Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1-
Pyridoyl-Δ^2 -Pyrazolines

Santosh S.Ambhore & Mangesh.V.Kadu
Department of Applied Chemistry Anuradha Engineering College Chikhli.Dist.Buldana, (MS), Pin-443201

Abstract: Some new of 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ^2-pyrazolines have been synthesis by the action of isoniazid on 3-aryl flavanones in pyridine medium. In this synthesis p-cresol and m-cresol are used as starting material. Isoniazid is use as anti tuberculosis drug. Structures of this compound have been established by spectral and elemental analysis.

I. Introduction:
Heterocyclic compounds are well known for their wide range of biological applications out of which pyrazolines occupy unique position due to dominant applications. Pyrazolines are known to possess antimicrobial, ant tubercular, antiviral, anti HIV, molluscicidal and cerebroprotective properties. Pyrazolines and are important nitrogen-containing five-member ring heterocyclic compounds. Pyrazoline derivatives have been found to possess a broad spectrum of biological activities such as tranquillizing, muscle relaxant, psychoanaleptic, anti-convulsant, antihypertensive, and antidepressant activities. Pyrazolines derivatives are also used as Anesthetics, Analgesic, Antitubercular, Antiviral, Anticonvulsant, molluscicidal, insecticidal, fungicidal, antiinflammatory, herbicides, antimicrobial and antibacterial. One of the important applications of pyrazoline is the use of pyrazolines as a fluorescent brightening agent. They can absorb light of 300-400 nm and emit blue fluorescence. Pyrazolines are also acting as whole transporting material in OELD (organic electroluminescent device) because of formation of $\pi-\pi$ conjugated system due to one of the nitrogen atom. Bleaching Agents, Luminescent, Fluorescent.

The literature survey clearly indicates that 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ^2-pyrazolines are not yet synthesized. It was, therefore thought of interest to synthesize 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ^2-pyrazolines from 3-aryl flavanones.

Thus the present work deals with synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ^2-pyrazolines from 3-aryl flavanones (scheme) and Isoniazid in pyridine medium. Structures of this compound have been established by spectral and elemental analysis.

II. Experimental
Melting points are uncorrected. IR spectra in KBr were recorded on PE-983/PE-781IR spectrophotometer. NMR in DMSO on Varian EM 390-cw NMR spectrophotometer and UV on Varian Cary 239 OUV spectrophotometer.

1) Preparation of 1,3-diaryl-1,3 propadione (1a – 1f)
2-benzoyloxy acetophenone was dissolved in dry pyridine. The solution was warmed up to 60°C and pulverized KOH was added slowly with constant stirring. After about 4 hours the reaction mixture was acidified by adding ice cold HCl. The brownish yellow product obtained was filtered, wash with sodium bicarbonate solution and sufficient water. The product obtain was crystallized from ethanol-acetic acid mixture.

2) Preparation of 3-aryl flavanones (2a-2f)
1,3-diaryl-1,3 propadione (1a – 1f) and aromatic aldehydes (p-chlorobenzaldehyde, m-chlorobenzaldehyde and o-chlorobenzaldehyde) where reflux for about 1 hours in ethanol containing a few drops of pipedine. The resulting mixture was cool and the product separated was crystallized from ethanol-acetic acid mixture.

Spectral interpretation of 3a:
IR (vmax): 1650 cm$^{-1}$ v(C=O); 1615 cm$^{-1}$ v(C=O); 1590-1585 cm$^{-1}$ v(C=C); 1245 cm$^{-1}$ v(C-O-C).
1H NMR: 2.30(S, 3H, Ar-CH$_3$); 3.80(S, 3H Ar-O-CH$_3$); 6-7.8.3(m,11H Ar-H)
UV(λ max):322nm.

DOI: 10.9790/5736-08115153 www.iosrjournals.org 51 | Page
(3) Preparation of 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ²-pyrazolines (4a-4f)

3-aryl flavanones where reflux with isoniazid for 8 to 10 hours in pyridine solvent. The reaction mixture was decomposed by acidified water, filtered and wash with sufficient water. The product obtain was crystallized from ethanol-acetic acid mixture. To obtain a crystalline solid. Yield 60 – 80%.

Spectral interpretation of 4a:
IR (νmax):1625cm⁻¹ ν(C=O);3350 cm⁻¹ ν(OH);1620 cm⁻¹ ν(C=N);1500 cm⁻¹ ν(C=C);1390 cm⁻¹ ν(C-N);1035 cm⁻¹ ν(C-O)(Phenol)
1H NMR: 1.9(S, 3H, CH₃); 7.2-7.6(m,17H,-Ar-H); 12(S,1H,-OH).
UV(λ max):256nm.

<table>
<thead>
<tr>
<th>Physical Characterization data of Synthesized Compound 3-Aroyl flavanones (3a-3f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>3a</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>3c</td>
</tr>
<tr>
<td>3d</td>
</tr>
<tr>
<td>3e</td>
</tr>
<tr>
<td>3f</td>
</tr>
</tbody>
</table>

Table 2: Physical Characterization data of Synthesized Compound 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ²-pyrazolines (4a-4f)

<table>
<thead>
<tr>
<th>Physical Characterization data of Synthesized Compound 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ²-pyrazolines (4a-4f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>4a</td>
</tr>
<tr>
<td>4b</td>
</tr>
<tr>
<td>4c</td>
</tr>
<tr>
<td>4d</td>
</tr>
<tr>
<td>4e</td>
</tr>
<tr>
<td>4f</td>
</tr>
</tbody>
</table>

Scheme

III. Conclusions

In conclusion, we have reported an efficient procedure for the synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ²-pyrazolines in pyridine medium. The major advantage of this method is the ease of work-up. This method also offers some other merits such as pure synthesis, high yields of products, and use of various substrates, which make it useful and attractive procedure for the synthesis of 3,5-diaryl-4-benzoyl-1-pyridoyl-Δ²-pyrazolines.

References:
Synthesis and Characterization of 3, 5-Diaryl-4-Benzoyl-1-Pyridoyl-Δ2-Pyrazolines