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Abstract 
Land use and land cover (LULC) mapping is important for various activities ranging from proper resource 
allocation to policy planning. Freely available satellite data from multispectral instruments has opened wide 

doors for their applications in urban planning, natural resource monitoring, and change analysis. Previously, 

many researchers have individually used multispectral instruments, i.e., Sentinel-2 (10m), Gaofen-6 (16m), and 

Landsat-8 (30m) for land-use classification, but till now, no study has evaluated the efficiency of these three 

instruments in land-use classification. So this study evaluated the comparison of these instruments using 

accuracy assessment and area esitimation by machine learning classification over the Mardan district of 

Pakistan. The study revealed that Sentinel-2 secured the highest accuracy but at the same time showed 

confusion between buildup and barren classes. Landsat-8, with the least accuracy, performed exceptionally well 

for mapping agricultural areas, rangeland, and forest land. Lastly, Gaofen-6 was considered far better in terms 

of reliable outcomes for mapping city urban areas, where it showed good outcomes. In terms of accuracy 

assessment, Sentinel-2 stood first with Overall Accuracy (OA) of 0.89 and Kappa (K) of 0.85, then Gaofen-6 

with OA equals to 0.80 and K equals to 0.79, while Landsat-8 stood last with OA equals to 0.76 and K equals to 
0.70. The results of area estimation revealed that Gaofen-6 (12856 ha) estimated the most accurate area for the 

buildup class, followed by Landsat-8 (11169 ha), and Sentinel-2 (8307 ha). It was observed that in Sentinel-2 

based classification, urban areas were misclassified as barren in nearby city parts. In the end, the study 

concludes that the efficiency of land-use primarily depends on the purpose of research. For forestland, 

agriculture, rangeland, and barren land LULC classes, both Sentinel-2 and Gaofen-6 showed promising results, 

whereas for water class only, Geofen-6's results seem quite accurate. This study revealed that Gaofen-6 showed 

promising results compared to Sentinel-2 and Landsat-8. 
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I. Introduction 

Land use/land cover (LULC) is a fundamental and classical concept required to understand the 

interaction between humans and the physical environment.The land cover defines the physical and biological 

characteristics of the Earth's surface, including agricultural land, water bodies, vegetative cover, bare land, and 
built-up areas. In contrast, land use refers to how humans utilise and manage the natural environment or land 

(ED Chaves et al., 2020). Over recent decades, the pattern of land use and land cover has undergone 

unprecedented changes. The pace of land use and land cover (LULC) change has multiplied as a result of 

economic and industrial development, as well as rapid and uncontrolled population expansion, particularly in 

developing nations, during the end of the twentieth century and the beginning of the twenty-first (Talukdar et 

al., 2020). 

The various effects of change in LULC over large areas include loss of vegetation cover, loss of 

biodiversity, climate change, carbon emissions, environmental pollution, and changes in hydropower systems 

(Mridha et al., n.d.). The Climate Research Committee of the National Council stated that the pattern of LULCs 
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has a significant impact on Earth's radiation balancing because LULC variations affect evaporation, 

transpiration, and heat flow on the ground surface. That is why understanding LULC trends and monitoring the 

changing environment on a global to local scale is critical for scientists and practitioners (Cai et al., 2019). Since 

quantitative assessment of LULC change is one of the most effective means of understanding and managing 

land conversion (Talukdar et al., 2020), LULC data can help us understand how intertwined human–

environmental systems are (ED Chaves et al., 2020). Therefore, researchers need to maintain an up-to-date, 

objective, and highly accurate and reliable LULC map (Gudmann et al., 2020). 
The value of precise LULC data has grown in recent years to support the implementation of policies 

connected to natural resource management and environmental issues such as food security, climate change, 

deforestation, and agricultural dynamics. It emphasises the importance of accurate mapping for long-term 

development (ED Chaves et al., 2020). Mapping and evaluating land cover and land use are essential for many 

environmental and mapping applications. Land cover mapping and monitoring have long been seen as a 

significant scientific goal. The data generated can be used to assist ecological and atmospheric models, decision-

making procedures, and so on (Topalolu et al., 2016a). LULC information and its spatial distribution patterns 

are vital for a wide range of research topics, especially in urban studies with diverse classes, as well as 

maintenance and development programs.LULC change has been viewed as a fundamental cause of global 

environmental change by influencing the land surface. Urban borders, river basins, wetlands, and agricultural 

areas are frequently exposed to LULC changes, mainly by reducing forest cover to allow for agricultural 
extension, urbanization, and industrialization, among other things. Land cover is rapidly changing in 

metropolitan areas, with the conversion from agricultural/fallow to concrete forest resulting in urban sprawl. 

Understanding numerous environmental issues associated with urban and adjacent environments requires an 

examination of LULC and its change (Pandey et al., 2021). Therefore, precise and up-to-date LULC information 

is valuable for a sustainable ecosystem (Sekertekin et al., 2017). 

In recent decades, remote sensing has become one of the most widely used sources for LULC analysis. 

In mapping LULC and analysing their dynamics, remote sensing has been extensively employed, frequently 

combined with a Geographic Information System (GIS) (Pandey et al., 2021a). Mapping is done utilising 

accessible records, field surveys, and maps in traditional methods. It is a direct method of mapping in which the 

map can be created at various scales and with varying degrees of detail. As a result, traditional methods are a 

manpower-intensive, time-consuming, and costly approach to mapping large areas. Furthermore, the resulting 

maps quickly become obsolete in rapidly changing ecosystems, and there is a risk of subjectivity in the mapping 
(Vivekananda et al., 2021). On the other hand, remotely sensed data-based mapping of LULC is relatively 

inexpensive, geographically broad, multi-temporal, efficient, and time-saving (Talukdar et al., 2020). Satellite 

images and remote sensing have several advantages, including an overall perspective and the ability to describe 

phenomena utilising diverse sections of the electromagnetic spectrum (Ghayour et al., 2021). Remote sensing is 

a powerful technique for extracting accurate spatial data and LULC distribution over time (Pandey et al., 

2021a). Previously, the spatial resolution of satellite data was lower than that of maps produced by terrestrial 

surveys. Satellites now deliver data at multiple spatial and temporal scales because of advancements in remote 

sensing (R.S.) techniques and microwave sensors. Compared to other methods such as field surveys, R.S. allows 

for the speedy capture of information on LULC at a significantly lower cost. For LULC mapping, remote 

sensing data offers the advantages of multi-temporal availability and high spatial coverage (Talukdar et al., 

2020). 
The interest in land use and land cover (LULC) maps has risen dramatically in recent years, owing in 

part to the increasing availability and accessibility of free satellite imagery. Satellite data with medium to high 

resolutions became more available as remote sensing technology advanced (Fu et al., 2020). The use of remotely 

sensed datasets is determined by the user's needs, purpose, and type of landscape evaluation. Other 

considerations such as geographical coverage, spatial and spectral resolution, temporal coverage, and Synthetic 

Aperture Radar (SAR) data all play a role in deciding which data to use for a given sort of study (Pandey et al., 

2021a). Multispectral and multi-temporal high-and medium-spatial-resolution satellite images have appeared 

recently as key tools for assessing vegetation cover, forest degradation, and urban growth expansion (Güler et 

al., 2007). For analysing LULC changes in large cities, high-resolution satellite images or aerial imagery are 

essential. However, such datasets are inadequate (Gadrani et al., 2018). However, for LULC classification, 

medium-resolution data (10–30 m) such as Landsat, Sentinel, and Gaofen-8 have been utilised worldwide 
(Vishwakarma et al., 2016). Moreover, medium-resolution satellite data is less costly than high-resolution data. 

Nowadays, machine-learning techniques on remotely sensed images for LULC mapping have received 

a lot of interest. There are different machine-learning algorithms such as random forest (R.F.), artificial neural 

network (ANN), support vector machine (SVM), fuzzy adaptive resonance theory-supervised predictive 

mapping (Fuzzy ARTMAP), spectral angle mapper (SAM), and Mahalanobis distance (M.D.) etc. The most 

popular mapping technique used on satellite imagery is random forest (R.F.) algorithms. It's one of the most 

widely used LULC classification machine learning algorithms. Talukdar et al. (2020) compared different 
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machine-learning algorithms and found that random forest (R.F.) is the best machine-learning LULC classifier. 

The objectives of this study are to assess and compare the satellite images, including Gaofen-6, Landsat-8, and 

Sentinel-2, for LULC classification using random forest (R.F.) algorithms in Mardan district, Pakistan. 

 

II. Methodology 
2.1 Study area. 

Mardan district is located in Peshawar division, Khyber Pakhtunkhwa province, Pakistan, shown in 

Figure 1. Geographically, it lies between 34°12'0" N and 72°2'24" E. The valley's elevation ranges from 1000 to 

2056 metres above sea level. It is bounded by Buner district, which is on the north; Swabi district on the east; 

Nowshehra district on the south; and Charsadda and Malakand districts on the west. The district has a total area 

of 1632 sq. km. According to census data, the population in 1998 was 1460100 people and that in 2020 was 

3810000 people, which shows the rapid rate of urbanisation in the study area (Khan et al., 2011). The district's 

northern border is surrounded by hills, whereas its southern border is primarily made up of fertile plains with 

low hills strewn across it (Akhtar & Begum, 2009). The typical temperature in Mardan is between 20 and 30 

degrees Celsius, and the relative humidity is relatively high, with a maximum humidity of 73 per cent recorded 

in December. Mardan receives 559 mm of rain on average (Anwar et al., 2019). The summer months are very 
hot. During May and June, dust storms are common at night. The months of July, August, December, and 

January get the most rainfall. Streams usually run from north to south. The Kabul River receives the majority of 

the streams. 

Mardan District is one of Khyber Pakhtunkhwa Province's most economically prosperous areas. It is 

Khyber Pakhtunkhwa's second-largest city. Agriculture is the main source of income for the people in this area. 

It has one of the best irrigation systems in the world, which the British government established during its rule 

over the subcontinent. The major crops grown in this area are wheat, maize, tobacco, sugarcane, sugar beets, 

apricots, peaches, apples, plums, and pears. Along with agriculture, the Mardan district has a lot of opportunities 

for investors in the tourism, mining, and processing industries, as well as in the manufacturing of cars, railway 

engines, sugar, and other things like cigarettes, textiles, beverages, ceramics, edible oil/ghee, and 

soaps/shampoo, etc.  
 

 
Figure 1. Study Area map of Mardan district 

 
2.2 Data Acquisition 

In order to study LULC Classification for Mardan district, images from Landsat 8 Operational Land 

Imager (OLI), Sentinel-2 Multispectral Instrument (MSI), and Gaofen-6 instruments were acquired from 

different sources. A single tile was used to cover the entire area of Mardan for Landsat-8 in January 2021. The 

cloud cover in the image was 3%. For sentinel-2, two tiles were used to cover the entire study area for January 
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2021. The cloud cover of the Sentinel-2 image was 3%. Both Landsat-8 and Sentinel-2 images were acquired 

from the United States Geological Survey website (earthexplorer.usgs.gov). For Gaofen-6, a single tile was used 

to cover the entire study area for January 2021. The Geofen-6 satellite image was taken freely from the CNSA 

GEO website (cnsageo.com). The satellite data acquisition information for each instrument is given in table 1. 

Characteristics of Landsat-8 Operational Land Imager (OLI) images for the study area 

 
Data Image Acquisition Date SpatialResolution Path/Row CloudsPercentage Sensor 

Landsat 8 OLI 01-01-2021 to 01-02-2021 30 m 151/36 3% OLI 

Sentinel-2 MSI 01-01-2021 to 01-02-2021 10 m 43SBU & 

43SBT 

3% MSI 

Gaofen-6 01-01-2021 to 01-02-2021 16m  3% WFV 

 

2.2.1 Instruments details and background 
Landsat-8 

Landsat-8 is the most current in a long line of global remote sensing satellites that began in 1972 

(Knight & Kvaran, 2014). Most importantly, it can monitor the Earth at wavelengths that allow researchers to 

correct for distortions, particularly near the coast, generated by the atmosphere (Acharya & Yang, 2015b). The 

two sensors of the Landsat 8 satellite are the Landsat 8 OLI and the Thermal Infrared Sensor (TIRS). There are 

eight spectral bands with a 30 m spatial resolution for bands 1–7 and 9, and one panchromatic band with a 15 m 

resolution in the Landsat 8 OLI data. The band characteristics of Landsat-8 are given in table 2 (Hua et al., 

2017). The European Space Agency launched two Sentinel 2A and 2B satellites on June 23, 2015, and March 7, 

2017, respectively. Two satellites are in a similar orbit and share identical characteristics. The S2/MSI mission 

gives additional mapping opportunities due to their spectral characteristics (three bands in the Red-edge and two 

bands in the SWIR). Because this spectral range is sensitive to chlorophyll concentration and extremely 
changeable among different crops and phenological phases, Descriptions for different bands used for Sentinel-2 

are given in table 3. On June 2, 2018, China launched Gaofen-6, a new high-resolution remote sensing satellite 

from the Jiuquan Satellite Launch Center. Gaofen-6 is an optical satellite featuring one 2/8m Panchromatic and 

Multispectral imager and one 16m Wide Field of View Multispectral Camera. The band details of Gaofen-6 are 

shown in Table 4. The Gaofen-6 introduces four bands with core wavelengths of 710 nm, 750 nm, 425 nm, and 

610 nm, which can provide more detailed spectrum data for agricultural research (Xu, 2019). 

 

Table 2. Landsat-8 band characteristics 
Sensor Band 

Number 

Band name Wavelength (μm) Resolution (m) Band Applications 

OLI 1 Coastal/ 

Aerosol 

0.435 - 0.451 30 Coastal and aerosol studies 

OLI 2 Blue 0.452 – 0.512 30 Bathymetric mapping, distinguishing soil from 

vegetation, and deciduous from coniferous vegetation 

OLI 3 Green 0.533 – 0.590 30 Emphasizes peak vegetation, which is useful for 

assessing plant vigour 

OLI 4 Red 0.636 – 0.673 30 Discriminates vegetation slopes 

OLI 5 NIR 0.851 – 0.879 30 Emphasizes biomass content and shorelines 

OLI 6 SWIR 1 1.566 – 1.651 30 Discriminates moisture content of soil and vegetation; 

penetrates thin clouds 

OLI 7 SWIR 2 2.107 – 2.294 30 Improved ability to track moisture content of soil and 

vegetation and thin cloud penetration 

OLI 8 Pan 0.503 – 0.676 15 15 meter resolution, sharper image definition 

OLI 9 Cirrus 1.363 – 1.384 30 Improved detection of cirrus cloud contamination 

TIRS 10 TIRS 1 10.6 – 11.19 100 The 100-meter resolution, thermal mapping and 

estimated soil moisture 

TIRS 11 TIRS 2 11.50– 12.51 100 The 100-meter resolution, thermal mapping and 

estimated soil moisture 

Sources: (eos.com/find-satellite/landsat-8/) 

 

Table 3. Sentinel-2 band characteristics. 
Sentinel-2 Bands Central Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.443 60 

Band 2 - Blue 0.490 10 

Band 3 - Green 0.560 10 
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Band 4 - Red 0.665 10 

Band 5 - Vegetation Red Edge 0.705 20 

Band 6 - Vegetation Red Edge 0.740 20 

Band 7 - Vegetation Red Edge 0.783 20 

Band 8 - NIR 0.842 10 

Band 8A - Vegetation Red Edge 0.865 20 

Band 9 - Water vapors 0.945 60 

Band 10 - SWIR - Cirrus 1.375 60 

Band 11 - SWIR 1.610 20 

Band 12 - SWIR 2.190 20 

(Source: sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument) 

 

Table 4. Gaofen-6 band characteristics 
Payload Spectral Spectral Type Spectral Range (nm) Resolution Spatial 

(m) 

PMS 1 Panchromatic 450~900 2 

PMS 2 Blue 450~520 8 

PMS 3 Green 520~590 8 

PMS 4 Red 630~690 8 

PMS 5 Near infrared 770~890 8 

WFV 1 Blue 450~520 16 

WFV 2 Green  520~590 16 

WFV 3 Red 630~690 16 

WFV 4 Near infrared 770~890 16 

WFV 5 Costal 400~45 16 

WFV 6 Yellow 590~630 16 

WFV 7 RedEdge1 690~730 16 

WFV 8 RedEdge2 730~770 16 

(Source: catalyst.earth/catalyst-system-files/help/references/gdb_r/Gaofen-6) 

Different techniques were used to build land cover maps from these data utilising random forests (RF) 
algorithms after receiving Landsat-8 and Sentinel-2 data, as well as Gaofen-6 data. The results of this study are 

shown by the flow chart in Figure 2. 

 

 
Figure2. The methodology flowchart for this study 
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Firstly, Landsat-8, Sentinel-2, and Gaofen-6 satellite images were collected free from different 

websites. Afterwards, those satellite images were corrected by atmospheric correction, cloud shadow mask, 

terrain mask, geometric correction, and haze reduction. Then the training samples were created carefully to 

depict the following five classes: water, agricultural land, bare soil, vegetation, and built-up areas. The reference 

data received from Google Earth Images, ESRI Global LULC, and (False Color Composite) FCC Sentinel-2 

Images was used to develop training sites for each class. For this study (Topalolu et al., 2016b), Google Earth 

has satellite images with a high geographic and temporal resolution that were suitable for use as a reference. At 
least 40 samples were gathered for each land cover/use class, totaling 3400 samples for the categorization of 

both pictures in ArcGIS Pro. Next, random forest (RF) approaches were applied to classify land cover maps of 

the study area. Finally, an error matrix was used to assess accuracy. From the error matrix, accuracy assessment 

indices such as Kappa, Overall Accuracy (OA), User Accuracy (UA), Producer Accuracy (PA), and F1-Score 

were evaluated. 

 

2.3 Pre‑ processing 

2.3.1 Atmospheric correction 

Atmospheric correction is done for each satellite image to remove the atmosphere's scattering and 

absorption effects. There are various methods for atmospheric correction, including dark object subtraction, 

radiative transfer models, and atmospheric modelling. We used the Dark Object Subtraction (DOS) method for 
atmospheric correction. The goal of atmospheric correction is to eliminate atmospheric effects from satellite 

photos in order to establish accurate surface reflectance values. The most crucial aspect of the preprocessing of 

satellite remotely sensed data is atmospheric correction, and any omission leads to incorrect results 

(Themistocleous&Hadjimitsis, 2008). 

 

2.4 Machine Learning RF classification 

There are various machine-learning algorithms for LULC mapping. Machine-learning approaches have 

been classified into two categories: supervised and unsupervised (Wulder et al., 2019; See et al., 2015). Spectral 

angle mappers include spectral angle mappers (SAM), support vector machine (SVM), fuzzy adaptive resonance 

theory-supervised predictive mapping (Fuzzy ARTMAP), random forest (RF), Mahalanobis distance (MD), 

radial basis function (RBF), decision tree (DT), maximum likelihood classifier (MLC), fuzzy logic, naive Bayes 

(NB), and multilayer perception (MLP) (Ma et al., 2019; Shih et al., 2019). On the other hand, unsupervised 
algorithms include K-means, ISODATA, Affinity Propagation (AP) cluster algorithms, etc. (Maxwell et al., 

2018; Camps-Valls et al., 2011). During the last ten years, random forests (RF), artificial neural networks 

(ANN), support vector machines (SVM), and decision trees have received considerable attention among remote 

sensing communities in remote sensing-based activities like LULC classification (Talukdar et al., 2020). 

 

2.4.1 Random forests (RF) 

RF is a non-parametric ensemble learning approach that is based on the premise that a group of 

bootstrapped aggregated classifiers outperforms a single classifier. Every single tree is parameterized using just 

a randomly sampled set of observations, with substitution from the training data. This decreases 

multicollinearity by helping to de-correlate the trees (Abdi, 2020). Two factors are required to set up the RF 

model, which is referred to as the method's base. These factors are 1) the number of trees, which 'n-tree' can 
explain, and 2) the number of features in each split, which'm-try' can explain. Individual voting power or votes 

is provided by classification trees, which provide correct classification in managing the majority vote from trees 

across the forest (Talukdar et al., 2020). Above the bootstrapping strategy, this method uses random binary trees 

to build a training subset. Furthermore, a random selection of the training information is used to generate the 

model from the initial database; however, data that is not involved is known as "out-of-the-bag" (OOB) (Catani 

et al., 2013). The working of RF is shown in figure 3. 
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Figure 3: Random Forest algorithm working flowchart 

 

The Random Forest (RF) approaches have been used to solve various environmental issues, including 

water resource management and natural disaster mitigation. It can process a wide range of data, including 

satellite images and numerical data. Several studies in the realm of remote-sensing applications have recently 

revealed that LULC classification utilising RF has reasonable performance. This method uses a large number of 

trees to improve accuracy in picture recognition and land-use modelling (Talukdar et al., 2020). It has attracted 

the attention of the scientific community due to its impressive classification findings and processing speed 

(Belgiu & Drăguţ, 2016). The RF methodology has benefited from two more powerful algorithms: bagging and 
random, which are referred to as the method's "powerhouse (Talukdar et al., 2020). 

 

2.5 Accuracy Assessment 

Accuracy assessment is a crucial final stage in the categorization process (Rwanga & Ndambuki, 

2017). It is required for the examination of the classification process result since the user of land-cover output 

must know how precise the result is in order to effectively use the data (Mohajane et al., 2018). In this work, we 

used the kappa coefficient, overall accuracy (OA), and F1 score.In accuracy evaluations, Kappa analysis is a 

discontinuous multivariate technique. The Khat statistic (an estimate of Kappa) is a way of measuring 

agreement or correctness derived from Kappa analysis.  

Kappa was calculated using the following Equation: 

   
                                  

                  
 

The likelihood that a test will correctly classify an individual is defined as the sum of true positives and true 

negatives divided by the total number of individuals examined (Alberg et al., 2004). Overall accuracy is 

calculated using the following formula: 

The overall classification accuracy is calculated by dividing the number of correct points by the total number of 

points. 

The F1-score is a metric for how accurate a model is on a given dataset. It's used to assess binary 

classification systems that divide examples into "positive" and "negative" categories. The F-score, which is 

defined as the harmonic mean of the model's precision and recall, is a technique for combining the model's 

precision and recall. The F-score is a popular way to judge information retrieval systems like search engines and 

a number of machine learning models, especially those that deal with natural language processing. The F1 
measure is now widely employed in most machine learning applications, not just in binary circumstances but 

also in multiclass cases (Chicco & Jurman, 2020). The F1-score is calculated using the following formula: 

. 

     
                 

                
 

2.6 Area Estimation 
For estimating area, the per-pixel area-based approach as mentioned in was used. According to the Pixel-based 

area estimation approach, the area of any classified raster can be evaluated by using the following formula: 
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:           
    

     
 

Where x is the spatial resolution of specific satellite image, and y is the total number of pixels. 

 

III. Results 
3.1 Land-use classification using multispectral instruments 

The three instruments, namely Landsat-8, Sentinel-2, and Gaofen-6, were used separately using the 

same training points obtained through the field survey as mentioned in the methodology section. The derived 

LULC maps of each instrument are shown in figures 4-6 and 7-8. Figure 4 shows the derived LULC of the 

Sentinel-2 MSI instrument, which shows great visuals, especially when highlighting urban areas. Figure 5 

depicts LULC in the Mardan district using Gaofen-6, which shows good urban areas classified similarly to 

Sentinel-2, as well as perfectly differentiated forestland in the district's north eastern corner. 6 shows the derived 

LULC using the Landsat-8 OLI instrument at 30m resolution. Being a moderate resolution multispectral 
instrument, Landsaat-8 did not differentiate waterbodies along the city, but nether water channels were 

highlighted. The detailed visual comparison is given in the discussion section hereafter. To further investigate 

slight visual changes, we prepared insect maps, which are shown in figure 7. 

 

 
Figure 4. LULC classified map of Mardan district using Sentinel-2 at 10m resolution. 
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Figure 5. LULC classified map of Mardan district using Gaofen-6 at 16m resolution. 

 
Figure 6. LULC classified map of Mardan district using Landsat-8 at 30m resolution. 
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Figure 7. Insect maps zoomed over Mardan city to show difference in urban classified area using Sentinel-2 (a), 

Gaofen-6 (b) and Landsat-8 (c). 

 
3.2 Accuracy Assessment 

After obtaining LULC from each instrument, their accuracy assessment was performed. The accuracy 

assessment was done using validation points (30%) separated earlier as aforementioned in the methodology 

section. For evaluating very minute details in the accuracy of each instrument, accuracy indices including OA, 

K, UA, PA, and F1-score were used. The derived accuracy in statistical form is shown in table 5-7. It can be 

seen that in terms of accuracy, Sentinel-2 performance (OA = 0.89, K = 0.85) was better than Gaofen-6 and 

Landsat-8, whereas Landsat-8 stood at last with the least accuracy (OA = 0.76, K = 0.70). 

 

Table 5. Accuracy assessment of derived LULC maps from Sentinel-2 
Sentinel-2 

 OA K UA PA F1s 

Buildup 0.89 0.85 0.83 0.86 0.84 

Agriculture 0.86 0.86 0.86 

Rangeland 0.85 0.86 0.85 

Forestland 0.86 0.8 0.86 

Water 0.91 0.89 0.92 

Barren 0.85 0.78 0.82 

 

Table 6. Accuracy assessment of derived LULC maps from Gaofen-6 
Gaofen-6 

 OA K UA PA F1s 

Buildup 0.80 0.79 0.79 0.77 0.8 

Agriculture 0.8 0.72 0.77 

Rangeland 0.79 0.86 0.81 

Forestland 0.77 0.71 0.74 

Water 0.9 0.87 0.88 

Barren 0.88 0.81 0.82 

(a) (b) (c) 
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Table 7. Accuracy assessment of derived LULC maps from Landsat-8 
Landsat-8 

 OA K UA PA F1s 

Buildup 0.76 0.70 0.63 0.66 0.64 

Agriculture 0.73 0.76 0.71 

Rangeland 0.72 0.73 0.72 

Forestland 0.73 0.67 0.73 

Water 0.74 0.74 0.74 

Barren 0.72 0.65 0.69 

 

3.3 Area Estimation 

For estimating area, we used a pixel-based approach as mentioned in the methodology section earlier. 
The percentage area for each instrument in the form of a pie-chart is shown in figure 8-10. From figures 8–10, it 

was noticed that the least urban area was calculated by Sentinel-2 (figure 8), whereas the highest vegetation area 

was demonstrated by Landsat-8 (figure 10). 

 

 
Figure 8. Pie-Chart showing area percentage distribution of LULC derived from Sentinel-2 

 

 
Figure 9. Pie-Chart showing area percentage distribution of LULC derived from Gaofen-6 
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Figure 10. Pie-Chart showing area percentage distribution of LULC derived from Landsat-8 

 

To evaluate the comparison between areas estimated from different instruments, we compared the areas in 

hectares using a bar chart. The resulting bar chart showing variations in area (ha) is shown in figure 11. The bar 

chart further highlighted that water area was the maximum shown by the Gaofen-6 instrument, whereas the least 

urban area was shown by Sentinel-2. Another point highlighted by figure 11 is that when observing areas of 

barren class, the Sentinel-2 and Gaofen-6 show similar results, whereas Landsat-8 shows a lower area. 

 

 
Figure11. Bar chart showing area distribution (ha) of LULC derived from Sentinel-2, Gaofen-6 and Landsat-8. 

 

IV. Discussion 
This study compared the efficiency of three multispectral instruments, namely Sentinel-2, Gaofen-6, 

and Landsat-8, in land use classification over Mardan district, Pakistan. The results from land-use maps show 

strange trends. Figure 4 shows the derived LULC map using the Sentinel-2 MSI instrument at 10m spatial 

resolution. On critically observing, it was found that it precisely differentiated the urban areas from the 

adjoining barren or uncultivated land. For example, in the central city region (Mardan City), the urban area 

looks well classified when seen with an overlay over a base map. Another point considered when looking at 
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figure 4 was the classification of forest areas in the north-eastern part of the district. When compared to the 

actual base map, Sentinel-2 classified only high-density forest areas, while nearby forest areas with less than 

30% forest cover were classified as rangelands or agriculture.Apart from this, some deviation was also observed 

visually in Figure 4, like the neighbouring urban areas alongside the central city area were shown as barren, 

whereas in reality they were urban. 

Figure 5 shows LULC classification using the Gaofen-6 instrument. On critical observation, it was 

observed that Gaofen-6 very efficiently differentiates water bodies. Even small ice caps on mountain peaks were 
properly classified as water (which were not identified using Sentinel-2 and Landsa-8). Furthermore, Gaofen-6 

has successfully differentiated adjoining buildup areas. A slight discrimination was observed between the barren 

and agriculture/rangeland classes. Some areas on the north side of the district were also falsely classified. On 

further observation, perennial grassland on the northern side of the district was mostly classified as barren as 

Gaofen-6 was not able to differentiate properly there. 

The last LULC derived map of Mardan district using Landsat-8 is shown in figure 6. On critically 

observing the map and comparing the map against the base map, the only good classified classes were forest, 

core-urban, and agriculture. It was observed that Landsat-8 had classified any dense forest area with 30% forest 

cover. The downside of Landsat-8 was that it does not efficiently differentiate urban areas, especially those 

adjoining towns, infrastructures, and roads. Another issue observed in Landsat-8 was that water channels were 

misclassified as urban areas and only water bodies with coverage greater than 40% were properly classified. 
To further investigate slight visual changes, we prepared insect maps, which are shown in figure 7. 

Figures (4-6) confirm our previous deductions from the insect map focused on Mardan city.In Figure 7b, the 

Gaofen-6 shows promising outcomes, especially when differentiating urban land. It also has an advantage over 

Sentinel-2 (figure 7a) and Landsat-8 (figure 7c) that it properly delineates urban land with adjoining agricultural 

land, such as open land. In a contest, Sentinel-2 and Landsat-8 misclassified nearby areas as barren and 

agricultural, respectively. Lastly, another thing noticed in Landsat-8 was the Urban Green Space (UGS) 

misclassification. UGS are the inter-city greenery that promotes sustainability and reduces the effect of global 

warming. Unfortunately, Landsat-8-derived LULC shows the majority of adjacent urban land as agriculture (i.e., 

UGS), despite the fact that there was only a small fraction of UGS present (less than 20%). 

Moving forward to the accuracy assessment, the accuracy assessment gives new insights towards the 

efficiency of derived land use and land cover maps. Table 5-7 shows the accuracy statistics of Sentinel-2, 

Gaofen-6, and Landsat-8 and reveals that Sentinel-2 was the best performing instrument while Landsat-8 was 
the least in performance. The OA and K statistics of Sentinel-2 were far better than those of Gaofen-6 and 

Landsat-8. To conclude, table 5-7 depicts the distribution of individual class accuracy and reveals that specific 

class accuracies were similar in the cases of Sentinel-2 and Gaofen-6, but for Landsat-8, the accuracies of LULC 

classes were abrupt. 

For evaluating the efficiency of multispectral instruments, we used estimated areas and compared the 

results. The pie charts (figure 8-10) show the percentage distribution of the estimated area of different LULC 

classes of each instrument. On visual observing the charts, it showed that both three instruments have similar 

area distribution, i.e., the highest area percentage was agriculture (61-69%), then barren (13-23%), and at third, 

buildup area (5-8%). The pie charts also showed that the least class having the lowest area percentage was water 

(1%). 

To further investigate the intercomparison of area (ha) statistics of different classes per instrument, we 
prepared the bar chart shown in figure 11. The bar chart shows the detailed comparison of each land-use class, 

which further reveals that there are some prominent differences, which are discussed hereafter. Landsat-8 has 

overestimated the agricultural area, whereas, on the other hand, it has the least area of barren land. On visual 

observing the figure 7 earlier, it also confirmed that the barren area was prominently misclassified alongside the 

city of Mardan in the case of Sentinel-2, while Gaofen-6 accurately showed some nearby areas as urban or as 

vegetation. These instruments (Sentinel-2, and Gaofen-6) were still successful in differentiating the dense city 

boundary, while on the other hand, Landsat-8 only categorised dense impervious surfaces as buildup while the 

rest were categorised as agriculture (due to the presence of UGS). This gives rise to a high agriculture area, 

whereas the least barren and the second least built up area. Another aspect that was confirmed from Figure 7 as 

compared with Figure 11 was the distribution of buildup area in the case of Gaofen-6. As mentioned earlier, 

Gaofen-6 differentiated very efficiently the buildup areas, while in the case of Sentinel-2, the nearby impervious 
surfaces were misclassified as barren, and that’s why Sentinel-2 showed the highest barren area than others, 

which was also confirmed through figure 7. In the case of Sentinel-2, the misclassification of barren land near 

Mardan city was mostly due to similar spectral characteristics of builtup and barren land as discussed by Attri et 

al. (2015). Due to this, the Sentinel-2 also misclassified some nearby urban and shrubland as barren (figure 10). 

On August 1, 2010, this entry was published. 
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V. Conclusion 
This study evaluated the comparison of Sentinel-2, Gaofen-6, and Landsat-8 in land-use classification 

over Mardan, Pakistan. The results of this study revealed three important findings. Firstly, the Sentinel-2 

instrument has the best accuracy results compared to Gaofen-6 and Landsat-8, but for specific classes of buildup 
and barren classes, Sentinel-2 showed misclassification. Visually, it was observed that Sentinel-2 has 

misclassified some nearby urban areas as barren land despite being urban, while Gaofen-6 has classified the 

urban area perfectly. Secondly, Landsat-8 accuracy and area results showed that the performance of this 

instrument was the lowest compared to Sentinel-2 and Gaofen-6. While Landsat-8 performed well while 

classifying rangeland and forestland with reasonable accuracy, it wasn’t enough to properly differentiate urban 

areas and only classified dense impervious surfaces as buildup. Lastly, Gaofen-6 performance was much better 

in terms of differentiating urban areas with nearby shrubland and for differentiating intercity wetlands and 

waterbodies. The findings of this study will provide new insights into the proper application of various 

multispectral instruments for specific tasks in which they excelled. Future research should focus on the detailed 

comparison of active and passive satellite instruments in classifying land-use and land-cover. 
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