High frequency and temperature stable dielectric response of Cr$^{3+}$ doped Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ ceramics

Kevin Abraham1, A.K. Thomas1, Jini Thomas2, K.V. Saban3

1Smart Materials Analytical Research and Technology (SMART) Lab, Department of Physics, St. Berchmans College, Changanacherry-686101, Kerala, India.
2Department of Physics, Kuriakose Elias College, Mannanam, Kottayam, Kerala, India.
3Principal, St. Aloysius College, Edathua-689573, Alappuzha, Kerala, India

Abstract: The structural and electrical properties of ceramics Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ with Cr doped in Ni site are evaluated over wide ranges of temperature (303 K – 473 K) and frequency (50 Hz – 5 MHz) values. The polycrystalline samples of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ ceramics ($x=0.0, 0.075, 0.1$) are prepared through the standard solid state reaction method. The refinement of the X-ray diffraction data using the Rietveld method confirmed a single phase compound with orthorhombic structure. Dielectric studies show frequency independent high dielectric constant values (103) up to MHz region and considerable reduction in dielectric loss with increase in frequency. Similar results of dielectric constant are observed with increase in temperature with t up to GHz frequency. The impedance spectrum analysis indicates that the colossal dielectric values are contributed by the more resistive grain boundaries.

Keywords: Solid state reaction; Sintering; Grain boundaries; Dielectric properties; Impedance

Date of Submission: 17-11-2019 Date of Acceptance: 29-11-2019

I. Introduction

Materials with high dielectric constant values have the potential of yielding major technological development. The discovery of materials with ABO$_3$ structure like CaCu$_3$Ti$_4$O$_{12}$ (CCTO) has promoted the research for finding new materials with giant dielectric constant [1-14]. Previous experiments have shown that certain materials with K$_2$NiF$_4$ type structure, commonly known as nickelates [9-15], can exhibit giant dielectric response. Giant dielectric responses were observed in La$_{2-x}$A$_x$NiO$_4$ (A = Sr, Ca and Ba) up to GHz frequency. However, it showed a step like decrease in dielectric constant towards low temperature region (below 200 K) [13]. Similarly high electrical conductivity in Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ resulted in a considerably high loss factor which made this material less fit for practical applications [14]. This work is a successful attempt to get control over the dielectric loss of Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ nickelates from room temperature onwards by controlling its electrical conductivity by lightly substituting nickel with chromium at the B-site.

II. Material And Methods

Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ $(x=0.0, 0.075, 0.1)$ nickelates were prepared by solid state reaction of stoichiometric amounts of pure Sm$_2$O$_3$ (99.9%), SrCO$_3$ (99%), Cr$_2$O$_3$ (99.9%) and NiO (99%), all in powder form. For this, the accurately weighed samples were thoroughly mixed in an agate mortar in an alcohol medium. The dried-up mixture was then calcined at 1423 K for 14 hours to yield the desired material. The crystalline phases of the compounds were studied by powder X-ray diffraction using Cu K$_\alpha$ radiation on a Bruker D8 Advance diffractometer. The calcined powder was pressed into pellets incorporating polyvinyl alcohol (PVA) under a pressure of 5 tonnes for 3 minutes. The pellets were sintered at 1673 K for 16 hours and the flat surfaces were coated uniformly with pure silver paste. The electrical properties of this parallel plate capacitor unit component were studied using a Hioki 3532 LCR HiTester in the frequency range 50 Hz to 5 MHz and temperature range 303 K to 473 K.

III. Results and discussion

The powder XRD data of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ $(x=0.0, 0.075, 0.1)$ ceramics refined by the Rietveld method are shown in Fig. 1. Assuming the Bmab space group of Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ [14], the refinement converged to a single orthorhombic phase and the refined parameters are provided in Table 1.
High frequency and temperature stable dielectric response of Cr$^{3+}$ doped Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ ceramics

Table 1. The refined parameters from the XRD patterns of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x = 0.0, 0.075, 0.1) ceramics.

<table>
<thead>
<tr>
<th>Lattice parameters(A)</th>
<th>x = 0.00</th>
<th>x = 0.075</th>
<th>x = 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.3166 (2)</td>
<td>5.3283 (3)</td>
<td>5.33959 (15)</td>
</tr>
<tr>
<td>b</td>
<td>5.3542 (2)</td>
<td>5.3633 (3)</td>
<td>5.3627 (15)</td>
</tr>
<tr>
<td>c</td>
<td>12.3452 (5)</td>
<td>12.3297 (4)</td>
<td>12.3248 (4)</td>
</tr>
<tr>
<td>Goodness of fit χ^2</td>
<td>3.46</td>
<td>2.83</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Figure 1. The Rietveld refined results for X-ray diffraction patterns of (a) Sm$_{1.5}$Sr$_{0.5}$NiO$_4$, (b) Sm$_{1.5}$Sr$_{0.5}$Ni$_{0.925}$Cr$_{0.075}$O$_4$ and (c) Sm$_{1.5}$Sr$_{0.5}$Ni$_{0.9}$Cr$_{0.1}$O$_4$ ceramics at room temperature.

In the surface morphological studies as shown in figure 2, the doped samples have smaller grain sizes (4 – 10 µm) as compared to the undoped sample of which the grain size is 12-15µm.

Figure 2. SEM images of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ with (a) x = 0.0, (b) x= 0.075 and (c) x = 0.1.

Figure 3(a) shows the enhanced frequency stability of the colossal dielectric values of all the samples at room temperature. A higher value of dielectric constant ($\varepsilon_r \sim 10^5$) is observed in Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x = 0.075, 0.1) ceramics compared to the undoped sample. Also the dielectric constant of the doped samples remains to be almost steady up to the MHz region.
High frequency and temperature stable dielectric response of Cr$^{3+}$ doped Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ ceramics

The corresponding dielectric loss values ($\tan \delta$) are shown in Fig. 3(b). It is seen that the loss tangent reduces significantly at higher frequencies, i.e. in the order of 0.1 magnitude in Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x=0.075, 0.1) ceramics as compared to the corresponding decrease in pure Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ sample. This can be attributed to the suppression of electrical conductivities in the doped samples since the conductivity is related to the imaginary part of permittivity ε'' and hence to the loss factor by the equation

$$\sigma = \omega \varepsilon'' \varepsilon_0$$

(1)

Because Cr$^{3+}$ is the most stable oxidation state, the presence of free charge carriers is minimal resulting in reduced conductivity and hence low dielectric loss of the doped samples.

The temperature dependence of dielectric constant and their corresponding dielectric loss of the material at selected frequencies are shown in Fig. 4. The dielectric constant of the doped samples is much higher than that of the pure sample and it remains almost stable over a wide temperature range from 303 – 380 K. Beyond this range the dielectric constant increases with the advent of interfacial polarization [16]. The dielectric loss of the doped samples decreases as frequency increases at higher temperatures which makes it suitable for high frequency applications.

Figure 3. Frequency responses of (a) dielectric constant (ε_r) and (b) dielectric loss ($\tan \delta$) of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x = 0.0, 0.075, 0.1) ceramics at room temperature.

Figure 4. Temperature dependence of dielectric constant for different frequencies of Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x = 0.0, 0.075, 0.1) ceramics.

DOI: 10.9790/4861-1106020106 www.iosrjournals.org
In order to understand the origin of high dielectric constant values in these samples, one needs to analyse the contributions of the bulk and boundaries of the grains [17-18] along with the overall electrical conductivity of the sample. Figure 5(a) shows the Nyquist plots (Z vs Z) at room temperature. Since only one arc is observed, the dielectric response arises due to the polarisation at the grain boundaries [19]. The semi-circular arcs observed with non-zero intercepts at high frequencies (toward lower Z values) indicate the electrical heterogeneity of the samples. From Fig. 5(a), it is observed that the radius of the frequency arcs increases with increase in Cr$^{3+}$ dopant concentration which is due to the increased resistivity of the doped samples.

The single arcs of the samples can be attributed to the parallel combination of the capacitance C_{gb} and resistance R_{gb} of the grain boundary regions [20]. Hence the total impedance from the equivalent circuit can be written as

$$Z^* = \frac{R_{gb}}{1 + (i\omega R_{gb} C_{gb})}$$

The conductivity (σ) values drawn from this equation is plotted against 1000/T in Fig. 6. The linear graphs is suggestive of the Arrhenius type conduction mechanism given by the equation

$$\sigma = \sigma_0 \exp(-E_a / k_B T)$$

where k_B is the Boltzmann constant and T is the absolute temperature. The activation energies E_a calculated from the slope of ln σ vs 1000/T are 100meV for Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ sample and for Cr$^{3+}$ doped Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ samples the values are 107meV and 114meV for x= 0.075 and x= 0.1 respectively. These higher values of activation energy for the doped samples result in their higher dielectric constant values.

![Figure 5](image1.png)

Figure 5. (a) Complex impedance spectra and (b) modulus spectroscopy plot at 303 K.

![Figure 6](image2.png)

Figure 6. Arrhenius plots of conductivity corresponding to grain boundary.
In order to confirm the dielectric behaviour of the samples, the modulus spectrum may be analysed as it is linked to the capacitance and also more arcs may appear in the modulus spectrum which reveals the contribution of different factors [18]. In the room temperature modulus spectrum of the samples shown in Fig. 5(b) we observe only one arc which is also due to the contribution of grain boundaries.

The combined plots of M'' and Z'' vs. frequency may be used to provide information on long range or short range movement of the charge carriers [21]. In Fig. 7, the separation of the peak frequencies between M'' and Z'' corresponding to the Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x=0.075, 0.1) samples suggest a thermally activated hopping process in which the short range movement of the charge carrier dominates as compared to the long range movement in the undoped sample. The dielectric relaxation time, τ is calculated using the relation

$$\tau = \frac{1}{2\pi f_{(\text{max})}}$$

(4)

where $f_{(\text{max})}$ is the peak frequency of M'. This relaxation time plotted against the function of temperature is shown in Fig. 7.

![Figure 7. M'' and Z'' plotted against frequency for Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x=0.0, 0.075, 0.1) ceramics and their corresponding dielectric relaxation τ plotted against temperature.](image)

The linear variation of dielectric relaxation, $\ln \tau$ with $1000/T$ (Fig. 7) is indicative of the Arrhenius relation

$$\ln \tau = \ln \tau_0 \exp\left(-\frac{E_a}{k_B T}\right)$$

(5)

Here the activation energies, E_a of each samples calculated from the slope of the graph are 100meV, 102meV and 111 meV for x=0.00, 0.075 and 0.1 respectively in good agreement with the results obtained earlier. The higher values of activation energy for the doped samples indicate that the grain boundary resistance is higher for the Cr$^{3+}$doped Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ samples as compared to Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ sample.

In short the experimental results show that the origin of giant dielectric constant in Sm$_{1.5}$Sr$_{0.5}$Ni$_{1-x}$Cr$_x$O$_4$ (x= 0.075, 0.1) is due to the highly resistive grain boundaries of the samples. The loss reduction especially at high frequencies of the doped samples is attributed mainly to the suppression of electrical conductivities at the boundaries by Cr$^{3+}$ ions at Ni$^{2+}$ sites as evident from the low values of activation energies.

DOI: 10.9790/4861-1106020106 www.iosrjournals.org
IV. Conclusion

Following the solid state reaction method, ceramic samples of orthorhombic Sm$_1$-xSr$_x$Ni$_{1.5}$Cr$_2$O$_{4}$ (x=0.0, 0.075, 0.1) were yielded. The doped samples possess significantly larger dielectric constant values, which remain almost stable up to MHz frequencies. The loss factor decreases sharply with increase in frequency and reaches the order of 0.1 magnitude at very high frequencies around the MHz region. This is achieved by the reduction in electrical conductivities with partial Cr$^{3+}$ doping at the Ni sites. The high activation energies for the doped samples prove that the higher dielectric values of the doped samples are contributed by the insulating grain boundary regions. Also the peak frequencies separation between the plots of M" and Z" vs. frequency points out that the short range movement of the charge carrier dominates in the case of doped samples. These low loss samples with appreciably stable dielectric values up to MHz frequencies have the potential of finding applications in energy storage devices.

References

Acknowledgments

Financial assistance from the Kerala State Council for Science Technology and Environment (KSCSTE) under its SRS scheme (File No.001/SRSPS/2010/CSTE) and a teacher fellowship under the Faculty Improvement Program of University Grants Commission (UGC- Govt of India) (FIP/XIIPlan/KLKE-053/TF-13) are gratefully acknowledged.

Kevin Abraham” High frequency and temperature stable dielectric response of Cr$^{3+}$ doped Sm$_{1.5}$Sr$_{0.5}$NiO$_4$ ceramics.” IOSR Journal of Applied Physics (IOSR-JAP) , vol. 11, no. 6, 2019, pp. 01-06.