Decelerating Bianchi Type VI_0 Universe Model with Time Dependent Λ Term

Dr. Sapna Shrimali1, Teena Trivedi2

1(Associate professor, Department of Mathematics and Statistics, Pacific College of Basic Science and Applied Sciences, Pacific University, Udaipur (Rajasthan), India)

2(Research Scholar, Department of Mathematics and Statistics, Pacific College of Basic Science and Applied Sciences, Pacific University, Udaipur (Rajasthan), India)

Abstract: Decelerating Bianchi Type VI_0 Universe Model with time dependent Λ Term is investigated. To obtain the determinant solution of Einstein's field equation, we assume $\Lambda = B' \eta$ and $\theta \propto \sigma$. Physical and geometrical properties are also discussed.

Keywords: Bianchi Type VI_0, decelerating, Cosmology

I. Introduction

Cosmology has long been considered as a speculative field. It is the branch of Astronomy which deals with large structure of Universe. The theory of relativity is intimately connected with the theory of space and time. Einstein equations are used for constructing model of universe; the universe was static initially, further astronomers pointed out homogeneity and isotropy of matter distribution.

Kibble and Valenkin1, 2 initiated phase transitions in the early universe, which can give rise to microscopic topological defects such as vacuum domain walls, strings, walls bounded by strings, and monopoles connected by strings. Cosmic String has originally given by Letelier. He investigated the model formed by massive string3, 4, which was used as Bianchi type I and "Kantowski-Sachs" type of cosmological models. The basic virtue of inflation in the deflationary picture has been discussed by Gasperini5.

Bianchi type I-IX cosmological models are important in sense of strings, isotropic, homogeneous etc. In past five decades relativists has been interested in constructing string cosmological model. Borrow6 initiated the model Bianchi type VI_0 of universe and explained solution of cosmological problem. Some exact solutions of Bianchi type VI_0 for perfect fluid distributions satisfying specific equation of state7. Ellis and McColhu8, 9 investigated solution of Einstein field equation for Bianchi type VI_0 space time in stiff fluid. Dunn and Tupper10 obtained the solution of a class of Bianchi type VI_0 perfect fluid cosmological model associated with electromagnetic field. Reddy and Rao11 presented on some Bianchi type cosmological model in biometric theory of gravitation. Shri Ram12 presented an algorithm for generating exact perfect fluid solution of Einstein field equation, not satisfying the equation of state, for spatially homogeneous cosmological model of Bianchi type VI_0. Singh and Singh13 has been obtained the solution of string cosmological models with magnetic field in General Relativity. Some exact solution of string cosmological model has been investigated by several researchers14, 15, 16, 17 Xing-Xiang18, 19, 20 has obtained solution of Bianchi string cosmological model with bulk viscosity and magnetic field. Bianchi type III for cloud string cosmological model described by Tikekar& Patil20. Chakraborty et al.21, 22, 23 investigated string cosmological model in general relativity. In Bianchi Type VI_0 string cosmological model Tikekar and Patil24 obtained some exact solutions. Bianchi Type I and Bianchi Type III investigated by Bali et al.25, 26, 27, 28.

Two parameter of Einstein's field equation is cosmological constant Λ and gravitational constant G plays the role of coupling constant between geometry and matter in Einstein field equation. Shrimoli and Joshi29, 30, 31, 32 obtained the solution of Bianchi type III cosmological model in general Relativity. Pradhan and Bali33 obtained the solution of magnetized Bianchi type VI_0 Barotropic massive string universe with decaying vacuum energy density. Verma and Ram34 investigated the solution of Bianchi-Type VI_0 Bulk Viscous Fluid Models with Variable Gravitational and Cosmological Constants. Pradhanet al.35, 36 obtained dark energy model in Bianchi Type VI_0.

Recently, Bali and Pooni37 investigated Bianchi Type VI_0 Inflationary Cosmological Model in General Relativity. Tyagiet al.38, 39, 40 obtained Bianchi Type VI_0 homogeneous cosmological model for anti-stiff perfect fluid for time dependent Λ in general relativity Inhomogeneous cosmological model for stiff perfect fluid.
distribution in general relativity and Barotropic perfect fluid in creation field theory with time dependent cosmological model. Bali et al. [40, 41] and Bhoyar et al. [42] has investigated Bianchi Type VI in general relativity.

II. Field Equation

We consider Bianchi type VI space time metric in the form of

\[ds^2 = -dt^2 + A^2 dx^2 + B^2 e^{-2m} dy^2 + C^2 e^{-2m} dz^2 \] \hspace{1cm} (1)

Where A, B and C are function of time t and m is constant. The energy momentum tensor for a bulk viscous fluid distribution is given by

\[T_{ij} = (\rho + \rho_v) v_i v_j + \rho g_{ij} \] \hspace{1cm} (2)

\[\rho_v = \rho - \xi v_i v_j \]

Here \(\rho, p, \rho_v \), is energy densities, isotropic pressure, bulk viscous pressure respectively. The velocity vector of fluid satisfies

\[v_i v^i = -1 = -u_i u^i \] \hspace{1cm} (3)

\[u^i v_i = 0 \] \hspace{1cm} (4)

The vector \(u_i u^i \) describes the direction of string or direction or anisotropy.

The Einstein field equation

\[R_{ij} - \frac{1}{2} R g_{ij} = -8\pi G T_{ij} + \Lambda g_{ij} \] \hspace{1cm} (5)

\(R_{ij} \) is known as Ricci tensor and \(T_{ij} \) is the energy momentum tensor for matter.

For the line element (1) and the field equation (5) can be written as

\[\frac{\ddot{B}}{B} + \frac{\dot{C}}{C} + \frac{\dot{B} \dot{C}}{BC} + \frac{m^2}{A^2} = -8\pi G \rho + \Lambda \] \hspace{1cm} (6)

\[\frac{\ddot{A}}{A} + \frac{\dot{C}}{C} + \frac{\dot{A} \dot{C}}{AC} - \frac{m^2}{A^2} = -8\pi G p + \Lambda \] \hspace{1cm} (7)

\[\frac{\ddot{A}}{A} + \frac{\ddot{B}}{B} + \frac{\dot{A} \dot{B}}{AB} - \frac{m^2}{A^2} = -8\pi G p + \Lambda \] \hspace{1cm} (8)

\[\frac{\dot{A} \dot{B}}{AB} + \frac{\dot{A} \dot{C}}{AC} + \frac{\dot{B} \dot{C}}{BC} - \frac{m^2}{A^2} = 8\pi G \rho + \Lambda \] \hspace{1cm} (9)
\[
\left(\frac{B}{B} - \frac{C}{C} \right) = 0 \tag{10}
\]

Dot on B and C denotes the ordinary differentiation with respect to t. An additional equation for time changes of G and \(\wedge \) is obtained by the divergence of Einstein tensor

\[
\left(R^j_i - \frac{1}{2} R g^i_j \right)
\]

This leads to

\[
(8\pi G T^i_j - \wedge g^i_j) = 0
\]

\[8\pi \dot{G} \rho + \dot{\lambda} + 8\pi G \left[\dot{\rho} + (\rho + p) \left(\frac{\dot{A}}{A} + \frac{\dot{B}}{B} + \frac{\dot{C}}{C} \right) \right] = 0 \tag{11}\]

Using equation (3), equation (11) split into (12) and (13)

\[8\pi \dot{G} \rho + \dot{\lambda} + 8\pi G \left[\dot{\rho} + (\rho + p) \left(\frac{\dot{A}}{A} + \frac{\dot{B}}{B} + \frac{\dot{C}}{C} \right) \right] = 0 \tag{12}\]

\[\dot{\lambda} + 8\pi \dot{G} \rho = 8\pi G \zeta \left(\frac{\dot{A}}{A} + \frac{\dot{B}}{B} + \frac{\dot{C}}{C} \right)^2 \tag{13}\]

The average scale factor \(S \) for the metric (1) is defined by

\[S^3 = ABC \tag{14}\]

The volume scalar factor \(V \) is given by

\[V = S^3 = ABC \tag{15}\]

The generalize mean Hubble parameter \(H \) is given by

\[H = \frac{1}{3} (H_1 + H_2 + H_3) \tag{16}\]

Where \(H_1 = \frac{\dot{A}}{A}, H_2 = \frac{\dot{B}}{B}, H_3 = \frac{\dot{C}}{C} \)

The expansion scalar \(\theta \) and shear scalar \(\sigma \) are given by
Decelerating Bianchi Type VI, Universe Model With Time Dependent A Term

\[\theta = \frac{v_i}{v_i} = \left(\frac{\dot{A}}{A} + \frac{\dot{B}}{B} + \frac{\dot{C}}{C} \right) \]

(17)

And

\[\sigma^2 = \frac{1}{3} \left(\frac{\dot{A}^2}{A^2} + \frac{\dot{B}^2}{B^2} + \frac{\dot{C}^2}{C^2} - \frac{\dot{AB}}{AB} - \frac{\dot{BC}}{BC} - \frac{\dot{AC}}{AC} \right) \]

(18)

The deceleration parameter \(q \) is given by

\[q = -1 + \frac{d}{dt}(H) \]

(19)

The sign of \(q \) indicates condition of model inflation

III. SOLUTION OF FIELD EQUATION

We first assume that the expansion scalar is proportional to shear scalar. This condition leads to

\[A = B^n \]

(20)

Where \(n \) is positive constant. We assume \(n=1 \)

From equation (10), we have

\[B = \mu C \]

(21)

\(\mu \) is constant of integration. From equation (21), we take \(\mu=1 \) so that

\[B = C \]

(22)

Using equation (6) and (7) with equation (22), we have

\[\frac{\ddot{B}}{B} - \frac{\dot{A}}{A} + \frac{\dot{B}^2}{B^2} - \frac{\dot{AB}}{AB} + \frac{2m^2}{A^2} = 0 \]

(3)

\[(1-n) \frac{\ddot{B}}{B} + (1-n^2) \frac{\dot{B}}{B} + \frac{2m^2}{B^{2n}} = 0 \]

(17)

\[\ddot{B} + (1+n) \frac{\dot{B}^2}{B} + \frac{2m^2}{1-n} B^{1-2n} = 0 \]

(18)

To solve equation (18), we denote \(\dot{B} = \eta \) then \(\ddot{B} = \eta \frac{d\eta}{dB} \) and Equation (18) reduced into first order first degree differential equation in the following form
Decelerating Bianchi Type VI, Universe Model With Time Dependent A Term

\[
\frac{d}{dB} \eta^2 + \frac{2(n+1)}{B} \eta^2 = k_1^2 B^{1-2n}
\]
(19)

Where \(k_1^2 = \frac{4m^2}{n-1} \)

\[
\eta = \frac{\sqrt{k_1^2 B^4 + k_2^2}}{2B^{n+1}}
\]
(20)

\[
\frac{2B^{n+1}}{k_2^2 B^4 + k_2^2} dB = dt
\]
(21)

Model I: \(n=2 \)

\[
\frac{2B^3 dB}{k_2^2 B^4 + k_2^2} = dt
\]
(22)

\[
B^4 = \frac{(t + k_3)^2 + k_2^2}{k_1^2}
\]
(23)

Where \(k_1, k_3 \) and \(k_3 \) are constant.

\[
ds^2 - dt^2 \left[\frac{(t+k_3)^2 + k_2^2}{k_1^2} \right] dx^2 + \left[\frac{(t+k_3)^2 + k_2^2}{k_1^2} \right] e^{-2mu} dy^2 + \left[\frac{(t+k_3)^2 + k_2^2}{k_1^2} \right] e^{2mu} dz^2
\]
(24)

IV. PHYSICAL KINEMATICAL PARAMETER

We can find the physical and geometrical parameter by using equation (24)

The Spatial Volume is given by

\[
V = \frac{(t + k_3)^2 + k_2^2}{k_1^2}
\]
(24)

The Hubble parameter is given by

\[
H = \frac{2}{3 \left[\frac{t + k_3}{(t + k_3)^2 + k_2^2} \right]}
\]
(25)

The expansion scalar is given by

\[
\theta = \frac{2(t + k_3)}{(t + k_3)^2 + k_2^2}
\]
(26)

The Shear Scalar is given by

\[
\sigma = \frac{1}{2\sqrt{3}} \left[\frac{t + k_3}{(t + k_3)^2 + k_2^2} \right]
\]
(27)

The Deceleration parameter is given by

\[
q = -1 + \frac{2}{3} \left[\frac{k_2^2 - (t + k_3)^2}{(t + k_3)^2 + k_2^2} \right]
\]
(28)
For the model 27, we observe that the spatial volume \(V \) is increases with time \(t \). For large value of \(t \) it becomes infinite. \(\theta \), \(H \) and \(\sigma \) decreases as time \(t \) increases. It vanishes for large value of \(t \). Thus the model has a big bang singularity at finite time \(t \). It is continuously expanding Shearing non rotating. Since

\[
\lim_{t \to \infty} \frac{\sigma}{\theta} = \text{constant} \quad \text{therefore the model doesn't approach isotropy}
\]

V. Conclusion

In this paper, we have presented exact solution of Einstein fields equation for Bianchi type VI, Space time under the assumption that expansion scalar is proportional to shear scalar. The physical and the kinematical parameters are decreasing function of time, for large value of \(t \) it tends to zero. The universe model decelerating and doesn’t approach isotropy.

References

[8]. C.B. Collins, More qualitative cosmology. Communications in Mathematical Physics, 23(2), 1971, 137-158.
Decelerating Bianchi Type VI₀ Universe Model With Time Dependent Λ Term

[40]. A. Tyagi, S. Parikh Bianchi Type-VI₀ Cosmological Model with Barotropic Perfect Fluid in Creation Field Theory with Time Dependent Λ. Pespacetime Journal, 8(7), 2017.
