I. Introduction

Fluctuations of a current in spending environments arise at availability external influences. It can take place, if the spending environment is in an external electric floor, in external electric and magnetic fields and even at availability of a gradient of temperature in the environment. In semiconductors (electronic type, electronically-hole type) carriers of a charge from external influences are accelerated or slowed down impurity by the centers and consequently distribution of a charge in the semiconductor deviates equilibrium values and thus inside of the semiconductor there are areas with different values of an electric field. These sites (them name domains) move on all image and then there are fluctuations of a current in external a circuit [2].

In impurity semiconductors recombination and generation of carriers of a current impurity the centers lead to fluctuation of a current in the sample. Availability impurity the centers and their charging conditions causes occurrence of fluctuation of a current in impurity semiconductors. Some impurity in semiconductors create the centers, capable to be in the several charged conditions (unitary, twice, it is triple positively or negatively charged). For example, atoms of gold in Germany to the order a neutral condition, can be unitary positive also charged or unitary, twice and is triple the negative charged centers; atoms of copper in Germany to the order a neutral condition, can be also unitary, twice and is triple the negative charged centers; atoms of copper in Germany to the order a neutral condition, can be also unitary, twice and is triple the negative charged centers. These impurity have different power levels in the forbidden zone. In dependence of removal of these levels on a valent zone (or from a bottom of a zone of conductivity) them name deep levels. These deep traps are capable to grasp electrons and holes depending on their charging conditions. Variations of concentration of electrons in a zone of conductivity and holes in a valent zone lead to variation of the general electrical conductivity the semiconductor. Depending on an experimental situation these deep traps possess a different degree of activity. In electric floor E electrons (as well as holes) receive energy eE (where, e – a positive elementary charge, l-length of free run of electron). Therefore electrons can overcome Coulombic a barrier of unitary charged center and to be grasped, i.e. recombine it. Also generating electrons in deep traps of a zone of conductivity is possible. Besides electrons mightily to be generated from deep traps in a zone of conductivity. At capture of electrons by deep traps in a valent zone, the quantity of holes increases. At capture of electrons from deep traps holes, the quantity of holes decreases.

In the presented theoretical work we shall construct the theory of external instability in semiconductors with two types of carriers of a charge (electrons and holes) and the certain deep traps at availability of a constant external electric field.

The theory of fluctuations in view of a relaxation of carriers of a charge is constructed in work.

In the further we shall have to a type, that the semiconductor possesses carriers of both signs (electrons and holes), with concentration accordingly equal and. Concentration of negatively charged traps we shall designate. Let concentration of unitary negatively charged traps equally, and twice negatively charged traps -. Total of negatively charged traps we shall designate it is defined as the sum and:
Some Radiation Conditions of a Semiconductor With Certain Charge Carriers

\[N_0 = N + N_- \] \hspace{1cm} (1)

In the model of the semiconductor chosen by us at availability of external constant electric field \(E_0 \), inside of the sample there is eltrastic a field

\[\vec{E} = \vec{E}_0 + \vec{E}' . \] \hspace{1cm} (2)

Thus concentration of carriers of a charge are defined under formulas

\[n_- = n_0 + n'; \quad n_+ = n_0' + n'_+ . \] \hspace{1cm} (3)

In the semiconductor described in the above-stated parameters occurs fluctuations of carriers of a charge and an electric current. If thus in an external circuit the full current is equal

\[I = I_+ + I_- = const , \] \hspace{1cm} (4)

That fluctuations inside of the sample can grow (because of availability of internal instability).

With occurrence in an external circuit of a part of a current

\[I' \neq 0 , \] \hspace{1cm} (5)

There is an external instability. Available instability frequency and a wave vector of fluctuation have a following appearance:

\[k = \frac{2\pi}{L} \cdot m. (m = 0, \pm 1, \pm 2, \ldots) . \] \hspace{1cm} (6)

\[\omega = \omega_0 + i \cdot \omega_1 . \] \hspace{1cm} (7)

Where, \(L \)-the size of the sample, - and - material and imaginary parts of frequency of fluctuation inside of the sample accordingly.

At external instability of a condition (6) and (7) look like:

\[\omega = \omega_0, k = k_0 + i \cdot k_1 . \] \hspace{1cm} (8)

In the given work to us analyzed conditions of external instability (i.e. conditions of fluctuation of a current in an external circuit) in the above-stated semiconductor in a constant external electric floor.

At the theoretical analysis of external instability it is necessary to calculate an impedance of the sample. Voltampernaya the characteristic of the sample in conditions of external instability has a falling site and consequently the actual part of an impedance is negative. From the equation

\[\text{Re} \ Z + R = 0 \] \hspace{1cm} (9)

Frequency of fluctuation of a current or value of an electric field in conditions of external instability is defined. In the equation (9) \(R \)-ohmic resistance in a circuit. The imaginary part of an impedance in a falling site can have a positive or negative sign. Then from the equation

\[\text{Im} Z + R_1 = 0 \] \hspace{1cm} (10)

It is defined either frequency, or an electric field. In the given equation \(R_1 \)- resistance of capacitor or inductive character.

The basic equations of a problem

The equation of indissolubility for electrons in the semiconductor with the above-stated types of traps looks like [1]:

\[\frac{\partial n_-}{\partial t} + \text{div} j_- = \gamma_-(0)n_-N_- - \gamma_-(E)n_-N = \left(\frac{\partial n_-}{\partial t} \right)_{rek} \] \hspace{1cm} (11)

Here, - density of a stream of electrons:

\[j_-= -n_- \cdot \mu_-(E) - D_- \cdot \nabla n_- . \] \hspace{1cm} (12)

- Factor of emission of electrons twice negatively charged traps in absence of an electric field (it can be named factor of thermal generation). In non-degenerate the semiconductor the given factor from an electric field does
not depend \(\gamma_-(E) \) - factor of capture of electrons unitary negatively charged traps at availability of an electric field. Concentration - is defined from condition \(\left(\frac{\partial n_+}{\partial t} \right)_{rek} = 0 \) \[3\]

\[n_{-1} = \frac{n_0^0 N_0^0}{N_0^0} \] \(\ldots \) (13)

- The mobility of electrons depending on an electric field, factor of diffusion of electrons.

The equation of indissolubility for holes will look like \([2,3,4,5]\):

\[\frac{\partial n_+}{\partial t} + \text{div} j_+ = \gamma_+(E)n_+N - \gamma_+(0)n_+N = \left(\frac{\partial n_+}{\partial t} \right)_{rek} \] \[14\]

\[j_+ = n_+ \cdot \mu_+(E) \cdot E - D_+ \nabla n_+ \] \[15\]

\[n_{+1} = \frac{n_0^0 \cdot N_0^-}{N_0^-} \] \(\ldots \) (16)

Owing to recombinations and generation the number twice and unitary negatively charged traps (thus the total of traps remains constant) changes. The equation defining variation of traps in due course looks like \([2,3]\):

\[\frac{\partial N_-}{\partial t} = \left(\frac{\partial n_+}{\partial t} \right)_{rek} + \left(\frac{\partial n_-}{\partial t} \right)_{rek} \] \[17\]

To these equations it is necessary to add a condition quasineutrality

\[\text{div} j = e \cdot \text{div} (j_+ - j_-) \] \[18\]

According to the expression (18), the full current does not depend on coordinates, but depends on time.

II. The Theory

The equations (11), (14), (17), (18) should be solved in common. At linear approximation and from formulas (11), (14), (17), (18) we shall easily receive

\[\left\{ \begin{array}{l}
\left(v_- - i \omega - ikv_+ + \frac{T^e \mu^+ k^2}{\mu_- k^2} \right) \Delta n_-^e + \left(\frac{n v_- \beta_-}{E_0} - ik \mu_- n_+ \right) \cdot \Delta E_-^e - v_-^e \cdot \Delta N_-^e = 0 \\
\left(v_+ - i \omega - ikv_+ + \frac{T^e \mu^+ k^2}{\mu_- k^2} \right) \Delta n_+^e + \left(ik \mu_+ \cdot n_+ + \frac{n_{+1} \cdot v_+ \beta_+}{E_0} \right) \cdot \Delta E_+^e + v_+^e \cdot \Delta N_+^e = 0 \\
\Delta N_-^e = \frac{1}{\nu - i \omega} \left[v_- \cdot \Delta n_-^e - v_- \cdot \Delta n_+^e + \left(n_- \cdot v_- \beta_- + n_{+1} v_+ \beta_+ \right) \cdot \frac{\Delta E_-^e}{E_0} \right] \\
\Delta E_-^e = \frac{e}{\sigma} \left(-v_- \cdot \Delta n_-^e - v_- \cdot \Delta n_+^e + ik \frac{T^e}{e} \cdot \mu_+ \cdot \Delta n_+^e - ik \frac{T^e}{e} \cdot \mu_- \cdot \Delta n_-^e \right)
\end{array} \right. \] \[19\]
At reception of formulas (19) and (20) following designations have been entered:

\[
\Delta n_\pm = \Delta n_\pm' \cdot e^{-i\omega t} + \Delta n_\pm^* \cdot e^{i(kx - \omega t)}, \quad E' = \Delta E' + \Delta E^*
\]

\[
\nu = \nu' + \nu''; \quad \beta = 2 \cdot \frac{d \ln \gamma_+ (E_0)}{d \ln (E_0^2)}.
\]

Except for these designations are used \(D_z = \frac{T}{e} \cdot \mu_z \cdot \text{Einstein's parity.} \)

\(n_0^0 \ll N_0, N_0^0; \quad \nu_0 = \mu_0^0 \cdot E_0 = \nu_\pm; \quad n_0^0 = n_\pm \)

Excepting \(\Delta N_\pm', \Delta N_\pm^*, \Delta E', \Delta E^* \) from the equations (19) and (20), we shall receive following systems of the equations for definition and a wave vector to:

\[
\begin{aligned}
\left\{U_-(k) \cdot \Delta n_-^* + U_+(k) \cdot \Delta n_+^* = 0
\quad \Phi_- (k) \cdot \Delta n_-^* + \Phi_+ (k) \cdot \Delta n_+^* = 0
\right. \\
\left.\right\}
\]

\[
\begin{aligned}
\left\{U_-(0) \cdot \Delta n_-' + U_+(0) \cdot \Delta n_+'' + U\Delta I = 0
\quad \Phi_- (0) \cdot \Delta n_-' + \Phi_+ (0) \cdot \Delta n_+'' + \Phi\Delta I = 0
\right. \\
\left.\right\}
\]

Expressions \(U_d(k), U_d(0), \Phi_d(k), \Phi_d(0) \) easily turn out from formulas (19) and (20). Therefore their expressions it is not written out. Solving (23) it is defined in a following type:

\[
\Delta n_-' = \frac{\Phi_- (0) \cdot U - U_+ (0) \cdot \Phi}{U_- (0) \cdot \Phi_- (0) - U_+ (0) \cdot \Phi_+ (0)} = c_- \cdot \Delta j,
\]

\[
\Delta n_+'' = \frac{U_- (0) \cdot \Phi - \Phi_- (0) \cdot U}{U_- (0) \cdot \Phi_- (0) - U_+ (0) \cdot \Phi_+ (0)} = c_+ \Delta j
\]

For definition of a wave vector (22) we should solve the dispersive equation received from a determinant, made of factors \(U_d(k), \Phi_d(k) \):

\[
U_-(k) \cdot \Phi_+ (k) - U_+ (k) \cdot \Phi_- (k) = 0
\]

However the dispersive equation in the form of (25) is too bulky and consequently we shall consider its decision in two limiting cases after

DOI: 10.9790/4861-1102023341 www.iosrjournals.org
Some Radiation Conditions of a Semiconductor With Certain Charge Carriers

\[k_1 = \frac{\sigma \left[\omega (n_- - n_+) + i \left(n_+ v_\perp n_- - v_\perp n_- + n_- v_\perp \right) \right]}{e\mu_{\perp} E_0 \left[(n_- - n_+)^2 + (n_+ v_\perp n_- - v_\perp n_- + n_- v_\perp)^2 \right]} \]

\[k_2 = \frac{eE_0 \left[\sigma (n_- - n_+) + (v_- - v_+) - (n_- \beta_+ + v_+ E_{n_+} \beta_+) - i\omega \sigma (n_-^2 - n_+^2) \right]}{e\mu_{\perp} E_0 \frac{(n_+ v_+ + n_+ v_+ E_{n_+} \beta_+)}{\omega \sigma (n_- - n_+)^2}} \]

(26)

1) High-frequency case i.e.
\[\sigma = \sigma_+ + \sigma_- \]

\[\frac{v_\perp'}{v_\perp} \ll 1, \quad \frac{T v_\perp}{eE_0 v_\perp} \ll 1, \quad \frac{T}{eE_0} \ll 1, \]

At the decision of the dispersive equation (25) we used small parameters, Where 1 – length of a crystal.

2) A low-frequency case, i.e.

\[k_1 = \frac{\sigma \omega \left[\frac{n_- v_\perp^2 - n_+ v_\perp^2}{v_\perp - v_+} \right] + \left(n_+ v_\perp \beta_+ + n_+ v_+ \beta_+ \right)}{e\mu_{\perp} E_0 \left[(n_- v_\perp - n_+ v_\perp + n_- v_\perp + n_+ v_\perp)^2 \right]} - i\sigma v_\perp \left[n_- v_\perp - n_+ v_\perp + n_- v_\perp \beta_+ + n_+ v_\perp \beta_+ \right] \]

(27)

\[k_2 = \frac{1}{\left[\frac{\sigma_+ - \sigma_-}{n_- v_\perp + n_+ v_\perp \beta_+} - \sigma \left(n_- v_\perp + n_+ v_\perp \right) \right]^x} \times \sigma_+ \omega \left[(2n_- n_+ (v_- - v_+) - (n_- v_\perp \beta_+ + n_+ v_\perp \beta_+)(n_- + n_+) + \sigma \left[n_- v_\perp \beta_+ + n_+ v_\perp \beta_+ \right] (n_- + n_+) \sigma_+ - \sigma_+ \left(n_- v_\perp + n_+ v_\perp \right) \right] \times \left[\left(n_- v_\perp \beta_+ + n_+ v_\perp \beta_+ \right) \left(\sigma_+ - \sigma_- \right) - \sigma \left(n_- v_\perp + n_+ v_\perp \right) \right] \]

After a finding of expression of wave vectors \(k_1 \) and \(k_2 \) by means of the formula (27) it is possible to calculate an impedance of a crystal, representing expression catch

Let's receive for an impedance expression

For definition of constants we should use boundary conditions of deviations from equilibrium conditions. In dependence by-pass directions of both contacts it is possible to distinguish two types of boundary conditions:

1) On both contacts particles of an identical sign are injected

\[\Delta E(x,t) = \frac{1}{\sigma} \left(\Delta J - e v_\perp \Delta n_- + e v_\perp \Delta n_- + \frac{T}{e} \mu_\perp \nabla n_+ - \frac{T}{e} \mu_\perp \nabla n_- \right) \]

where, \(\Delta n_+ = c_1 e^{ikx} + c_2 e^{ikx} + e^{+ \Delta J} u \Delta n_- = c_1 e^{ikx} + c_2 e^{ikx} + c^{\Delta J} \)

(28)

2) On both contacts particles of an opposite sign are injected

\[Z = \frac{1}{\Delta J \cdot S'} \int_0^{L} \Delta E(x,t) dx = Z_0 \left[1 - e^{(e^{\Delta J} - 1)} \left(\frac{v_\perp C_1^+ + v_\perp C_1^-}{\Delta i k_\perp L} \right) + \frac{T}{e} \mu_\perp C^+ + \mu_\perp C^- - \frac{T}{e} (\nu_\perp C^+ + \nu_\perp C^-) \right] \]

(29)

Considering all four cases we should define constants And therefore an impedance crystal under the formula (29). In the mean time the way of definition of constants is identical in all four cases. Therefore boundary conditions we shall write in such type

DOI: 10.9790/4861-1102023341 www.iosrjournals.org 37 | Page
Some Radiation Conditions of a Semiconductor With Certain Charge Carriers

\[\Delta n_+(0) = \delta_+(0) \Delta J', \Delta n_+(L) = \delta_+(L) \Delta J', \Delta n_-(0) = \delta_-(0) \Delta J', \Delta n_-(L) = \delta_-(L) \Delta J' \]

(30)

Substituting (30) in (28) we shall receive

\[C_1^+ = \left[\frac{\delta_+(0) - C^+}{e^{a_2} - e^{a_1}} \right] \frac{1}{\Delta J}; \]

\[C_2^+ = \left[\frac{\delta_+(L) - \delta_+(0)}{e^{a_2} - e^{a_1}} \right] \frac{1}{\Delta J}. \]

\[C_1^- = \left[\frac{\delta_-(0) - C^-}{e^{a_2} - e^{a_1}} \right] \frac{1}{\Delta J}; \]

\[C_2^- = \left[\frac{\delta_-(L) - \delta_-(0)}{e^{a_2} - e^{a_1}} \right] \frac{1}{\Delta J}. \]

(31)

Substituting (31) in (29) we shall receive expressions of an impedance as function of an electric field and frequency of fluctuation of a current. However the received expressions of an impedance are bulky enough. Therefore they will be analyzed in following limiting cases.

High-frequency case:

\[\omega >> \nu^e, \nu^+ \]

1) \(n >> n_+ \), given \(\delta^0_+ \)

\[L \nu_+ \beta_- << \nu_+ \]

\[\frac{\Re Z}{Z_0} = 1 - \left(\frac{2 \nu^e \beta_+}{\omega} \right)^2 \frac{E_0}{E_1} - \frac{E_0^2}{E_1} \frac{3 \nu^e \beta_+}{\omega} \sin \theta + \cos \theta; \]

\[\frac{\Im Z}{Z_0} = \left(\frac{2 \nu^e \beta_+}{\omega} \right)^2 \frac{6 \nu_+ E_0}{E_1} - \frac{E_0^2}{E_1} \frac{3 \nu^e \beta_+}{\omega} \sin \theta - \cos \theta. \]

(32)

Where \(Z_0 = \frac{L}{\sigma_S} \), S-cross-section section of the sample.

\[\frac{1}{E_1} = \frac{8 \nu^e \beta_+ \beta_- \mu_+}{L \omega^2}; \quad \frac{1}{E_2(\delta_+(0))} = \frac{4 \nu_- e \mu_+ \delta_+(0) \beta_-}{L \omega^2} \]

Solving system of the equations

\[\begin{cases} \frac{\Re Z}{Z_0} + \frac{R}{Z_0} = 0 \\ \frac{\Im Z}{Z_0} + \frac{R}{Z_0} = 0 \end{cases} \]

(33)

Where, R-ohmic, \(R_1 \)-capacitor or inductive resistance at

\[R = R_1 = Z_0. \]

Let's easily receive

\[E_0 = \frac{2E_1}{1 + \frac{6 \nu_-}{\omega}}; \quad \omega = 3 \nu_- (\beta_-)^{1/2} \]

2) \(n >> n_+ \), given \(\delta^0_+(0) \)

DOI: 10.9790/4861-1102023341 www.iosrjournals.org 38 | Page
Some Radiation Conditions of a Semiconductor With Certain Charge Carriers

\[\frac{\text{Re} Z}{Z_0} = 1 - \left(\frac{2\nu \beta_-}{\omega} \right)^2 - \frac{E_0^2}{E_0^2 (\delta_+ (0))} \left(2 + \frac{\omega}{\nu_-} \cdot \sin \theta + \cos \theta \right) + 1 = 0 \]

\[\frac{\text{Im} Z}{Z_0} = \frac{E_0^2}{E_1^2 (\delta_- (0))} \left(\frac{\nu_- \beta_+}{\omega} \sin \theta + \cos \theta \right) - \left(\frac{2\nu \beta_-}{\omega} \right)^2 + 1 \] \((34) \)

From (34) we shall easily receive

\[E_0 = \frac{E_1 \left[\delta_-(0) \right]}{\sqrt{2}} ; \quad \omega = \nu_- \beta_- \quad E[\delta_-(0)] = \left(\frac{L \beta_- \nu_-}{e\mu_- \nu_- \delta_-} \right)^{\frac{1}{2}} \]

3) \(n << n_+ \), given \(\delta^0_0(0) \)

\[\frac{\text{Re} Z}{Z_0} = 1 + \frac{E_0}{E_1} \left(\frac{\mu_+ \nu_-}{\mu_+ \omega} \sin \theta + \cos \theta \right) - \frac{E_0^2}{E_0^2 (\delta_-)} \left(\frac{\mu_+ \omega}{\mu_- \nu_-} \sin \theta + \cos \theta + \frac{4n_+ \mu_- \beta_-}{n_+ \mu_+} \cos \theta \right) + 1 = 0 \]

\[\frac{\text{Im} Z}{Z_0} = \frac{E_0}{E_1} \left(\sin \theta - \frac{\nu_-}{\omega} \cos \theta \right) - \frac{E_0^2}{E_0^2 (\delta_-)} \left(\sin \theta - \frac{4\mu_- \nu_-}{\nu_- \mu_+} + 1 \right) \cos \theta + 1 = 0 \]

\[\frac{1}{E_1} \left(n_+ \mu_- \beta_- \right) = \frac{1}{n_+ \mu_+ + \omega^2} = \frac{\nu_- e \mu_- \mu_+ + \delta^0_+}{L \omega^2} \]

From (35) at \(n \approx 0 \), we shall receive

\[E_0 = 2E_1 , \quad \omega = 2\sqrt{2} - \frac{\nu_- E\delta}{E_1} \quad \frac{2\sqrt{2} - \nu_- E\delta}{E_1} \gg 1 \] \((36) \)

4) \(n_+ << n_- \), given \(\delta^0_+ \)

\[\frac{\text{Re} Z}{Z_0} = 2 + \frac{E_0}{E_1} \left(- \frac{\mu_- \nu_-}{\mu_+ \omega} \sin \theta + \frac{\mu_+ \omega}{\mu_- \nu_-} \cos \theta \right) + \frac{E_0^2}{E_0^2 (\delta_+)} \left(\frac{\mu_+ \omega}{\mu_- \nu_-} \sin \theta + \cos \theta \right) = 0 \]

\[\frac{\text{Im} Z}{Z_0} = - \frac{E_0}{\omega E_1} \left(\sin \theta + \frac{\omega}{\nu_-} \cos \theta \right) + \frac{E_0^2 \omega}{E_0^2 (\nu_-)} \left(\sin \theta + \frac{\mu_+ \omega}{\mu_- \nu_-} \cos \theta \right) + 1 = 0 \] \((37) \)

Substituting value \(E\delta \) in (37) we shall receive

\[\frac{\omega}{\nu_-} = \sqrt{2} \pi \left(\frac{1}{\mu_+} - \frac{1}{e \nu_- \delta^0_+} \right)^{\frac{1}{2}} \left(\frac{\theta}{\nu_-} \right)^{\frac{1}{2}} \gg 1 \text{ and it proves that } \omega \gg \nu_- . \]

Low-frequency case \(\omega \ll \nu_+^E, \nu_+ , LV_+ \beta_- \ll \theta_- \)

1) \(n_+ \gg n_- \), given \(\delta^0_+ \)

\[\frac{\text{Re} Z}{Z_0} = 2 - \frac{E_0}{E_1} \left(\mu_- \sin \theta + \ln \theta \right) - \frac{E_0^2}{E_0^2 (\nu_-)} \left(\omega \sin \theta + \ln \theta \right) = 0 \]

\[\frac{\text{Im} Z}{Z_0} = - \frac{E_0}{E_1} \left(\frac{4\omega}{\nu_-} \cos \theta - \sin \theta - \frac{\omega}{\nu_-} \right) + \frac{E_0^2 \omega}{E_0^2 (\nu_-)} \left(\frac{2\sin \theta - \omega}{\nu_-} \cos \theta \right) + 1 = 0 \] \((38) \)

\[\frac{1}{E_1} \left(n_+ \nu_-^2 \mu_- \mu_+ \right) = \frac{1}{L \nu_-^2 n_1} \left(\frac{\mu_-^2 \beta_+}{\nu_-^2} + \frac{e \delta^0_+}{\nu_-} \right) = \frac{\mu_-^2 \beta_+ e \delta^0_+}{L \nu_-^2 \mu_-} \]

From (35) at \(\theta = \frac{\pi}{2} \).
Some Radiation Conditions of a Semiconductor With Certain Charge Carriers

\(E_0 = E_1, \quad \omega = 2V_+ \left(\frac{E\delta^0}{E_1} \right)^2 \)

2) \(n_- \gg n_+ \), given \(\delta^0 \),

\[
\frac{\text{Re} Z}{Z_0} = 2 - \frac{\theta_+ \beta_+}{LV_+} + \frac{\theta_+ \beta_+}{LV_+} \left(\frac{3\omega}{V_+} \sin \theta + \ln \theta \right) - \frac{E_0}{E_{\delta^0}} \left(\frac{\omega}{V_+} \sin \theta + \ln \theta \right) = 0
\]
\[
\frac{\text{Im} Z}{Z_0} = -\frac{3\theta_+ \beta_+ \omega}{LV_+} - \frac{\theta_+ \beta_+}{LV_+} (\sin \theta + 3\cos \theta) + \frac{E_0^2}{E_{\delta^0}} \left(\frac{\omega}{V_+} \ln \theta \right) + 1 = 0
\]

\[
\frac{1}{E^2(\delta^L)} = \frac{\mu_+ \mu_- \beta_- \delta^0}{LV_+}
\]

From the solution (39) we easily obtain

\[
\frac{\omega}{V_+} = \frac{1}{6} \ll 1; \quad E_0 = \frac{LV_+}{6\mu_+ \beta_-}
\]

3) \(n_- \ll n_+ \), given \(\delta^L \),

\[
\frac{\text{Re} Z}{Z_0} = 2 - \alpha - \frac{E_0^2}{E^2(\delta^L)} - \frac{E_0^2}{E^2(\delta^L)} \left(\frac{\omega}{V_+} \sin \theta - \ln \theta \right) = 0
\]
\[
\frac{\text{Im} Z}{Z_0} = b - \frac{E_0^2}{E^2(\delta^L)} - \frac{\theta_+ \beta_+ \omega}{LV_+} + \frac{E_0^2}{E^2(\delta^L)} \left(\frac{\omega}{V_+} \ln \theta \right) + 1 = 0
\]

\(\theta = 2\pi \) from (40) obtain:

\[
\frac{\omega}{V_+} = \frac{1}{\beta_- \beta_+ V_+} \ll 1; \quad E_0 = E_{\delta} \left(2 \frac{V_+^2}{(\beta_- \beta_+ V_+^2)} \right)^{\frac{1}{2}}
\]

4) \(n_- \ll n_+ \), given \(\delta^L_+ \),

\[
\frac{\text{Re} Z}{Z_0} = 2 - \alpha - \frac{E_0^2}{E^2(\delta^L_+)} - \frac{E_0^2}{E^2(\delta^L_+)} (\sin \theta - \cos \theta) + \frac{E_0}{E_1} (\sin \theta + \cos \theta) = 0
\]
\[
\frac{\text{Im} Z}{Z_0} = b - \frac{E_0}{E_1} (\sin \theta + \frac{2\omega}{V_+} \ln \theta) + \frac{E_0^2}{E^2(\delta^L_+)} (\sin \theta + \frac{\omega}{V_+} \ln \theta) + 1 = 0
\]

From solving (41) given:

\[
E_0 = 2E_{\delta}, \quad \frac{\omega}{V_+} = \frac{E_1}{E_{\delta}} \ll 1.
\]

III. Discussion

The analysis of all results in a high-frequency limit leads to a following conclusion. In a high-frequency limit (frequency it is much more than fluctuation of a current than all characteristic frequencies entering into theories) is possible supervision of several areas of instability. These areas essentially depend on value of concentration of carriers of a current, from value of an external electric field, from frequency of fluctuations. Dependence of these observable areas of instability on factors intentions proves only at a high level of injection at \(\epsilon u \pm \delta \epsilon_0 \), \(L \sim 1 \) fluctuations in-external a circuit, both in high-frequency, and in a low-frequency limit. Conditions of occurrence of these fluctuations depend on different parities of equilibrium concentration of carriers and different values of an external constant electric field and slightly depend on factors of injection. At very greater levels of injection of a condition of occurrence of these fluctuations depend strongly on factors of injection.
IV. The Resume

In semiconductors with two types of carriers of a charge (electrons and holes) deep traps, construct the theory of external instability by calculation of an impedance of an image. At negative value of an actual part of an impedance frequencies of fluctuation of a current, value of an external electric field are calculated. We shall find some areas of external instability of existence of fluctuation of a current in semiconductors with deep traps with the certain concentration. Concentration of deep carriers \((N, N^-) \rightarrow (n, n^-)\) change a sign on an electric charge at availability recombination and generation of free carriers. Some values of a parity of free carriers of a charge in which are certain, fluctuations of a current appear in-external a circuit. Are certain, that fluctuations of a current very slightly depend on appropriating factors of injection if the inequality \(\epsilon_\nu \pm \delta \pm 0\), \(L \ll 1\) is satisfied. At the return an inequality \(\epsilon_\nu \pm \delta \pm 0\), \(L \sim 1\) critical value of an external electric field and frequency of fluctuation of a current very strongly change.

References

