product matrix is the sum of products of elements of one row and one column. In this case, 
the individual additions and multiplications are performed in GF (28). The mix Columns transformation on a 

single column j (0≤ j≤ 3) of State can be expressed as:- 

 
𝑠 ′0, 𝑗 =  0𝐸 ∗ 𝑠0, 𝑗 ⊕  0𝐵 ∗ 𝑠1, 𝑗 ⊕  0𝐷 ∗ 𝑠2, 𝑗 ⊕ (09 ∗ 𝑠3, 𝑗) 
𝑠 ′1, 𝑗 =  09 ∗ 𝑠0, 𝑗 ⊕  0𝐸 ∗ 𝑠1, 𝑗 ⊕  0𝐵 ∗ 𝑠2, 𝑗 ⊕ (0𝐷 ∗ 𝑠3, 𝑗) 
𝑠 ′2, 𝑗 =  0𝐷 ∗ 𝑠0, 𝑗 ⊕  09 ∗ 𝑠1, 𝑗 ⊕  0𝐸 ∗ 𝑠2, 𝑗 ⊕ (0𝐵 ∗ 𝑠3, 𝑗) 
𝑠 ′3, 𝑗 =  0𝐵 ∗ 𝑠0, 𝑗 ⊕  0𝐷 ∗ 𝑠1, 𝑗 ⊕  09 ∗ 𝑠2, 𝑗 ⊕ (0𝐸 ∗ 𝑠3, 𝑗)  (5) 

 

Equation set (5) is formulated to simplify its hardware implementation as follows: 
𝑇𝑚𝑝 = 09 ∗ (𝑠0, 𝐽 ⊕  𝑠1, 𝑗 ⊕  𝑠2, 𝑗 ⊕  𝑠3, 𝑗) 

𝑠 ′0, 𝑗 = 𝑠0, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠0, 𝑗 ⊕  𝑠2, 𝑗  ⊕ [2 ∗  𝑠0, j ⊕ 𝑠1, 𝑗 ]  
𝑠 ′1, 𝑗 = 𝑠1, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠1, 𝑗 ⊕  𝑠3, 𝑗  ⊕ [2 ∗  𝑠1, j ⊕ 𝑠2, 𝑗 ]  

𝑠 ′2, 𝑗 = 𝑠2, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠0, 𝑗 ⊕  𝑠2, 𝑗  ⊕ [2 ∗  𝑠2, j ⊕ 𝑠3, 𝑗 ]  
𝑠 ′3, 𝑗 = 𝑠3, 𝑗 ⊕ 𝑇𝑚𝑝 ⊕   2 ∗   𝑠1, 𝑗 ⊕  𝑠3, 𝑗  ⊕ [2 ∗  𝑠3, j ⊕ 𝑠0, 𝑗      (6) 
 

 As shown in fig. (4) the gate count of this implementation (using combinational circuits only) is as 

follows: We need 8 XORs to calculate ( s0,j⊕s1,j ) in equation (6.1), so 32 XORs are required for equations set 

6. We need 3 XORs to calculate 2*( s0,j⊕s1,j ) in equation (6.1), so 12 XORs are required for the same 

calculations in equations 6. Additional 8 XORs are required to calculate ( s0,j⊕s2,j ) in equation (6.1), so we 

need 16 XORs for the same calculations in equations 6.  

         We need 16 XORs for the same calculations in equations 6. We need additional 3 XORs to calculate 

2*(s0,j⊕s2,j) in equation (6.1), so 6 XORs are required for the same calculations in equations 6. We need 

additional 3 XORs to calculate 2*(2*(s0,j⊕ s2,j)) in equation (6.1) so 6 XORs are required for the same 

calculations in equations 6. We need additional 3 XORs to calculate 2*(2*(2*( s0,j⊕s2,j ))) in equation (6.1), so 
6 XORs are required for the same calculations in equations 6. Additional 8 XORs are required to calculate 
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09*(s0,j⊕ s2,j), 8 XORs to calculate 09*(s1,j⊕ s3,j), and 8 XORs to calculate Tmp. Finally we need 24 XORs 

to calculate s'0,j in equation (6.1), and 96 XORs for the same calculations in equations 6. Implementing inverse 

mix columns transformation uses 32+12+16+6+6+6+16+8+96 = 198 XOR. Implementing forward and inverse 

mix columns transformation uses 116 +198 = 314 XOR gates. 

 

 

 

 
Fig. 4. Inverse mix columns operation 

 

IV. FAULT DETECTION SCHEMES 
       The S-box and the inverse S-box structures are divided into five blocks as shown in Fig.1 and 2 to 

obtain the low-overhead parities. In these figures, the modulo-2 additions, consisting of 4 XOR gates, are shown 

by two concentric circles with a plus inside. Furthermore, the multiplications in GF (24) are shown by rectangles 

with crosses inside. Let bi be the output of block i denoted by dots in Fig.1 and 2 for S-box. The outputs of the 

five blocks for S-box using polynomial basis in Fig.1 are represented as b1 = ηh+ ηl , b2 =  γ, b3 =θ,     b4 = σ and 

b5 = Y. Similarly, for Fig.2 b1 = η'h+ η'l , b2 =  γ',   b3 =θ', b4 = σ' and b5 = Y. One can replace ƞ(ƞ') with σ(σ') and 

X with Y for the inverse S-box. In the following, the least overhead parity are denoted by Ṕb1 - Ṕb5 in Figs. 1 and 

2. 

 

A. The S-Box and the Inverse S-Box using Polynomial Basis 

 The implementation complexities of different blocks of the S-box and the Inverse S-box and those for 
their predicted parities are dependent on the choice of the coefficients            υ ε GF(24) and  υ ε GF(22) in the 

irreducible polynomials           u2 + u + υ and v2 + v + υ used for the composite fields. The goal in the following 

is to find υ ε GF(24) and υ ε GF(22) for the composite fields GF(((22)2)2) and υ ε GF(24) for the composite fields 

GF((24)2) so that the area complexity of the entire fault detection implementations becomes optimum. According 

to [19], 16 the possible combinations for υ ε GF(24) and υ ε GF(22) exist. Moreover, for the composite fields 

GF((24)2), the possible choices for υ making the polynomial  x2 + x + υ irreducible has been exhaustively 

searched and found.  

The blocks are explained below: 

Blocks 1 and 5: Based on the possible values of υ and φ in GF(((22)2)2) ( υ in GF((24)2) ), the transformation 

matrices in Fig. 1 in blocks 1 and 5 of the S-box and the inverse S-box can be constructed using the algorithm 

presented in [21]. Using an exhaustive search, eight base elements in GF(((2
2
)

2
)
2
) 

( or GF((24)2) ) to which eight base elements of  GF(28)  are mapped, are found to construct the transformation 

matrix. 

      In [22], the Hamming weights, i.e., the number of nonzero elements, of the transformation matrices for the 

case φ= {10}2 and different values of υ in GF(((22)2)2) are obtained. It is noted that in [21], instead of considering 

the Hamming weights, sub expression sharing is suggested for obtaining the low-complexity implementations for 
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the S-box. Here, we have also considered these transformation matrices for φ= {11}2 as well as the 

transformation matrices for the inverse S-box for different values of υ and φ and have derived their area and 

delay complexities. Moreover, the gate count and the critical path delay for blocks 1 and 5 and their predicted 

parities, i.e., Ṕb1 and  Ṕb5, of the S-box and the inverse S-box in have been obtained. 

Blocks 2 and 4: As shown in Fig. 1, block 2 of the S-box and the inverse S-box consists of a multiplication, an 

addition, a squaring and a multiplication by constant υ in GF((24)2) .The following lemma is presented for 

deriving the predicted parity of the multiplication in GF((24)2), using which the predicted parities of blocks 2 and 
4 in Fig. 1 are obtained. 

 

    Lemma 1: Let λ = ( λ3,λ2,λ1,λ0 ) and δ = ( δ3,δ2,δ1,δ0) be the inputs of the multiplier in GF((22)2). The predicted 

parities of the result of the multiplication of  λ and δ in GF((22)2)  for    φ= {10}2 and φ= {11}2 are as follows, 

respectively 

 

        Ṕπ = λ3( δ3+δ2+δ0 )+ λ2( δ3+δ2+δ0 )+ λ1( δ2+δ0 )+  

         λ0( δ3+ δ0 +δ2+δ0) if φ= {10}2       (7)   

       Ṕπ = λ3( δ3 +δ0 )+ λ2( δ2+δ1+δ0 )+ λ1( δ2+δ0 )+  

         λ0( δ3+ δ0 +δ2+δ0) if φ= {11}2       (8) 

 
   The predicted parity of block 2 of the S-box and the inverse S-box, i.e., Ṕ in Fig.1, depends on the 

choice of the coefficients υ ε GF ((22)2) and υ ε GF(22) []. Using Lemma 1, we have derived the complexity of 

the predicted parity of block 2 for these coefficients. Furthermore, for block 4 in Fig.1, which consists of two 

multiplications in GF ((22)2), one can also use Lemma 1 to derive the predicted parity. For block 2 of the S-box 

(respectively the inverse S-box) over GF((24)2)  in Fig. 1, only the multiplication by constant is affected for 

different values of υs. For this block, we have exhaustively searched for and obtained the optimum 

implementation for different values of υs. Moreover, block 4 in Fig. 1 is independent of the value of υ. Therefore, 

the complexity of the predicted parity for this block is the same for all possible υs. 

Block 3:  We present the following theorem for block 3 of the 

S-box and the inverse S-box over  GF((22)2)  in Fig. 1. 

     

   Theorem 1: Let γ = (γ3,γ2,γ1,γ0) be the input and θ=(θ3,θ2,θ1,θ0 )  be the output of an inverter in GF((22)2). The 
predicted parities of the result of the inversion in GF((22)2), i.e., Ṕb3 , for φ= {10}2 and φ= {11}2  are as follows, 

respectively 

 

        Ṕθ= (͞γ2˅γ1)γ0+(γ1+γ0)γ3                       if φ= {10}2        (9)   

        Ṕθ= (γ2 γ1˅ γ0) + γ3 γ1                           if φ= {10}2      (10) 

 

Where, ˅ represents OR operation. It is noted that the inversion in GF(24) [] in Fig. 1 is independent of the value 

of  υ. Therefore, the complexity of the predicted parity for this block is the same for any possible υs. 

 

B. The S-Box and the Inverse S-Box Using Normal Basis 

 The optimum fault detection S-box using normal basis in Fig. 2 is derived. Here  an exhaustive search 
for finding the optimum predicted parities based on the choice of the coefficients υ' ε GF(24) and  υ' ε GF(22)  

and for the five blocks of the inverse S-box using normal basis. We have exhaustively searched for the least 

overhead transformation matrices and their parity predictions combined for the inverse S-box and have derived 

the total complexity for the predicted parities of blocks 1 and 5, i.e., Ṕb1 and  Ṕb5, and the delays associated with 

them. These are used to obtain the optimum S-box inverse S-box and its parity predictions in this section. It is 

also noted that as shown in Fig. 2, blocks 2, 3, and 4 of the S-box and the inverse S-box are the same. Therefore, 

considering [15], the predicted parities of these blocks can be obtained for the inverse S-box. 

 

C. Optimum parity prediction techniques 

i. For polynomial basis: 

 Considering the discussions presented for different combinations of υ and φ for polynomial basis, the 
following optimum parity prediction technique is presented.   

The fault detection S-Box using composite fields GF(((22)2)2) has the least area complexity for φ = {11}2 and υ= 

{1010}2. For this optimum S-Box (PB1), the following predicted parities for the five blocks in Fig.1 are as given 

below: 

 

      Ṕb1= x0 

      Ṕb2 = ƞ3(ƞ͞7+ƞ4)+ƞ2(ƞ͞7+ Pƞh)+ƞ1( ƞ6+ƞ4)+ƞ0 P͞ƞh+ƞ6+ƞ7 
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      Ṕb3=(γ2γ1˅γ0)+γ1γ3 

      Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ  

      Ṕb5 =σ7+σ5+σ3+σ2+σ0 

 

where, Ṕƞh=ƞ7+ƞ6+ƞ5+ƞ4 and ṔΘ =θ3+θ2+θ1+θ0. Additionally, among all the possible values for using composite 

fields      GF ((24)2), υ= {1010}2 yields to the least complexity architecture for the optimum S-box (PB2), 

respectively. Then, for the S-box we have: 
 

       Ṕb1= x7+x0 

      Ṕb2 = ƞ3ƞ4+ƞ2(ƞ5+ƞ4)+ƞ1(P͞ƞh+ƞ7)+ƞ0 P͞ƞh+ Pƞh +ƞ4 

      Ṕb3=͞γ3γ2͞γ0+γ0(͞γ1˅(͞γ͞͞2 ͞+͞γ3)) 

      Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ  

      Ṕb5 =σ4+σ3+σ2+σ1+σ0 

 

Furthermore, for the inverse S-box the following method is used. For the inverse S-box using composite field 

GF(((22)2)2), choosing φ = {11}2 and υ = {1011}2 and for the one using composite field  GF((24)2) having υ = 

{1001}2 yields to the lowest area complexity architecture. It is noted that blocks 3 and 4 have the same predicted 

parities as the S-box by swapping ƞ and σ. For other blocks of the optimum inverse S-box (PB1) we have: 
 

      Ṕb1= x͞0 

      Ṕb2 = σ3(͞σ7+σ4)+σ2(͞σ7+ Pƞh)+σ1(σ6+σ4)+σ0 P͞ƞh+σ6+σ7 

      Ṕb3=(γ2γ1˅γ0)+γ1γ3 

      Ṕb4 =ƞ3(θ3+θ0)+ƞ2(PΘ+θ3)+ƞ1(θ2+θ0)+ƞ0PΘ  

      Ṕb5 =ƞ7+ƞ5+ƞ3+ƞ2+ƞ0 

 

Additionally, for the optimum inverse S-box (PB2) we have: 

       Ṕb1=͞x7͞+͞x0 

      Ṕb2 = σ3σ4+σ2(σ5+σ4)+σ1(P͞ƞh+σ7)+σ0 P͞ƞh+ Pƞh +σ4 

      Ṕb3=͞γ3γ2͞γ0+γ0(͞γ1˅(͞γ͞͞2 ͞+͞γ3)) 

      Ṕb4 =ƞ3θ0+ƞ2(θ1+θ0)+ƞ1(PΘ+θ3)+ƞ0PΘ  
      Ṕb5 = ƞ0 

 

ii. For normal  basis: 

        For different combinations of υ' and φ' for normal basis, for the S-box and the inverse S-box, φ' = {10}2 

and υ' = {0001}2 have the least area for the operations and their fault detection circuits combined. The following 

is the predicted parities for the S-box: 

 

      Ṕb1= x7+x5 

      Ṕb2 = (ƞ'7˅ƞ'3)+(ƞ'6˅ƞ'2)+(ƞ'4˅ ƞ'0)+ƞ'5ƞ'1 

      Ṕb3= γ͞'͞2͞γ͞'0(γ'3+ γ'1)+ γ'3 γ'1(γ'2+ γ'0) 

      Ṕb4 = (ƞ'7+ƞ'3) θ'3+(ƞ'6+ƞ'2) θ'2+(ƞ'5+ƞ'1) θ'1+(ƞ'4+ƞ'0) θ'0  

      Ṕb5 =σ'7+σ'5+σ'4+σ'3+σ'2 

 

 Moreover, for the inverse S-box, Ṕb2 - Ṕb4 are the same as those for the S-box by swapping ƞ' and σ'. For 

the other blocks, the predicted parities are given as: Ṕb1= y7+y6+ y2+y1 and Ṕb5 =ƞ'7+ƞ'5+ƞ'4+ƞ'3+ƞ'2. 

      It is noted that the area overhead of the proposed scheme for the optimum structures consists of those 

of the optimum parity predictions. In addition, 23 XORs for the actual parities (3 XORs for adding the coordinates 

of each of  ƞ'h+ƞ'l, γ' and θ' and 7 XORs each for those of ζ' and Y ) are utilized. Moreover, the delay overhead of 

the predicted parities of five blocks can overlap the delays for the implementations of five blocks in Figs. 1 and 

2. The only delay overhead for this scheme is the delay of the actual parity of block 5, which is 3TX, where TX, is 

the delay of an XOR gate. 

D. Error indication 

    In order to develop a fault detection structure, the predicted parity can be compared with the actual 

parity in order to obtain the error indication flag of the corresponding block . By ORing five indication flags of 

five blocks, the error indication of the entire S-box is obtained [15].  

 

V. SIMULATION RESULTS 
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         First the S-box and the inverse S-box using composite fields is constructed for low area and low power 

dissipation. Also the time delay is reduced compared to other techniques. Here S-Box and inverse S-Box are 

constructed using both polynomial and normal basis. Then, single Struck-At-Faults have been introduced to the 

S-box and the Inverse S-box and the corresponding output simulation is obtained. After that the circuit is tested 

for multiple Struck-At-Faults. If exactly one bit error appears at the output of the S-box (respectively inverse S-

box), the presented fault detection scheme is able to detect it and the error coverage is about 100%. This is 

because in this case, the error indication flag of the corresponding block alarms the error. However, due to the 
technological constraints, single stuck-at error may not be applicable for an attacker to gain more information 

[23]. Thus, multiple bits will actually be flipped and hence multiple stuck-at errors are also considered in this 

paper covering both natural faults and fault attacks [23].  

      Here a lightweight Mixcolumns is also implemented using logic gates. The total number of gates 

required for implementing mix columns operation in the proposed design is 116+198 =314 XOR gates[],[]. Since 

our design is implemented using combinational circuits only, each resultant mix column takes a single clock 

cycle. The proposed mix column implementation takes four clock cycles compared to 28 clock cycles in [4]. The 

circuit for both AES encryption and decryption is designed. Xilinx ISE 8.1 and ModelSim are the simulation 

tools used here. The target device is XC2S600E. Finally, the error coverage has been calculated from the 

obtained results. The design is also simulated for power, delay and area calculations. From the simulation result 

the following is inferred. 
TABLE I 

COMPARISON OF LUTS AND SLICES 

Operation Architecture No. of 4-input 

LUTs 

No. of 

slices 

 
 

S-Box 

LUT 250 158 

PB 87 31 

NB 83 31 

 
Inverse 
S-Box 

LUT 250 158 

PB 84 31 

NB 73 31 

 

A.  Low area and Low power 

 From the synthesis report, the number of LUTs and slices needed to design the S-box and the Inverse S-

box is calculated. Table I gives the comparison of the number of LUTs and slices used for the design of S-box 

and Inverse S-box using various techniques.     From the Table I the number of LUTs and Slices used for  S-box 

and Inverse S-box using composite fields is less when compared to S-box based on LUTs .  
    Table II illustrates the comparison results based on simulation in terms of power. 

TABLE II 

COMPARISON OF POWER 

Operation Architecture Power 

(mW) 

 

 
S-Box 

LUT 56 

PB 34 

NB 34 

 
Inverse 
S-Box 

LUT 56 

PB 34 

NB 34 

 

B. Fault detection 

 The proposed architecture for the S-box and Inverse S-box is able to find all the single Struck-At faults. 

Faults are injected randomly on the input and output nodes of the logic gates. In the case of multiple Struck-At 
faults in S-box, also the faults have been identified. We have performed error simulations for the S-boxes and the 

inverse S-boxes using the optimum composite field obtained in the previous section to confirm our above 

theoretical computation. In our simulations, we use stuck-at error model at the outputs of the five blocks forcing 

one or multiple nodes to be stuck at logic one (for stuck-at one) or zero (for stuck-at zero) independent of the 

error-free values. We use Fibonacci implementation of the LFSRs for injecting random multiple errors, where, 

the numbers, the locations and the types of the errors are randomly chosen. In this regard, the maximum 

sequence length polynomial for the feedback is selected. The injected errors are transient, i.e., they last for one 

clock cycle. However, the results would be the same if permanent errors are considered. The results of the error 

simulation [] is shown in Table III. It is noted that in these tables, the optimum polynomial basis (PB) and 
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normal basis (NB) are presented. As shown in the table, using five parity bits of the five blocks, the error 

coverage for random faults reaches 97% which is the same as our theoretical computation in this section. This 

error coverage will be increased if the outputs of more than one S-box (respectively inverse S-box) of the AES 

implementation are erroneous. In this case, the errors detected in any of 16 S-boxes (respectively inverse S-

boxes) contribute to the total error coverage. Thus, error coverage of very close to 100% is achieved. 

      The optimum S-box and inverse S-box using normal basis have the least hardware complexity with the 

fault detection scheme. Moreover, the optimum structures using composite fields and polynomial basis have the 
least post place and route timing overhead among other schemes. It is noted that using sub-pipelining for the 

presented fault detection scheme in this paper, one can reach much faster hardware implementations of the 

composite field fault detection structures. The AES encryption and decryption presented here using composite 

fields and forward mix columns method has least area compared to its counterparts. 

TABLE III 

ERROR SIMULATION RESULTS 

Operation Architecture Error coverage  

 

S-Box 
(Inverse S-Box) 

PB 97.008 

NB 97.003 

 

VI. CONCLUSION  
 In this paper, low power AES encryption and decryption has been designed. Parity based fault detection 
scheme for the low power S-box and the Inverse S-box are presented in order to find the faults in the hardware 

implementation of the S-box and the Inverse S-box. Instead of using the look-up table approach for the 

implementation of the S-box and its parity prediction, the composite field arithmetic with logical gates is used. 

Simulation results show that very high error coverage for the presented scheme is obtained when compared to 

other fault detection schemes like those based on LUTs and redundant units. Also low power and low area is 

achieved when compared to previous methods. An alternative lightweight design for both forward and inverse 

mix columns operation required also included in the AES hardware implementation. The comparisons indicate 

that the proposed mix-column design have less complexity than previous relevant work in gate size and no. of 

clock cycles. 
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