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Abstract
Clay minerals possess distinctive physiochemical attributes, notably their water absorption capacities and 
propensity to signify soil swelling behavior. Identifying and quantifying these components are essential for 
engineering endeavors. Infrared spectroscopy, specifically in the short-wave infrared (SWIR) domain, has 
proven to be a productive and widespread instrument for analyzing clay minerals due to its diagnostically 
informative SWIR spectral details. Water molecules (H O) and hydroxyl groups (OH) generate diagnostic 
absorptions in clay minerals within the SWIR wavelength region. This study focuses on the petrological, 
mineralogical, spectral, and economic characteristics of clay deposits in the Mui Basin in Kenya. By employing 
Landsat 8 OLI and TIRS satellite images and Near-Infrared (NIR) spectral analysis, we aim to comprehend the 
feasibility of utilizing these resources industrially. Advanced image enhancement techniques, including band 
combinations, band ratios, Principal Component Analysis (PCA), and image classification, were implemented 
to maximize the extracted information content from the datasets. Soil samples were subsequently examined 
using NIR spectra obtained via the Multi-Purpose Analyzer (MPA) manufactured by Bruker Germany at 
CIFOR-ICRAF's Soil-Plant Spectral Diagnostic Laboratory in Nairobi. Band ratio enhancement strategies 
were deployed to detect hydrothermal alteration zones and distinguish among clay minerals. Two primary clay 
types—smectite and halloysite—were identified within the Mui Basin. Smectite clays, characterized by specific 
spectral signatures at 1.415μm, 1.911μm, and 2.209μm, were present in several borehole locations throughout 
the basin. Smectite clays find applications in sectors ranging from oil and geothermal drilling to agricultural 
and construction industries. By comprehensively examining the Mui Basin's clay deposits, our findings 
contributed valuable insights into the characterization, utilization, and management of these natural resources 
in Kenya and beyond.
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I. Introduction
Remote sensing and spectroscopy have become highly influential, widely used tools for investigating 

mineral deposits, mainly when minerals act as indicators or pathfinders[1];[2]; [3]. Spectroscopy's potential lies 
in the diagnostic spectral data within the 0.7–3 µm Near Infrared (NIR) to short-wave infrared (SWIR) region, 
extensively applied in mineral exploration[4]. Studies have shown this information can identify minerals' 
presence, composition, and associated properties.

Clay minerals possess distinct physicochemical properties that facilitate their differentiation. 
Particularly in construction, the focus has been on smectite, illite, and kaolinite characteristics due to their water 
absorption tendencies and their role as indicators of soil swelling properties, which are critical for engineering 
projects. [5]. Clay minerals have diverse industrial applications. They are used in foundry sand and desiccants 
to absorb moisture [6]. In agriculture, clay is added to drought-prone soils to retain moisture [7]. It also acts as 
an absorbent for toxic heavy metals in water treatment[8]. In construction, clay is used in earthen dams and 
levees to prevent fluid leakage [9]. Bentonite and smectite clays, particularly in geothermal drilling, play a 
crucial role. Bentonite is a critical component in water-based drilling muds, providing viscosity and aiding in 
the removal of drill cuttings [10]; [11]. Smectite clays, like montmorillonite in bentonite, help form a thin, low-
permeability filter cake to prevent fluid loss[11].
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The primary aim of this research endeavor is to investigate the various clay types present in the Mui 
Basin and assess their potential for use in geothermal drilling and a range of industrial applications. To achieve 
this objective, the study employs remote sensing and spectral analysis techniques to study clays' petrology, 
geochemistry, and physical properties. Obtaining a comprehensive understanding of these characteristics is 
crucial for determining the feasibility of these resources for industrial utilization, particularly in enhancing 
geothermal energy production.

Location
The study area is in the southeastern part of Kenya, specifically in Kitui County (figure 1). It is located 

within UTM zone 37 South and is delimited by the geographical coordinates of longitudes 38° 9’ 30’’ E to 38o 
15’ 5’’ E and latitudes 0o 51’ 57’’ S to 1o 28’ 22’’ S in the Southern Hemisphere. The area spans approximately 
817 square kilometers. Access to the region can be gained via the Nairobi-Thika-Mwingi road or the Nairobi-
Machakos-Kitui-Zombe road, and the distance from Nairobi City to the study area is roughly 200 kilometers. 
From Mombasa town, the area can be accessed via Mombasa- Kibwezi-Kitui-Mwingi Road, which is 
approximately 510 kilometers.

Figure 1: Approximate location of the study area

Geological Setting of Mui Basin Area
The Mui basin is predominantly underlain by high-grade metamorphic rocks of the Precambrian 

period[12]. The assemblage primarily comprises migmatites, granulites, schists, and both meta-intrusive and 
meta-extrusive rocks[13]. Geologically, these formations are commonly recognized as the Mozambique belt 
rocks, displaying a distinct NNW-SSE strike orientation[12]. The Basin exhibits significant variation as one 
moves from west to east.

Within the confines of the basin itself, the geological landscape is predominantly shaped by quaternary 
sediments, which blanket the underlying basement rocks. These sediments encompass a diverse range of 
materials, including carbonaceous marcasite clays, shales, sandstones, various types of sands, lignite coal, and 
superficial soils[14];[15]. Notably, these sedimentary layers are believed to have been deposited in a lacustrine 
environment, as elucidated by Mathu in 1992 (p. 63). Figure 2 illustrates Mui Basins’s geology based on studies 
by Crowther (1957), Sanders (1954), and Mathu (1992).
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Figure 2: Geological map of the Mui Basin area

II. Materials And Methods
The mapping and identification of clay minerals in the Mui Basin area necessitated a comprehensive 

exploration of the entire basin. During this process, physical observations of the lithologies encountered were 
documented, and soil and rock samples were collected. These samples were subsequently analyzed using a 
reflectance spectroscopy instrument at the Soil-Plant Spectral Diagnostic Laboratory within the premises of 
CIFOR-ICRAF in Nairobi. Furthermore, the study involved the processing and interpreting Landsat 8 OLI 
satellite imagery.

Fieldwork/soil sampling
Fieldwork in the Mui Basin area was carried out in July and October 2022. Seventy-seven samples 

were gathered from the region, comprising 64 rock samples from the eight Boreholes drilled by the Ministry of 
Energy and 13 soil samples obtained from excavated pits in the area. These samples are representative of the 
entire study area. The location of each sample was carefully documented in a field notebook, together with the 
corresponding geographical coordinates and field photographs. The Boreholes were logged, and the various 
lithologies encountered in the Boreholes were recorded and organized in an Excel datasheet.

Processing and interpretation of Landsat 8 OLI TIRS satellite imagery
The Landsat 8 OLI and TIRS satellite image acquired on August 26, 2021, was obtained from the 

United States Geological Survey (USGS) website (https://lpdaac.usgs.gov). This image was chosen because it 
was taken during the season when the green vegetation cover was at its lowest and the cloud cover was 
minimal, amounting to less than 20%.  A Landsat-8/OLI image with a terrain-corrected level 1T and a spatial 
resolution of approximately 30 meters was obtained from the USGS website. The data had already been 
subjected to atmospheric correction by the data provider, so no additional correction was performed. The data 
provider, the USGS website, had converted the image to the appropriate WGS 84 datum, UTM zone 37 South, 
and projection units in meters. The data was only subsetted using a shapefile of the study area for clipping 
purposes. The following sections will discuss this study's image processing techniques and analysis. The 
methodology was carried out utilizing ESRI’s ArcGIS 10.8 and ArcGIS Pro software packages.

Colour composite
Color composite imaging is a process in which various spectral bands are combined into a single image 

using the red, green, and blue channels. This technique is employed to enhance the visibility of specific features 
based on their spectral reflectance properties, such as rocks and alteration minerals [16]. By assigning different 
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bands to the red, green, and blue components, this approach enables the visual representation of multispectral 
data in a way that highlights distinct features. A false-color composite (FCC) is an image created by combining 
visible bands with other bands, such as infrared bands, or by combining only the infrared bands, thus enhancing 
the spectral characteristics of the bands. On the other hand, a true color composite is formed by combining three 
visible bands of the spectrum corresponding to red, green, and blue. In color composite imaging, bands are 
assigned based on the spectral properties of the rocks and alteration minerals to be revealed. This technique 
enables the visual separation and contrast between different surfaces when displayed as a red, green, and blue 
image. The resulting image is a false-color composite that preserves morphological features and displays 
different lithological units in various colors.

Band ratio
Band ratio (BR) is a straightforward technique utilized to enhance the subtle differences in the spectral 

reflectance of rocks and soils by mitigating the impact of topography [17]. This method involves dividing two 
bands with the highest reflectance and absorption of the same material (see figure 3), allowing for more precise 
differentiation between various surface features based on their spectral characteristics [16]. Researchers can 
highlight specific materials or features in remote sensing data by applying band ratios, aiding in geological 
analysis and land cover classification.

Figure 3: Method for band ratios

As Sabins (1999) discussed, the band ratio technique involves dividing the digital number (DN) value 
of one band by the digital number value of another band. This technique helps enhance important features, such 
as lineaments, that may not be apparent in the raw band. Additionally, band ratios convey the spectral or color 
characteristics of image features, regardless of variations in scene illumination conditions [18]. Depending on 
the study's goals, various types of band ratios can be employed for different purposes, such as lithological 
mapping or alteration discrimination. The choice of bands depends on their spectral reflectance and the 
positions of the mapped absorption minerals. In this study, for instance, Landsat-8 bands with high spectral 
reflectance for iron minerals enhanced alteration zones from various intrusions in the area.

Principal component analysis
Principal component analysis (PCA) is an image enhancement technique that displays maximum 

contrast from several spectral bands using three primary display colors. PCA is a method of identifying patterns 
in data and expressing them in a way that highlights their similarities and differences [19]. Multispectral image 
data is typically strongly correlated from one band to the other [20]This led to data redundancy due to the 
similar visual appearance of different bands. PCA reduces this data redundancy by transforming the original 
data onto new orthogonal principal component axes, producing an uncorrelated image with higher contrast than 
the original bands [21]. The number of output principal components (PCs) equals the number of input spectral 
bands. PC1 highlights features common to all input bands (topography) and often displays crucial structural 
information. PC2 is orthogonal to PC1 in the n-dimensional space and highlights the spectral differences 
between visible and infrared spectral bands [21]. PC3 includes the third most variability and is orthogonal to the 
other two PCs.

Image classification
In remote sensing, image classification involves attributing individual pixel elements or fundamental 

imagery units to distinct categorical labels. This procedure aims to aggregate homogeneous pixels derived from 
remotely acquired datasets into coherent classes aligned with users' interests through inter-pixel comparisons 
against known identity reference samples. The efficacy of supervised classification hinges upon selecting 
appropriate training sites; a more significant number of such sites typically yields improved outcomes [22].

The study employed a color composite of the Landsat 8 Operational Land Imager (OLI) utilizing 
Principal Component Analysis (PCA)-derived principal components PC3, PC2, and PC1 for red, green, and 
blue channels respectively, resulting in a thematic map depicted in Figure 9. Supervised classification 
techniques were applied to these images, wherein predefined schemas or class categories were established. 
ArcGIS 10.8's geometry calculator tool calculated the total surface area covered by clays in the study area.

Sample preparation
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To begin with, all the samples collected from the field were transferred to a drying room and arranged 
systematically on drying shelves to guarantee optimal air circulation at a temperature of roughly 40°C. 
Throughout this procedure, stringent measures were employed to ensure that the sample labels remained affixed 
to their corresponding samples, thus preventing any confusion or incorrect identifications. After drying, the 
samples were manually crushed and sieved through a 2mm screen, ensuring a homogenized composition. This 
sieving process effectively removed stones and other extraneous substances, yielding a uniform sample that 
could be easily handled in the laboratory.

The following step involved the process of quartering the sample. This was accomplished by vertically 
inserting a ruler through the center of the sample pile and dividing it into two halves. Each of these halves was 
then separated into two portions, effectively resulting in the sample being quartered. A subset of the quartered 
sample, weighing approximately 15g, was milled to a particle size of 0.5mm utilizing a Restch RM 200 
machine. The remaining soil sample was saved for potential future reference and additional analysis.

Spectral analysis
All the clay samples collected from the field were analyzed for various chemical properties using near-

infrared (NIR) spectra, which were recorded with the Multi-Purpose Analyzer (MPA) module (Bruker 
Germany) at CIFOR-ICRAF's Soil-Plant Spectral Diagnostic Laboratory at ICRAF in Nairobi (See figure 4).

The NIR spectral analysis technique involved shining near-infrared light on the samples and capturing 
the diffused and reflected light into a raw file known as the interferogram within the electromagnetic spectrum 
range of 12,500cm-1 to 4,000cm-1 wavenumbers range (Hauff, 2008). The recorded spectrum displayed the 
analyzed samples' qualitative and quantitative chemical aspects.

The Multi-Purpose Analyzer module was explicitly designed for diffuse reflection and transmission 
measurements. When near-infrared light is incident on a rough or matte surface, two types of reflection occur: 
specular reflection (where the light reflects directly off the surface) and diffuse reflection (where the IR light 
penetrates the sample surface and is partly diffusely reflected in all directions due to the rough surface). The 
optics of the diffuse reflection accessory were optimized to detect diffusely reflected light while minimizing 
detection of specular reflected light.

The analysis technique employed, known as Diffuse Reflectance Infrared Fourier Transform 
Spectroscopy (DRIFTS), utilizes the phenomenon of diffuse reflection in FT-IR spectroscopy[23]. One key 
advantage of this technique is its ability to analyze strongly scattering and absorbing samples, which is not 
readily achievable with transmission measurements, while also providing high signal intensity. Figure 4 
illustrates a sample ready for spectral analysis at the ICRAF spectral laboratory in Nairobi.

Figure 4: Soil samples in a laboratory trolley are ready for analysis at the ICRAF spectral laboratory.

III. Results
Remote Sensing

The six nonthermal bands of Landsat 8 OLI and TIRS satellite acquired on August 26, 2021, 
underwent comprehensive multivariate image statistical analysis to identify redundancies. Following this, 
advanced image enhancement techniques were systematically applied to optimize the data's utility, including 
band combinations, band ratios, principal component analysis (PCA), and image classification. These 
enhancements collectively aimed to extract maximum information content from the dataset, ensuring that the 
resulting imagery, refined through careful processing, provided an enriched basis for insightful analysis and 
understanding.
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Univariate statistics
Table 1: univariate analysis of seven bands of Landsat 8 OLI from the study area

Band Number Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
Min 9018.00 7999.00 6691.00 6063.00 5356.00 4651.00 4843.00
Max 51647.00 53715.00 53825.00 56566.00 59670.00 60925.00 64745.00
Mean 12061.46 11463.99 11257.85 12604.15 16617.83 19165.41 15201.05
Std 4252.11 4456.78 4473.18 4690.71 4725.46 3960.07 3357.94

The results of the univariate statistical analysis presented in Table 1 indicate that Band 1 has the lowest 
minimum value of 9018.00, while Band 7 has the highest minimum value of 4843.00. Furthermore, Band 7 has 
the highest maximum value of 64745.00, while Band 1 has the lowest maximum value of 51647.00. These 
findings illustrate the range and upper limit of values for each band. Additionally, Band 6 has the highest mean 
value of 19165.41, signifying the average value across the dataset. Conversely, Band 3 has the lowest mean 
value of 11257.85.

Band 5 displays the most significant standard deviation of 4725.46, indicating the disparity of the data 
points from the mean. Conversely, Band 7 boasts the lowest standard deviation of 3357.94. The elevated 
standard deviations in Bands 5 and 6 suggest increased variability in the data, which may be influenced by 
various surface characteristics or conditions. In contrast, despite its high maximum value, Band 7 exhibits the 
most consistent reflectance values across different observations, as evidenced by its low standard deviation.

Multivariate statistics
Table 2: Correlation matrix of the seven bands of Landsat 8 OLI from the study area

Layer Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
Band 1 1.00 1.00 0.99 0.97 0.91 0.61 0.57
Band 2 1.00 1.00 0.99 0.97 0.92 0.63 0.59
Band 3 0.99 0.99 1.00 0.99 0.95 0.69 0.65
Band 4 0.97 0.97 0.99 1.00 0.97 0.77 0.74
Band 5 0.91 0.92 0.95 0.97 1.00 0.84 0.79
Band 6 0.61 0.63 0.69 0.77 0.84 1.00 0.98
Band 7 0.57 0.59 0.65 0.74 0.79 0.98 1.00

The results of the multivariate statistical analysis presented in Table 2 indicate that bands 1, 2, 3, 4, and 
5 exhibit high levels of correlation with one another (ranging from 0.90 to 1.00), suggesting that they capture 
similar spectral information. Additionally, bands 6 and 7 exhibit a high level of correlation with each other 
(0.98), indicating that they capture nearly identical information. The moderate to high correlations between 
bands 6 and 7 and 1 through 5 (ranging from 0.57 to 0.84) suggest some shared but distinct information among 
these bands. Among the pairs of bands, the lowest correlation of 59% was observed between bands 2 and 7, 
followed by the band between 2 and 6 with a correlation of 63%. This makes bands 2 and 7 the most useful in 
distinguishing differences in spectral information among surface materials within the study area. The high 
correlations between specific band pairs are attributed to differences in soil reflectance, diverse land cover 
types, and atmospheric effects [24]; [25].

Colour composite
Several color composites were created to aid in differentiating between bare land, hydrothermally 

altered rocks, and vegetation. Among these, false-color composite band 5,6,7 RGB (figure 5B) was deemed the 
most effective combination, as it produced satisfactory results. In false-color image 5,6,7, the color red 
represents healthy vegetation, the light blue color represents outcrops, bare land, and sands, the dark blue color 
represents hydrothermally altered rocks, and the light green color represents unhealthy vegetation.
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Figure 5: Displays two different compositions. The first composition, A, is a true color composite of bands 
4-3-2 in RGB, with green representing vegetation, brown and dark brown representing soils, and light 
brown representing sand. The second composition, B, is a false-color composite of bands 5-6-7 in RGB, 

with yellowish green representing clays and hydroxyl minerals, red representing healthy vegetation, and 
blue representing cultivated or barren land.

Band Rationing
One of the image enhancement techniques that was used to detect hydrothermal alteration zones in the 

study area is band rationing. Band ratios are very effective for enhancing certain features that cannot be seen in 
the raw band[26]. The operation is done by dividing the brightness values corresponding to the crests and 
trough of reflectance curve of one band by that of another band thereby improving the contrast between the 
features and compositional information while suppressing unwanted information about the study area[3, p. 4].

Figure 6: (A) Landsat 8 OLI/TIRS band ratio 4/2, enhances iron oxides in bright colour. (B) Landsat 8 
band ratio 6/5, enhancing ferrous minerals in bright colour. (C) Landsat 8 band ratio 6/7 enhancing clays 

and hydroxyl minerals in bright colour.

The study area utilized Band Ratios 4/2, 6/7, and 6/5, commonly referred to as Sabins' Band Ratio, in 
the analysis. Sabins' Band Ratio (4/2, 6/7, and 6/5) has proven to be a valuable tool for lithological mapping and 
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detecting hydrothermal alteration zones. Band Ratio 4/2 is particularly effective for identifying iron-rich 
minerals often associated with hydrothermal alterations. Band Ratio 6/5 is useful for detecting iron oxides, 
while Band Ratio 6/7 is beneficial for delineating clay minerals such as illite, montmorillonite, and kaolinite 
[27].

Figure 6(A) presents the band ratio image 4/2 from Landsat 8 OLI/TIRS, which displays areas of 
reflection in band 4 and absorption in band 2. The image reveals zones of iron oxide alteration in bright white 
color, while regions of poor iron oxides are depicted in dark tones. Notably, there are a few areas of iron oxide 
enrichment in the Northeastern part of the region, while the rest of the area features minor patches scattered 
throughout. The diagram in Figure 6(B) showcases the band ratio 6/5 from the Landsat 8 OLI/TIRS image, 
depicting ferrous iron minerals in a bright white hue and areas devoid of such minerals in darker tones. The 
presence of ferrous minerals is evident in the northern region and extends into the central western section of the 
area.

The image depicted in Figure 6(C) is the band ratio 6/7 of Landsat 8 OLI/TIRS, which portrays clays 
and hydroxyl minerals in a bright white hue, and regions lacking these minerals appearing in a darker shade. 
The minerals are concentrated in the southwestern portion of the region, with a small, isolated area in the 
northeastern section.

Figure 7 presents the RGB color composite of the ratios 4/2-6/7-6/5, also known as Sabin's ratio[28]. 
This ratio was utilized to map lithologies and identify hydrothermal alteration zones. The presence of iron 
oxides in the image is indicated by a pink color, while clay and hydroxyl minerals are represented by a green 
hue. The dominant zones of ferrous minerals are illustrated in blue.

Figure 7:  Sabin’s composite band ratios (4/2-6/7-6/5 as RGB).

Principal component analysis
The principal component analysis was executed utilizing the seven spectral bands of the Landsat 8 

Operational Land Imager (OLI) Thermal Infrared Sensor (TIRS), specifically bands 1, 2, 3, 4, 5, 6, and 7, as 
shown in the table below (see table 3).

Table 3:  Principal component analysis of the study area (Eigenvector)
Input Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Eigen Values %
PC1 0.071 0.017 0.292 0.117 0.424 0.414 0.738 84.699
PC2 0.097 0.037 0.367 0.132 0.495 0.375 -0.672 11.972
PC3 0.175 0.109 0.457 -0.017 0.320 -0.801 0.068 1.650
PC4 0.311 0.081 0.642 0.000 -0.674 0.177 0.002 1.186
PC5 0.243 0.925 -0.216 -0.177 0.038 0.075 0.004 0.458
PC6 0.636 -0.096 -0.301 0.700 -0.024 -0.071 0.003 0.032
PC7 0.629 -0.338 -0.147 -0.668 0.130 0.073 -0.004 0.003
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Table 3 displays the outcomes of the principal component analysis conducted using the seven optical 
bands (Band-1, Band-2, Band-3, Band-4, Band-5, Band-6, and Band-7). The results indicate that the first 
principal component (PC1) accounts for a significant proportion of the total variance in the data, amounting to 
84.699%. Additionally, the second principal component (PC2) accounts for 11.972% of the total variance. 
Notably, the first three principal components (PC1, PC2, PC3) collectively account for a substantial portion of 
the total variance, amounting to 98.321%. The first principal component (PC1) exhibits the highest correlations 
with bands 7 (0.738), 6 (0.414), and 5 (0.424). This suggests that PC1 captures information about alteration 
minerals, such as iron oxides, clay minerals, and carbonates, which possess distinct absorption characteristics in 
the shortwave infrared (SWIR) region. PC2 displays high positive loadings on bands 5 (0.495), 6 (0.375), and 3 
(0.367), as well as a high negative loading on band 7 (-0.672). This indicates that PC2 is associated with 
information related to vegetation and lithological differences. Finally, PC3 exhibits high positive loadings on 
bands 3 (0.457) and 5 (0.320), as well as a high negative loading on band 6 (-0.801). This suggests that PC3 
captures information about ferrous iron minerals.

Image classification
In remote sensing, image classification involves attributing individual pixel elements or fundamental 

imagery units to distinct categorical labels. This procedure aims to aggregate homogeneous pixels derived from 
remotely acquired datasets into coherent classes aligned with users' interests through inter-pixel comparisons 
and comparison against reference samples of known identities. The efficacy of supervised classification hinges 
upon selecting appropriate training sites; a greater number of such sites typically yields improved outcomes 
[22].

To demonstrate this methodology, the study utilized a color composite of the Landsat 8 Operational 
Land Imager (OLI) using the Principal Component Analysis (PCA)-derived principal components PC3, PC2, 
and PC1 for the red, green, and blue channels, respectively, resulting in a thematic map illustrated in figure 8. 
Supervised classification techniques were applied to this image, wherein predefined schemas or class categories 
were established. Regions characterized by clay/hydroxyl mineral distributions in the study area were primarily 
depicted in shades of purple on the generated maps, indicating higher concentrations of clays in the central and 
northern sections of Mui Basin (figure 9). By employing the geometry calculator tool in ArcGIS 10.8, the total 
surface area covered by clays in the basin was determined to be approximately 109 square kilometers.
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Figure 8:  Colour Composite Of Landsat 8 OLI Image Using PC3, PC2 And PC1 In RGB. The Pink 
Color Represents Hydroxyls And Clay Minerals, The Green Pixels Represent Healthy Vegetation, The 

Blue Pixels Represent Bareland/Outcrops, And The Red Colour Represents Ferrous Minerals.

Figure 9:  The Colour Composite Of Landsat 8 OLI Image Using PC3, PC2, And PC1 In RGB Was Used 
To Generate The Image Classification Above. The Purple Regions Represent The Clay/Hydroxyl 

Minerals Distribution In The Study Area.

Spectroscopy



Remote Sensing And Spectral Characterization Of Clay Minerals In Mui Basin, Kenya

DOI: 10.9790/0990-1204013046                             www.iosrjournals.org                                                 11 | Page

During the survey, eight boreholes were used for the study conducted in the Mui basin. The specifics of 
these boreholes are outlined in Table 4 and their spatial distribution is displayed in figure 10.

Table 4: Illustrates the boreholes selected for the Mui Basin study.
Borehole Easting Northing Elevation Total Depth (mbgl)
COMM 412430 9875029 699 320.3
TOM10 411383 9871093 670 171.5
ZOM6 415215 9839396 692 138
MUT4 413679 9857865 681 264
KTZ4B 411979 9875778 692 241
YON7 412080 9871264 702 230.5
ZOM7 414973 9845397 690 159
ZOM8 413409 9840880 612 192
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Figure 10: Presents visual representation of the general locations where boreholes and trial pits were 
sampled in the study area.

Spectroscopy examines the interactions between electromagnetic radiation (EMR) and matter, 
involving absorption, emission, or scattering of EMR [29]. In the short-wave infrared (SWIR) region, 
absorption characteristics are influenced by the mineral’s composition [30]. These features result from energy 
absorption within the crystal lattice due to vibrational transitions between states. The distinct energy levels of 
these vibrational states lead to well-defined absorption features at specific wavelengths. The energy levels 
determining these wavelengths are dependent on the ionic radii sizes of the cations bonded to different 
molecules. Variation in bond lengths causes vibrations at different wavelengths. Consistent bond lengths 
between a particular atom and molecule enable the prediction of mineral compositions and changes by 
analyzing wavelengths and shifts in wavelength positions [29].

The absorption features at specific wavelengths result from transitions between energy levels and 
differences in composition. Table 5 illustrates the common clay minerals absorption feature positions.

Table 5: Major clay minerals related absorption feature positions [31]
Major Features positions Molecule Clay mineral

1.4µm OH, and H2O Kaolinite/smectites/illites

1.9µm H2O Smectites/illites
2.17µm Al-OH Kaolinite
2.2µm Al-OH Kaolinite/smectites/illites
2.29µm Fe-OH Smectites(nontronite)

2.3µm Mg-OH Smectites(hectorite)
2.34µm Fe-OH/Mg-OH Illite
2.384µm Fe-OH Kaolinite

Each mineral possesses a unique spectral fingerprint characterized by multiple absorption features 
influenced by factors such as composition, crystallinity, concentration, water content, and environmental 
factors.

Water molecules (H2O) and hydroxyl (OH) produce diagnostic absorptions in clay minerals in the 
short-wave infrared (SWIR) wavelength region. The reflectance spectra of smectites, minerals containing water, 
exhibit characteristics reminiscent of water. Specifically, the initial overtone related to the stretching of OH 
appears at 1.4µm, while the one associated with the combination of H-O-H bending and OH stretching is 
observed around 1.9µm[1].

The spectrum of kaolinite is readily distinguished from the spectra of smectites because the kaolinite 
group clays do not have H2O bands, except for halloysite (Bishop et al., 2008). Kaolinite spectra exhibit a sharp 
pair of bands due to the 2ύ(Al2OH) stretching overtone at 1.396 and 1.416 um and a (ύ+σ) Al2OH doublet at 
2.17 and 2.21um [32]; [1]. Highly pronounced molecular water bands observed in desiccated samples suggest 
the presence of bound water characteristic of smectites, whereas prominent hydroxyl bands are typical of 
kaolinite [33]. In contrast, illite exhibits broader bands with lower absorption intensities for both features, 
attributed to the more randomly distributed hydroxyl within the octahedral sites [34].

The spectral analysis of all the soil samples collected from Mui Basin was conducted on 3rd April 2023 
using Bruker Multi-Purpose Analyzer (MPA) at CIFOR-ICRAF’s Soil-Plant Spectral Diagnostic Laboratory in 
Nairobi. The MPA is a Fourier-transform InfraRed (FTIR) Spectrometer that operates in the Near Infra-Red 
(NIR) wavebands region ([35]. The technique involved shining near-infrared light on the samples and capturing 
the diffused and reflected light into a raw file known as the interferogram within the electromagnetic spectrum 
range of 0.8µm to 2.5µm wavelength range. Through analysis, halloysite clay- a hydrated aluminum silicate- 
and montmorillonite and nontronite, belonging to the smectite clays family, were identified.

Hydrous aluminum silicates
Kaolinite, along with its less common variations like dickite and nacrite, belongs to a cluster of 

prevalent minerals known as hydrous aluminum silicates, constituting the primary components of kaolin, 
commonly referred to as china clay [36]. Additionally, this group encompasses halloysite and allophane. 
Typically observed as small, occasionally elongated hexagonal plates within compact or granular formations, 
and sometimes resembling mica-like accumulations, kaolinite, nacrite, and dickite emerge as natural byproducts 
of the alteration process affecting feldspars, feldspathoids, and various other silicates [37].

Halloysite
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Halloysite, a clay found in various tropical and subtropical regions[38], exhibits a spectrum similar to 
kaolinite, but with the additional water bands near 1.9µm attributed to H2O within its structure [32]. Figure 12 
represents sample ID 505 and 506 from borehole TOM 10 at a depth between 139.9-141.4m and 166m-168m 
bgl and COMM Borehole at a depth between 111m -113m and 275m-277m bgl. The spectrum displays a sharp 
pair of bands due to the 2ύ(Al2OH) stretching overtone at 1.395µm and 1.415µm, and a (ύ+σ) Al2OH doublet at 
2.165µm and 2.209µm, and a water absorption band at 1.909µm. These spectral features are indicative of the 
presence of halloysite-type clays. Figure 11 illustrates halloysite clays spectra, and Table 6 shows sections 
where halloysite clays were encountered in Mui Basin. Halloysite clays were also discovered at the surface in 
Mikolosoni village and at 2.1m-3.2m bgl in a trial pit in the Kathozweni area of Mui Basin.

Figure 11: Characteristic halloysite absorptions in the SWIR spectra in sample ID 505, 506, and Sample 
ID 549, 551 from borehole TOM 10 and COMM, respectively. The doublet appearing at 1.395µm, 1.415 

µm, 2.239µm and the water absorption band at 1.90µm is diagnostic for halloysite type of clays.

Table 6: Boreholes encountered Halloysite type of clays.
Well_name Sample No Top(m) Bottom(m) Clay type

COMM 549 111 113 Halloysite

COMM 551 275 277 Halloysite

TOM 10 504 87 90 Halloysite

TOM 10 505 139.9 141.4 Halloysite

TOM 10 506 166 168 Halloysite

Smectites
The term “Smectite” refers to a category of phyllosilicate minerals, with montmorillonite, beidellite, 

nontronite, saponite, and hectorite being the most significant species within this group[39].
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Figure 12: Spectral curve represents smectite clays in the COMM borehole. The spectra depict an H2O 
stretching overtone at 1.41µm and an H2O asymmetric combination band centered around 1.91µm.

Figure 13: The depicted images illustrate the areas where samples 542, 543, and 544 were obtained from 
the COMM Borehole, and these sections consist solely of Smectite clays.

Smectites have identifiable bands for identification in the electromagnetic spectrum region of 1.0µm to 
3.0µm (SWIR region). In the spectra of all smectites, there is an H2O stretching overtone of (2v(H2O) observed 
at 1.41 µm, along with an H2O asymmetric combination band of ((v+σ)as H2O) centered around 1.91µm[32]. 
The M-OH stretching and bending vibrations features depend on the presence of Al, Fe3+, or Mg cations in the 
octahedral sites and substitutions in the tetrahedral sites[32].

Sample 541, 542, 543, and 544 from COMM Borehole, collected at depths of 0-2m, 9-11m, 22m-24m 
and 34.96-36.96m below ground level (bgl) and depicted in Figure 12, exhibits a spectral band at 1.415µm 
attributed to water stretching overtone, a water combination band at 1.911µm, and a band at 2.209µm associated 
with Fe3+ or Mg cations in the octahedral sites. These characteristics strongly suggest the presence of 
montmorillonite-type clays[32]. According to Kariuki (2003), smectites typically display robust absorption 
bands near 1.40µm and 1.90µm, with an additional weaker band around 2.20µm, which is generally broad due 
to structural water. Kariuki also observed that in the absence of free water, the feature at 1.90µm becomes sharp 
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and intense and shifts to lower wavelengths. The presence of smectite clays was identified in the boreholes 
outlined in Table 7 and depicted in Figure 13, which were evaluated in the Mui basin.

Table 7: Boreholes that intercepted Smectite clays in Mui Basin
Borehole name Top(m) Bottom(m) Clay type

COMM 0 82 Smectite
KTZ 4B 3 176
MUT 4 199 263
TOM 10 1 23
YON 7 6.83 212
ZOM 6 6 137
ZOM 7 15 156.5
ZOM 7 136 137

Nontronite
The nontronite, a type of smectite clay, was detected in well ZOM 8, well MUT 4, and surface sample 

751. In well MUT 4, nontronite was encountered between 6.0m and 41.0m below ground level, while in ZOM 
8, it was encountered between 2.0m and 161.0m below ground level (see Table 8, fig 14 & 15). Nontronite clays 
exhibited the common spectral characteristics of smectite clays; it has spectral band 2v (Fe3+ 2OH) at 1.415 µm 
and (ύ+σ) Fe3+ 2OH band at 2.29 µm (see figure 15). An additional shoulder at 2.24 µm observed in Nontronite 
samples is associated with stretching plus bending combination band  (ύ+σ) AlFe3+ OH [32]. Nontronite is the 
iron-rich end member of the smectite group of clay minerals. It has a high iron content, typically around 30% 
Fe2O3 [40]. It forms as an alteration product of iron-rich igneous and metamorphic rocks, hydrothermal 
deposits, and some marine sediments.

Figure 14: Spectra of samples 552, 553, 554, and 555 taken from Borehole ZOM 8 between the depths of 
2m-4m, 18m-20m, 30m-32m, and 51m-52m bgl. The spectra indicate the presence of nontronite clays in 

the borehole.
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Figure 15: The depicted images illustrate the areas where samples 553, 554, and 555 were obtained from 
the COMM borehole, and these sections consist solely of nontronite clays.

Table 8: The boreholes and the depth at which nontronite clays were encountered.
Borehole name Sample No Top(m) Bottom(m) Clay type

MUT 4 538 6 8 Nontronite
MUT 4 539 19 21
MUT 4 562 153 155
ZOM 8 552 2 4
ZOM 8 553 18 20
ZOM 8 554 30 32
ZOM 8 555 51 52
ZOM 8 556 81 83
ZOM 8 557 123 125
ZOM 8 558 159 161

IV. Discussions
Spectral analysis is considered one of the most sophisticated remote sensing methods for 

characterizing clay minerals [41]. This study applied a combination of spectral analysis and remote sensing to 
study the Mui Basin clay minerals.

The application of a remote sensing enhancement method has proved beneficial in delineating clay 
minerals within the region. Analysis of color composites, particularly the false-color composite comprising 
bands 5, 6, and 7 in RGB, facilitated the differentiation of bare land, hydrothermally altered rocks, and 
vegetation cover. The hydrothermally altered rocks exhibited a blue hue, consistent with Lincoln et al.'s 2019 
research conducted in the southern vicinity adjacent to the study area.

The band ratio enhancement method was employed to identify features not visible in raw bands[42]. 
Sabin’s band ratios (4/2, 6/7, and 6/5) effectively detected hydrothermal alteration zones, with the 6/7 ratio 
beneficial for delineating clays and hydroxyl minerals (illite, montmorillonite and kaolinite) appearing in bright 
colours.

Lincoln et al. (2019) noted that vegetation density consistently limits detection when mapping 
hydrothermally altered rocks using band composites. Hence, principal component analysis (PCA) was utilized 
to mitigate these effects in lithological mapping. The colour composite of Landsat 8 OLI image employing PC3, 
PC2, and PC1 in RGB effectively delineated clay/hydroxyl minerals, appearing in pink hues. The PCA image 
was also used to conduct image classification, facilitating the extraction of clay minerals and developing a clay 
distribution map of the Mui basin.

Spectral analyses were utilized to determine the type and mineralogy of clay fractions within the Mui 
basin. Two distinct types were identified: smectite and halloysite. Smectite clays were found in Boreholes 
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COMM, KTZ 4B, ZOM 7, TOM 10, YON 7, ZOM 6, and sections of MUT 4. The spectral signature of 
smectites included vibration bands at 1.415µm related to water stretching overtone, a water combination band at 
1.911µm, and a band at 2.209µm associated with Fe3+ or Mg cations in the octahedral sites. These characteristics 
strongly indicate the presence of montmorillonite-type clays[32].

Smectites, mainly montmorillonite dominate the clay composition within the Mui Basin. While 
Montmorillonite is often linked to the hydrothermal alteration of volcanic ashes [41], its prevalence extends to 
soils with limited drainage, allowing for solution concentration through evaporation [43]. This scenario is 
characteristic of hydromorphic, calcimorphic soils found in warmer climates. In regions with inadequate 
drainage, where evaporation leads to accumulation of silica, alumina, magnesia, and often iron within an 
alkaline environment rich in Mg2+ and Ca2+ ions, similar to conditions observed in the Mui Basin.

Nontronite, an iron (III) rich member of the smectite group of clay minerals, was identified in 
Boreholes ZOM 8 and MUT 4. It shares typical spectral features of smectites clays, including a spectral band at 
1.415 µm (2v (Fe3+ 2OH)) and a (ύ+σ) Fe3+ 2OH band at 2.29 µm. Additionally, a shoulder at 2.24 µm, 
observed in Nontronite samples, indicates the presence of a stretching plus bending combination band (ύ+σ) 
AlFe3+ OH, suggesting the presence of Al3+ in the clays. The provenance of nontronite is similar to the smectite 
group of clay minerals.

Halloysite was detected in Borehole TOM 10 between depths of 166m to 168m below ground level 
(bgl), and in Borehole COMM between 111m to 277m bgl. The spectrum displays a sharp pair of bands due to 
the 2ύ(Al2OH) stretching overtone at 1.395µm and 1.415µm, and a (ύ+σ) Al2OH doublet at 2.165µm and 
2.209µm, and a water absorption band at 1.909µm. Halloysite occurs widely in both weathered rocks and soils, 
and it has been identified as having formed by alteration of a wide variety of types of both igneous and non-
igneous rocks[44].

Smectite clays find diverse applications across various industries. In the oil and geothermal drilling 
sector, they are a crucial component of drilling mud, enhancing viscosity for efficient drilling operations (Zhang 
et al., 2020). Additionally, smectites are utilized in foundry sand and desiccants to absorb moisture from air and 
gases[6]. In agriculture, it is added to drought-prone soils as a soil additive to retain moisture. Moreover, 
smectites play a pivotal role in construction projects, such as earthen dams and levees, to prevent fluid leakage 
[9].

The swelling property of smectites makes it an ideal material for various applications, including 
protective liners for landfills and annular seals for water wells [45]; [46]; [47]. Additionally, Na-
montmorillonite is utilized in cat litter products due to its adsorbent and clumping properties [48].

Beyond industrial applications, smectites and Halloysite are used in cosmetics [49] and as a coagulant 
in pond water treatment, attracting and settling minute particles [50]. While effective in absorbing heavy metals 
(Gkouma et al., 2021), its impact on human health remains uncertain[51]. Montmorillonite has been explored 
for external use in treating contact dermatitis (Park et al., 2016) and added to animal foods as an anti-caking 
agent. Furthermore, it has been extensively employed in catalytic processes and in papermaking to minimize 
deposit formation and improve drainage [52].

V. Conclusions
Spectroscopy and remote sensing have proven to be effective in characterizing the different types of 

clays found in the Mui basin. The results indicate that the Mui basin primarily comprises smectite-type clays, 
with only a few localities of Halloysite and nontronite clays. The provenance of these clays can be attributed to 
the hydromorphic and calcimorphic environment of the basin, where inadequate drainage and high evaporation 
led to the accumulation of silica, alumina, magnesia, and iron in an alkaline environment rich in Mg2+ and Ca2+ 
ions. These findings provide valuable insights into the geological history and formation of the Mui Basin clays, 
which can inform future research and development in various industries, including construction, oil drilling, and 
environmental remediation. Further studies can explore these clays' potential applications and unique properties, 
contributing to the development of more sustainable and efficient materials and technologies.
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