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Resumo: 
O Presente projeto de pesquisa trata de técnicas de exploração Geofísica, notadamente o método sísmico, cuja 

finalidade é estimar a formação geológica em profundidade. Tais métodos são largamente utilizados na busca 

por depósitos minerais diversos, com destaque para a indústria pertrolífera, na investigação de depósitos de gás 

e petróleo em grandes profundidades. Esses métodos se baseiam na transmissão ou reflexão de ondas primárias. 

O objetivo principal desse trabalho é a realização de tomografia sísmica de dados de tempos de trânsito para 

modelos de campos de velocidades sísmicas compressionais, parametrizados por série ondaleta Haar. Esse 

trabalho foi desenvolvido basicamente em duas etapas: parametrização e modelagem (tomografia sísmica). Na 

primeira, representamos o modelo por um conjunto de parâmetros, isto é, pelos coeficientes da série ondaleta 

Haar; tais coeficientes representam quantitativamente o campo de velocidades de tal modo que, se tornando um 

objeto matemático, permite a simulação computacional de processos geofísicos, na qual o mencionado campo é 

numericamente tratado. Na etapa da modelagem, dados sintéticos de tempo de trânsito são calculados tanto no 

modelo original (alvo) quanto naqueles parametrizados pela mencionada série ondaleta usando técnicas de 

traçamento de raios, que gera trajetórias de raios sísmicos e seus respectivos tempos de trânsito. Esse trabalho 

foi desenvolvido utilizando-se algoritmos computacionais em linguagem Fortran e MatLab. 
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I. Introducão 
O uso de série ondaleta na representação e entendimento do dado geofísico (notadamente do traço 

sísmico) vem recentemente encontrando muitas aplicações; contudo, na parametrização de modelos de 

velocidades sísmicas, com propósitos de inversão, tal uso ainda não tem sido, até o momento, muito explorado. 

Diferentes tipos de parametrizações de campos de velocidades sísmicas são consideradas em estudos de alguns 

autores, usando ferramentas matemáticas distintas, tais como: matrizes (Bishop et al., 1985), funções polinomiais 

(dos Santos & Figueiró, 2007 e dos Santos & Figueiró, 2011), séries trigonométricas (dos Santos & Figueiró, 

2006), splines (Santana & Figueiró, 2008), e etc. A série ondaleta é apenas um dentre vários modos de representar 

um modelo através de uma parameterização. Contudo, existe uma grande variedade de ondaletas, algumas das 

mais conhecidas são as seguintes: Haar, Mexican Hat, Morlet, Shannon, Daubechies, e etc. (Lima, 2002 e 

Morettin, 1999). 

Na tomografia sísmica, métodos multi-escala, usando série ondaleta, tem sido considerado não somente 

no espaço dos dados, mas também no de modelos (Chiao & Kuo, 2001 e Loris et al., 2007). Em tais espaços, 

transformada ondaleta esférica é aplicada por Simons et al. (2011) na representação global de modelos. Em termos 

gerais, a questão consiste na resolução de um sistema tomográfico para os coeficientes da série ondaleta que 

expande um modelo de vagarosidades (Delost et al., 2008). Um problema relevante na tomografia sísmica de 

tempos de trânsito é a construção de uma parametrização de modelo que adequadamente descreve o meio com 

um nível de detalhe compatível com o real poder de resolução do dado. Usando recursos computacionais 

disponíveis, a construção de algoritmos baseado na expansão ondaleta está se tornando um novo e importante 

objeto de pesquisa (Nolet, 2008 e Tikhotskii et al., 2011). Uma aplicação interessante da expansão em séries 

ondaletas na solução de problemas de tomografia sísmica pode ser encontrado no trabalho relativo à determinação 

tomográfica da interface núcleo-manto usando ondaletas Haar (Chiao & Kuo, 2001). Tikhotsky & Achauer (2008) 

apresentaram uma parametrização de modelo que é apropriada para a tomografia sísmica baseada na expansão 

por série ondaleta Haar para representar estruturas 3D de velocidades e interfaces. Tikhotskii et al. (2011) 

desenvolveu um algoritmo que usa expansão por série ondaleta Haar esparsa para uma parametrização adaptável 

de modelos de velocidades sísmicas. Simons et al. (2011) propôs que o interior de Terra deve apresentar uma 

atrativa propriedade de caráter esparso quando expresso numa base ondaleta, e Yuan & Simons (2014) 

implementaram uma estratégia para apresentar o dado ao algoritmo numa aproximação multi-escala construtiva 
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usando uma transformada ondaleta ortogonal a fim de melhorar a convergência e a estabilidade da inversão 

completa da forma da onda. 

O presente trabalho de pesquisa visa à obtenção de tempos de trânsito através de técnica de traçamento 

de raios sobre campos de velocidades sísmicas de ondas compressionais, parametrizados por série ondaleta Haar 

uni e bidimensionais. Ele está dividido em duas etapas: parametrização de campos de velocidades sísmicas usando 

a série ondaleta Haar e traçamento de raios para modelagem de dados de tempo de trânsito. 

A parte concernente à parameterização procura uma representação acurada da propriedade sísmica de 

interesse (neste caso, o campo de velocidades sísmicas compressionais) de um modelo geológico por série 

ondaleta, mais especificamente a série Haar. Ela é uma série infinita que deve ser convenientemente truncada 

para um número finito de termos para propósitos práticos. A aproximação desejada deve usar o menor número 

possível de coeficientes que ainda permite uma satisfatória qualidade na representação do campo de velocidades. 

Em resumo, o objetivo é compactar informação ou, em outras palavras, representar o máximo com o mínimo. A 

parameterização é importante porque permite a representação de um modelo por um conjunto de parâmetros 

numéricos; assim, ela torna possível o tratamento de um objeto unitário (inteiro) de modo matemático em 

procedimentos numéricos, tais como modelagem e inversão. No caso de parametrização por ondaleta, os 

parâmetros do modelo são os coeficientes da série ondaleta que o representa. 

O estágio da modelagem (resolução do problema direto) objetiva gerar o dado sintético (calculado), 

supondo que os parâmetros do modelo são conhecidos. Neste trabalho, tais dados são tempos de trânsito de uma 

onda sísmica originada numa fonte e registrada em receptores (geofones). Para a obtenção de tais tempos, faz-se 

necessário o uso de técnicas de traçamento de raios sísmicos para simular de modo computacional a propagação 

da onda através do meio geológico representado pelo campo de velocidades parametrizado. 

O dado calculado é obtido, como explicado no parágrafo precedente, de um modelo corrente 

parametrizado pela série ondaleta Haar, e pode ser usado por alguns diferentes métodos para a solução de 

problemas inversos. Os dados obtidos podem ser utilizados para minimizar a diferença entre dados observados e 

calculados para um modelo conhecido, em uma possível etapa de inversão sísmica. 

 

II. Referencial Teórico 
Parametrização por Ondaleta Haar Unidimensional 

A função ondaleta Haar é dada por: 

𝜓(𝑡) = {
1,  0 ≤ 𝑡 < 1/2
−1 1/2 ≤ 𝑡 < 1
0,  𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠

 (1) 

e é também chamada de ondaleta mãe. De acordo com Daubechies (1992), por definição, uma ondaleta 

é uma função “𝜓(𝑡) pertence a L1(R) interseção L2(R)”  tal que a família de funções 

𝜓𝑗,𝑘(𝑡) = 2𝑗/2. 𝜓(2𝑗𝑡 − 𝑘),  𝑗, 𝑘  ∈  𝑍 (2) 

é uma base ortonormal para L2(R), que é o espaço da funções quadrado integráveis. As funções na Eq. 

(2) são conhecidas como ondaletas filhas. Substituindo-se a Eq. (1) na Eq. (2), tem-se: 

𝜓𝑗,𝑘(𝑡) = {
2𝑗/2,  2−𝑗 . 𝑘 ≤ 𝑡 < 2−𝑗. (𝑘 + 1/2)

−2𝑗/2,  2−𝑗 . (𝑘 + 1/2) ≤ 𝑡 < 2−𝑗 . (𝑘 + 1)
0,  𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠

 (3) 

Pode ser visto da Eq. (2) que as funções filhas 𝜓𝑗,𝑘(𝑡), são obtidas da função ondaleta por: uma 

amplificação de 2j/2 , uma dilatação binária 2j, e uma translação de k.2-j, Daubechies (1992). 

 

Podemos representar uma função tal como: 

𝑓(𝑡) = ∑ ∑ 𝑐𝑗,𝑘 . 𝜓𝑗,𝑘(𝑡)
+∞
𝑘=−∞

+∞
𝑗=−∞  (4) 

onde 

𝑐𝑗,𝑘 = ⟨𝑓, 𝜓𝑗,𝑘⟩ = ∫ 𝑓(𝑡). 𝜓𝑗,𝑘(𝑡) 𝑑𝑡
+∞

−∞
 (5) 

 

A introdução da função escala Haar (ondaleta pai) é importante para a realização de melhores 

aproximações de funções; ela é dada por: 

𝜙(𝑡) = {
1,  0 ≤ 𝑡 < 1
0,  𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠

 (6) 

 

Similarmente à obtenção da Eq. (3), temos: 

𝜙𝑗,𝑘(𝑡) = {
2𝑗/2,  2−𝑗 . 𝑘 ≤ 𝑡 < 2−𝑗. (𝑘 + 1)
0,  𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠

 (7) 

 

Considerando um sistema ortonormal de funções 𝜓𝑗,𝑘(𝑡) e 𝜙𝑗,𝑘(𝑡), podemos aproximar f(t) como segue: 
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𝑓(𝑡) = ∑ 𝑑𝑗0,𝑘. 𝜑𝑗0,𝑘(𝑡) +
+∞
𝑘=−∞ ∑ ∑ 𝑐𝑗,𝑘 . 𝜓𝑗,𝑘(𝑡)

+∞
𝑘=−∞

+∞
𝑗=−∞  (8) 

onde 

𝑑𝑗,𝑘 = ⟨𝑓, 𝜑𝑗0,𝑘⟩ = ∫ 𝑓(𝑡). 𝜑𝑗0,𝑘(𝑡) 𝑑𝑡
+∞

−∞
 (9) 

Para propósitos práticos, os somatórios que aparecem nas Eqs. (4) e (7) devem ser finitos. Então, 

devemos escolher um conjunto finito de valores inteiros dentro do qual j e k devem variar. A aproximação de f (t) 

por ondaleta depende fortemente do número de coeficientes usados. Uma faixa mais ampla de valores usados para 

j e k, fornece uma melhor aproximação. O índice j é chamado de escala de resolução e deve ser igual ou maior do 

que aquele inicialmente escolhido, j0. 

 

Parametrização por Ondaleta Haar Bidimensional 

A partir das funções unidimensionais da ondaleta de Haar (Morettin, 1999), constrói-se uma base 

ortonormal 2D, como um produto tensorial de duas bases 1D, com escalas distintas para cada dimensão. Assim, 

para a função escala de Haar tem-se: 

𝛷𝑗0,𝐾(𝑥, 𝑦) = 𝜙𝑗0,𝑘1(𝑥) 𝜙𝑗0,𝑘2(𝑧)                                                                               (10) 

O índice j0 representa a dilatação ou compressão e 𝐾 = {𝑘1, 𝑘2} representa translação, sendo k1 em 

relação ao eixo x e k2 em relação ao eixo vertical z. Assim, uma função f(x,z) é descrita como: 

𝑓(𝑥, 𝑧) = ∑ 𝑐𝑗0,𝐾𝛷𝑗0,𝐾(𝑥, 𝑧)𝐾                                                                                        (11) 

Sendo os coeficientes (parâmetros do modelo) dados por: 

𝑐𝑗0,𝐾 = ∫ 𝑓(𝑥, 𝑧)
𝑈2

𝛷𝑗0,𝐾(𝑥, 𝑧)𝑑𝑥𝑑𝑧                                                                               (12) 

 

Modelagem Sísmica 

O traçamento de raios é realizado na etapa da modelagem sísmica e está baseado na teoria do raio 

sísmico, que se origina da teoria da propagação da onda sísmica. A construção de trajetórias do raio sísmico é 

muito mais econômica, em termos computacionais, do que a simulação da propagação da onda através da 

resolução da equação da onda. Em modelos bidimensionais de velocidades sísmicas, o traçamento de raios requer 

a solução do seguinte sistema de equações (Červený, 2001): 

{
 
 

 
 
𝑑𝑿(𝜏)

𝑑𝜏
= 𝑷(𝜏)

𝑑𝑷(𝜏)

𝑑𝜏
=

1

2
𝛻 [

1

𝑉2(𝑥,𝑧)
]

𝑑𝑻

𝑑𝜏
=

1

𝑉2(𝑥,𝑧)

  (13) 

onde X(𝜏) = (x(𝜏), z(𝜏)) é a vetor posição dos pontos na trajetórias curva do raio, P(𝜏) = (p1(𝜏), p2 (𝜏)) é 

o vetor vagarosidade (que é perpendicular à frente de onda em meios isotrópicos), 𝜏 = ∫ 𝑉2(𝑥, 𝑧) 𝑑𝑇
𝑇

0
, T é o 

tempo de trânsito, e dT significa seu elemento de integração. 

Com o propósito de obter-se um algoritmo que permita o traçamento de trajetórias de raios, faz-se 

necessário realizar a expansão em série Taylor da Eq. (9) até o segundo termo, com δτ empiricamente escolhido. 

Então, o tempo de trânsito ao longo da trajetória do raio é calculado numericamente pela seguinte expressão: 

 

𝑿(𝜏 + 𝛿𝜏) = 𝑿(𝜏) +
𝑑 𝑿(𝜏)

𝑑𝜏
. 𝛿𝜏 = 𝑿(𝜏) + 𝑷(𝜏). 𝛿𝜏  

𝑷(𝜏 + 𝛿𝜏) = 𝑷(𝜏) +
𝑑 𝑷(𝜏)

𝑑𝜏
. 𝛿𝜏 = 𝑷(𝜏) +

1

2
𝛻 [

1

𝑉2(𝑥,𝑧)
] . 𝛿𝜏. (14) 

O vetor vagarosidade é atualizado em cada nó da linha poligonal que representa a trajetória do raio e 

satisfaz a condição dada pela seguinte equação: 

‖𝑷‖2 = √𝑝1
2 + 𝑝2

2 =
1

𝑉(𝑥,𝑦)
 (15) 

O tempo de trânsito da onda em sua trajetória do nó (x0, z0) ao nó (xN+1, zN+1) é dado por: 

( ) ( ) ( ) ,zzxx.
1

z ,xT
0

2
i1i

2
i1i

i
1N1N  −+−=

=
++++

N

i V
 (16) 

onde Vi é a velocidade da onda no nó (xi, zi). 

Para simplificar a implementação do código computacional, a Eq. (16) pode ser arranjada de modo que 

o tempo de trânsito ao longo da trajetória do raio é numericamente calculado usando a seguinte expressão: 

( ) ( ) ( ) ( ) .zzxx.z ,xTz ,xT
2

N1N
2

N1NNN1N1N −+−+= ++++
NV

1
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III. Metodologia 
As seguintes possibilidades para os modelos alvos do campo de velocidades sísmicas são consideradas: 

dois modelos unidimensionais, M1 e M2, com variações vertical e radial de velocidades, respectivamente; eles 

têm 9,0 km de extensão horizontal e 3,0 km de profundidade e dois modelos bidimensionais M3 e M4 com 4 e 6 

km de extensão horizontal, respectivamente. Tais modelos são mostrados na Figura 1 e 2, onde a escala de cores 

se refere à velocidade dada em km/s. Para M1 e M2, as três etapas desenvolvidas neste trabalho são aplicadas, a 

saber: parametrização, modelagem e inversão. Para os modelos M3 e M4 foram aplicadas as etapas de 

parametrização e modelagem. 

 

 
Figura 1: Modelos de campo de velocidades sísmicas compressionais: (a) M1 e (b) M2. Velocidades são dadas 

em km/s na barra de cores. 

 

 
Figura 2. Modelo de campo de velocidades sísmicas compressionais M3 

 

Parametrização 

No primeiro passo, procuramos quantificar o modelo, isto é, criar um conjunto representativo de 

parâmetros numéricos para uma imagem qualitativa. O objetivo é tornar o modelo matematicamente manipulável. 

Esta etapa é realizada através da parametrização usando série ondaleta Haar e tem como resultado um conjunto 

de parâmetros que representam o modelo, que é um campo de velocidades que depende de variável que representa 

posições no espaço dadas em quilômetros (km). Deste modo, o modelo unidimensional M1 é parametrizado como 

uma função da profundidade z, que varia de 0,0 a 3,0 km. O modelo M2 é parametrizado como uma função do 

raio r que conecta o ponto médio do topo do modelo a um de seu extremo inferior, tal distância varia de 0,0 a 5,4 

km. Assim, o processo de parametrização é baseado na formulação matemática apresentada na seção precedente, 

substituindo f(t) por: V1(z) ou V2 (r), dependendo do caso considerado. 

A parametrização é realizada aplicando-se a série ondaleta Haar sobre uma curva obtida da função que 

representa o modelo. A série usada na parametrização, de acordo com a Eq. (7), é unidimensional e, portanto, é 

aplicável diretamente sobre uma curva unidimensional. Para o modelo M1, a velocidade sísmica depende somente 

da profundidade e assim a representação é realizada diretamente sobre o eixo z, de 0,0 a 3,0 km. Para o modelo 

M2, o campo de velocidades é uma função da direção radial r. 

Algoritmos são desenvolvidos em código FORTRAN para o cálculo dos coeficientes cj,k e djo,k. Os 

valores dos índices j, k e jo são dados de entrada para o programa e são valores inteiros. Vários valores de entrada 

são testados para os referidos índices. Os dados de saída formam o conjunto de valores assumidos pela função 

velocidade definida sobre a curva, através da qual o modelo é visto. Programas foram criados para gerar gráficos 

que mostram a Diferença Relativa entre Modelos, DRM. Tal diferença é dada numericamente por: 

𝐷𝑅𝑀 =
∑ |𝑉𝑖−𝑉𝑝𝑖

|𝑁
𝑖=1

∑ 𝑉𝑖
𝑁
𝑖=1

. 100                                                                                (18) 

onde Vi e Vpi são os i-ésimos valores nos modelos alvos original e parametrizados, respectivamente, ao 

longo dos N nós da versão discreta do modelo. 

 

Modelagem 

Aqui, o traçamento de raios é realizado para os dois modelos considerados. Devido ao grande 

comprimento modelo, a diferença entre sucessivos ângulos de partida dos raios torna-se muito pequeno, às vezes 
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menor do que 10-6 radianos. O método da bissecção (dos Santos & Figueiró, 2011 e Chapra & Canale, 2002) é 

usado para conectar posições da fonte e dos receptores nos modelos considerados, pois não se tem fórmula 

analítica para resolver tal problema. Aqui, a modelagem sísmica consiste na geração de dados de tempo de 

trânsito, que constituem o dado sintético observado e o calculado no modelo corrente. Tal dado sintético é usado 

em substituição ao dado real ausente, que estaria disponível caso fosse realizada uma aquisição real de dados 

sísmicos. Os dados sintéticos são obtidos pela realização de traçamento de raios sobre o modelo alvo. 

Para M1 e M2 o traçamento de raios foi conduzido considerando-se um arranjo geométrico do tipo VSP 

(Vertical Seismic Profile), com fonte na superfície na posição S = 0,0 km e receptores dispostos ao longo de um 

poço vertical de 3,0 km de profundidade, regularmente espaçado em 100,0 m. Assim, uma curva de tempos de 

trânsito é obtida a partir dos 30 dados medidos nos receptores. O problema é construído de modo a fornecer um 

número de dados maior do que o número de parâmetros do modelo; isto produz um sistema sobre-determinado, 

que é um pré-requisito para a aplicação de métodos de inversão. Os dados de saída são organizados em dois 

arquivos: um com as trajetórias dos raios e outra com os tempos de trânsito. Primeiramente, são armazenadas as 

coordenadas x e z dos vértices da linha poligonal que representa a trajetória do raio, depois os tempos de trânsito 

calculados nas chegadas dos raios nos receptores. Para modelos nos quais a distância entre receptores é 0,1 km, 

um erro máximo de 0,01 km é admitido entre o ponto de chegada do raio e a posição do receptor, enquanto que 

para o modelo M2 este erro é aumentado para 0,02 km (10 % do espaçamento entre receptores). 

 

IV. Resultados 
Modelo de Dez Camadas Homogêneas e Interfaces Horizontais (M1) 

Parametrização 

Nessa etapa foi utilizada a série ondaleta Haar para representar o modelo. A parametrização foi realizada 

utilizando-se as seguintes variações dos índices da série: 𝑗0 = 1, 𝑗 de 1 a 3 e 𝑘 de 0 a 9. Dos 40 coeficientes 

possíveis usando essa variação foram eliminados valores inferiores a 0,1, obtendo-se, assim, doze coeficientes, 

que representam bem o modelo alvo. São eles: 𝑐1,0 = −0.1415, 𝑐1,1 = −0.1412, 𝑐1,2 = −0.2828, 𝑐1,3 =

−0.1413, 𝑐2,4 = −0.1001, 𝑐3,9 = −0.1415,  𝑑1,0 = 1.5559, 𝑑1,1 = 2.3333, 𝑑1,2 = 2.1924, 𝑑1,3 = 2.9696, 

𝑑1,4 = 2.1218 e 𝑑1,5 = 3.5355. Assim, o modelo alvo parametrizado pode ser representado pelo vetor dos 

parâmetros M1,TP =(-0,1415  -0,1412 -0,2828 -0,1413 -0,1001 -0,1415  1,5559  2,3333  2,1924  2,9696  2,1218  

3,5355). O campo de velocidades parametrizado com esses doze coeficientes, possui uma boa aproximação em 

relação ao modelo alvo original, embora com algumas diferenças. A Figura 3 mostra os resultados principais 

obtidos na parametrização. 

 

 
Figura 3: Parametrização de M1: (a) Modelo alvo original, M1,T; (b) Representação unidimensional de M1,T 

(azul) e M1,TP (vermelho); (c) M1,TP; (d) Representação bidimensional da diferença entre M1,T e M1,TP. 

 

Modelagem. 

Devido ao grande comprimento do modelo e às pequenas diferenças entre os ângulos de saída dos raios, 

muitas vezes de aproximadamente 10-4 radiano, utilizou-se o método da bisseção. A Figura 4 mostra os resultados 

obtidos na etapa de modelagem. 
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Figura 4: Modelagem sobre M1: (a) Traçamento sobre modelo original; (b) Curvas de tempo de trânsito sobre o 

modelo original, M1,T (azul), e o modelo parametrizado, M1,TP (vermelho). 

 

Modelo de camadas concêntricas, tipo sinclinal (M2) 

O modelo alvo M2, representado na figura 1(b) possui camadas circulares concêntricas com variação 

radial continua de velocidade sísmica. Essa variação vai de 2 km/s na parte central superior do modelo a 6 km/s 

nas extremidades inferiores. Esse é um modelo em que a velocidade compressional V2 depende da distância 

horizontal x e da profundidade z. Trata-se, portanto, de um modelo bidimensional no Sistema cartesiano, 

representado por uma função do tipo V2(x,z). Considerando a linha (raio) que conecta o ponto (4,5 , 0) na parte 

central superior, ao ponto (9 , 3), na extremidade inferior direita, como o raio r das curvas semicirculares de iso-

velocidades, o modelo pode ser representado como uma função continua de r, limitada ao domínio do modelo. 

Assim, M2 pode ser representado por V2(r) em km/s, tal como: 

𝑉2(𝑟) = 2 + 4
𝑟

𝑅
,  0 ≤ 𝑟 ≤ 𝑅 (21) 

onde 𝑅 = √4. 52 + 3. 02 ≅ 5.41 𝑘𝑚, 𝑟 = √(4.5 − 𝑥)2 + 𝑧2  e (x,z) é um ponto genérico do modelo. 

 

Parametrização. 

A parametrização desse modelo foi realizada com as seguintes variações dos índices: jo igual a 0, j de 0 

a 1 e 𝑘 de 0 a 9, obtendo-se 30 coeficientes. Eliminando-se os coeficientes nulos e agrupando-se os coeficientes 

adjacentes de igual valor, o modelo foi reduzido a nove parâmetros, três do tipo 𝑐𝑗,𝑘 e seis do tipo 𝑑𝑗𝑜,𝑘, os quais 

garantem uma boa representatividade do modelo alvo. São eles: 𝑐0 = −0.1849, 𝑐0,5 = 1.8451, 𝑐1 = −0.1415, 

𝑑0,0 = 2.3998, 𝑑0,1 = 3.1094, 𝑑0,2 = 3.8490, 𝑑0,3 = 4.5886, 𝑑0,4 = 5.3282e 𝑑0,5 = 4.0378. O coeficiente 

𝑐0representa os coeficientes 𝑐0,0, 𝑐0,1, 𝑐0,2, 𝑐0,3 e 𝑐0,4e o coeficiente 𝑐1representa os coeficientes 𝑐1,0a 𝑐1,10. Logo, 

o modelo alvo parametrizado pode ser representado pelo vetor M2,TP = (-0,1849  1,8451
  
-0,1415

  
2,3998  3,1094  

3,8490
 
4,5886

  
5,3282

  
4,0398). O campo de velocidades parametrizado com esses nove coeficientes é uma boa 

aproximação do modelo alvo original, embora com algumas diferenças. A figura 7 mostra os resultados obtidos 

a partir da parametrização desse modelo. 

 

 
Figura 7: Parametrização de M2 (a) Modelo original, M2,T; (b) representação 1D de M2,T (azul) e M2,TP 

(vermelho); (c) M2,TP; (d) representação 2𝐷 da diferença entre M2,T and M2,TP. 
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Modelagem. 

Devido ao fato de o modelo parametrizado não ser contínuo, não é possível realizar o traçamento de 

raios diretamente sobre ele. Faz-se necessária uma suavização do modelo. Essa suavização foi implementada 

utilizando-se o método de interpolação de Shepard (Shepard, 1968), com 11 pontos equidistantes ao longo do raio 

r. A figura 7 mostra os resultados obtidos nesse processo. 

 

 
Figura 7: Modelagem sobre M2 (a) traçamento de raios sobre o modelo alvo original M2,T; (b) tempos de 

trânsito sobre M2,T (azul) e M2,TP (vermelho); (c) M2,TP; (d) traçamento de raios sobre M2,TP suavizado. 

 

Modelos Bidimensionais (M3 e M4) 

Parametrização. 

Foram utilizados dois modelos similares, um para cada tipo de arranjo, ambos com profundidade de 2 

km. No Modelo 01, com 4 km de comprimento, os receptores (geofones) estão localizados ao longo de um suposto 

poço vertical, com espaçamento regular de 0,05 km. No Modelo 02, com 6 km de comprimento, os receptores 

estão dispostos ao longo de uma linha reta sobre a superfície, com espaçamento regular de 0,1 km. 

Na parametrização, optou-se por usar a escala de resolução de escala mínima equivalente a 1 (j0 = 1), 

com k2 variando de 0 a 3 para ambos os modelos. No Modelo M3, a utilizou-se k1 variando de 0 a 7, enquanto que 

para o Modelo M4 essa variação foi de 0 a 11. 

 

Modelagem. 

A partir de um sistema de equações proposto por Cervený (2001), obtêm-se o sistema de equações 

utilizado para calcular recursivamente a trajetória das ondas sísmicas, via algoritmo computacional. 

Simultaneamente ao processo de construção do raio, também é calculado o tempo gasto para que o raio sísmico 

alcance o receptor (Perin, 2016). 

No intuito de viabilizar o traçamento, fez-se necessária a suavização do modelo parametrizado, 

utilizando-se interpolação de Shepard (Shepard, 1968). 

A Figura 10 (a) mostra o resultado do traçamento de 40 (quarenta) raios do Modelo 01, enquanto que a 

Figura 10 (b) mostra os tempos de trânsito calculados para cada uma dessas trajetórias. 

 

 
Figura 10. Resultados do traçamento: (a) traçamento dos 40 raios sobre o Modelo 01 parametrizado e 

suavizado; (b) tempos de transito. 
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A Figura 11 (a) mostra o resultado do traçamento de 40 (quarenta) raios do Modelo M4, enquanto que a 

Figura 11 (b) mostra os tempos de trânsito calculados para cada uma dessas trajetórias. 

 

 
Figura 11. Resultados do traçamento: (a) traçamento dos 40 raios sobre o Modelo M4 parametrizado e 

suavizado; (b) tempos de transito. 

 

V. Conclusão 
Parametrização de modelo de velocidade sísmica pela série ondaleta de Haar provou ser eficaz, 

proporcionando resultados satisfatórios de tomografia sísmica e modelagem. É possível realizar cálculos 

matemáticos e geofísicos usando esses parâmetros, que acentua a importância e a aplicabilidade deste tipo de 

parametrização. 

Parametrização, usando a série de wavelet Haar provou ser fácil de executar, com um baixo custo 

computacional. Em relação a modelos mais complexos, é necessário utilizar uma amostragem mais refinada para 

o valor de velocidade nos pontos de modelo, que exige um maior número de coeficientes para oferecer uma 

representação satisfatória para as mais diversas situações geológicas. A parametrização bidimensional nos 

modelos M3 e M4 também se mostrou eficiente e mais apropriados para modelos irregulares. 

Para modelo M1 é possível realizar eficientemente modelagem sísmica de tempo de trânsito, diretamente 

sobre o modelo parametrizado; isto significa que o tracamento de raio é realizado sobre o modelo parametrizado 

sem suavização. Foi necessário suavizar o outro modelo, porque não é possível realizar traçamento diretamente 

sobre os modelos parametrizados, devido às dificuldades impostas por descontinuidades. Ao usar o método da 

bisseção para conectar a fonte aos receptores pela trajetória dos raios, é necessário usar variáveis de precisão 

dupla nos códigos computacionais para a modelagem e inversão devido a pequenas variações nos ângulos da 

partida dos raios adjacentes. 

 

Referencias 
[1]. Bishop T N, Bube K P, Cutler R T, Lagan R T, Love P L, Resnick J R, Shuey R T, Spindler D A And Wyld H W 1985 Tomographic 

Determination Of Velocity And Depth In Laterally Varying Media. Geophysics, 50:903-923. 
[2]. Cervený V 2001 Seismic Ray Theory. Cambridge University Press, Cambridge. 

[3]. Chapra S C And Canale R P 2002 Numerical Methods For Engineers With Software And Programming Applications. Mc Graw Hill, 

Fourth Edition. 
[4]. Chiao L Y And Kuo B Y 2001 Multiscale Seismic Tomography. Geophysical Journal International, 145, 517-527. 

[5]. Daubechies I 1992 Ten Lectures On Wavelets. CBMS-NSF Regional Conferences Series In Applied Mathematics, Soc. For Industrial 
Appl. Math., SIAM, Vol. 61, 357 Pgs., Philadelphia, PA. 

[6]. Dos Santos R H M And Figueiró W M 2006 Modelagem Acústica Bidimensional Usando Diferentes Parametrizações De Campos 

De Velocidades. Revista Brasileira De Geofísica, 24:103-115. 
[7]. Dos Santos V G B And Figueiró W M 2007 Seismic Ray Reflection Tomography Using Integral Function Norm. 77th Annual SEG 

Meeting, CD-ROM, San Antonio, Texas, USA. 

[8]. Dos Santos V G B And Figueiró W M 2011 Seismic Ray Tomography Using L1 Integral Norm. Brazilian Journal Of Geophysics, 
29:347-358. 

[9]. Lima P C 2002 Wavelets: Uma Introdução. Matemática Universitária, 33:13-44. 

[10]. Menke W 1989 Geophysical Data Analysis: Discrete Inverse Theory. Academic Press. 
[11]. Morettin P A 1999 Ondas E Ondaletas: Da Análise De Fourier À Análise De Ondaletas. Editora Da Universidade De São Paulo, 

EDUSP, São Paulo, SP. 

[12]. Nolet G 2008 A Breviary Of Seismic Tomography. Cambridge University Press. 
[13]. Perin H M And Figueiró W M 2012 Parameterization Of Two-Dimensional Seismic Velocity Fields Using The Haar Wavelet. 82nd 

Annual SEG Meeting, CD-ROM, Las Vegas, Nevada, USA. 

[14]. Santana J L S And Figueiró W M 2008 Diferentes Parametrizações De Campos De Velocidades Sísmicas Do Modelo Geológico Da 
Quebra Da Plataforma Continental. Resumos Expandidos, III Simpósio Brasileiro Da Sbgf, 24:103-115. 

[15]. Shepard D 1968 A Two-Dimensional Interpolation Function For Irregularly-Spaced Data.Proc. 23rd. ACM National Conference, 23: 

517-523. 



Modelagem Em Campos De Velocidade Sísmica, Parametrizados Por Ondaletas Haar 1D E 2D 

DOI: 10.9790/0990-1401010109                                  www.iosrjournals.org                                            9 | Page 

[16]. Simons F J, Loris I, Nolet G, Daubechies I C, Voronin S, Judd J S, Vetter P A, Charlety J And Vonesch C 2011 Solving Or Resolving 

Global Tomographic Models With Spherical Wavelets And The Scale And Sparsity Of Seismic Heterogeneity. Geophysical Journal 
International, 187, 969-988. 

[17]. Tikhotsky S A, Fokin I V And Schur D Y 2011 Traveltime Seismic Tomography With Adaptive Wavelet Parameterization. Physics 

Of The Solid Earth, Pleiades Publishing Ltd., 47(4): 326-344. 
[18]. Tikhotsky S A And Achauer U 2008 Inversion Of Controlled-Source Seismic Tomography And Gravity Data With Self-Adaptive 

Wavelet Parameterization Of Velocities. Geophysical Journal International, 172: 619-630. 

[19]. Yuan Y O And Simons F J 2014 Multiscale Adjoint Waveform-Difference Tomography Using Wavelets. Geophysics, 79(3): WA79-
WA95 


