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On the Dimensional Sensitivity of Black Hole Entropy
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Abstract

This investigation began with an aim to understand the behaviour of entropy of black holes across various
spacetime dimensions. Unexpectedly, the process led to the derivation of a generalized entropy formula
that not only conforms to classical results in 4D but also follows consistent principles from quantum field
theory and higher-dimensional gravity. We explore the thermodynamic structure of black holes in N -
dimensional spacetimes, propose a new entropy law sensitive to dimensional parity (even vs. odd) based
on intuition and mathematical reasoning, and examine its implications. This model draws inspiration
from Bekenstein and Hawking’s work, while introducing speculative yet mathematically grounded
corrections potentially tied to quantum gravitational effects. Furthermore, this work has used ChatGPT
for some assistance on the mathematics involved and for understanding of quantum corrections to entropy,
yet the idea remains completely unconventional and orignal.
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L Introduction
The black hole information paradox has long challenged the reconciliation of general relativity and
quantum mechanics. Hawking’s discovery that black holes emit radiation led to the insight that black
holes must have entropy proportional to the cross-sectional area of their horizon!!l. The Bekenstein-Hawking
entropy formula, central to this realization, is:
kc3A
5= Gk @)

where A is the horizon area in 4-dimensional spacetime.

In this paper, we extend this concept to N - dimensional spacetimes, we propose a general entropy formula that
reflects the geometric and thermodynamic changes caused by dimensionality. Moreover, we propose that
entropy corrections differ based on dimensional parity which means whether the spacetime dimension
number is even or odd, potentially pointing to a new class of microphysical behavior.
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Figure 1: Anatomy-of-a-Schwarzschild-black-hole
(2]

DOI: 10.9790/4861-1704010713 www.iostjournals.org 7 | Page



On the Dimensional Sensitivity of Black Hole Entropy

2 Mathematical Preliminaries

2.1 The Schwarzschild Black Hole

Black holes have been visualized as 3 - dimensional objects till now and in order to understand
them in higher dimensions, it is important to understand the anatomy of a black hole first
since some elements like the event horizon and the Schwarzschild radius are very important
variables.

2.2 Area of the Event Horizon

As this research explores spherical black holes in higher or lower dimensions, it would be
better to first understand spheres in n - dimensions first. A n - dimensional sphere is em-
bedded in a (n + 1) - dimensional space. This means that an n-sphere exists as a subset
of the (n + 1) - dimensional Euclidean space. The derivation is very conventional yet it is
shown to aid the understanding of the aim of this investigation

We begin with a well-known Gaussian integral in R

J -l oo n+1l
oA dmix = e dx = min1/2 (2)

R}l+1 —o0
We now compute the same integral in spherical coordinates, where:

d"ix = Su(r) dr (3)

- e*'H’JFd’”l — E,,z .S (r)dr (4)
RHL 0
where Si(r) is the surface area of the n-sphere of radius r.

The surface area of an n-sphere of radius r is:

So(r) =Qn - 1" (5)
Here, Q, is the surface area of the unit n-sphere. Then:
J )«
e—“x||2dn+1Xz Qn E'irz!'n dr (6)
Rn+l 0
Use the substitutionu=r? = du=2rdr = dr= 9"
2 u
So:
J J
© 1" = _ 1 n+1
e "rdr== I Wleugqy==r — (7)
0 2 4 2 2
We now equate both expressions for the Gaussian integral:
{n+1)/2 — .
mrin Q gF L4a (8)
"2 2
Solving for Qx:
2]’[(”“'1]/'2
Qn= 7r % (9)

The event horizon is a spatial surface in a N - dimensional spacetime, hence the surface
area of the event horizon of a N - dimensional sphere is given by:

Qn-2 = —w=1— (10)

Thus, the horizon "area” in dimensions is:

Ay = Qn-arli? (11)
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Where ry is the radius ot the event horizon, N is the number of spacetime dimensions
and Aw is the surface area of the event horizon

3 First Law of Black Hole Thermodynamics and N -
Dimensional Schwarzschild Black Hole

Hawking’s radiation derives from quantum field theory in curved spacetime. A simplified
expression for Hawking temperature in N - dimensional Schwarzschild spacetime®! is:

hc(N — 3
TH = 4nErH (12)

This temperature scales with the inverse of the horizon radius, with dimension-dependent
prefactors.

The first law of black hole thermodynamics in general dimensions is:
dM = Tuds (13)
which motivates expressing entropy in terms of horizon area and dimensional constants.

The N - dimensional Schwarzschild Radius for a black hole of mass M is:

[":_3 _ 16HGNM (14)
(N — 2)01\;—262
Rewriting the equation to express M as a function of ry gives:
(N — 2)Qun—222
M= ————r3 15
16nGu H (13)
Now differentiating M with respect to rw gives:
(N — Z)QN—QCZ d{f"N_a)
Dr, M = . H 16
" 161Gy dri (16)
(N — Z)QN—zCZ _
DM =—""—"—" " (N—-3)/"° 17
e IGHGN ( ) H ( )
(N — 2)Qn-2c2 N—a
dM = (N — 3)ry dr 18
167Gy M ( )y dry (18)
N — 2)(N — 3)Qn-2c2ri4
am = i JOn-2Cr " (19)
16nGn

Now substituting the Bekenstein-Hawking entropy formula and dM in the first law of black
hole thermodynamics gives:

dM = TudS (20)
dm
. =ds (21)
Th
(N=2)(N=3)Qx-2Cr 5 4
16nGy
ds = he(n- 3] (22)
Artkre

This can be written in a simpler way as:

(N — 2)(N — 3)Qu—ac?rV™* Arkry
ds = B—dry, - (23)
16nGy he(N — 3)
N — 2)Qun—2cr 3k
ds = W= 2)Qn-cry K (24)

4Gnh

Integrating both sides gives the equation for entropy as:
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J I

(N — 2)Qn—acrhk

ds = d 25
AGnh r (25)
J
(N — 2)On-2ck -
= N 2)0On Ck. rN3drH (26)
AGyh H
N — 2)Qn-ack -2
S = N —H (27)
AGn h (N —2)
_ - —2
= (N — 2)Qn-2ckr; (28)
(N — 2)aGnh
QN_zckrN_z
S=___ H (29)
4Gy h
Recall from the previous derivation in section 2, equation 3 that
An = Qn-arfy ? (30)
Anck
S=—"—"" 31
4Gy h (31)
In natural units G = k= c =1, hence this simplifies the equation to:
An
S _ —
32
. (32)

This tells us that Entropy in higher dimensions in proportional to the area of the event
horizon and not the volume of the bhlack hole, and it supports the holographic principle, also
showing that higher dimensions hold more entropy for the same radius.

4 Even-Odd Dimensional Corrections (Speculative)

As seen in the generalized formula for N - dimensions, Entropy in higher dimensions depends
on the Event Horizon area which is defined as:

An = Qnar? (33)
27iv-112
Oz = = (34)
2
2riN-1)2
An = iﬂ—a— 2 (35)
r

2

One key observation that can be made here based on the Entropy depending on the
horizon area which involves the Gamma function is that Entropy is highly dimension sensitive
due to the features of the gamma function and quantum corrections to entropy.

The gamma function which is valid for all z > 0 is defined as:

) -
r(z) = t7 le dt (36)
0
Hence for n € N it is :
71{
M(n) = i=(n—1)! (37)
n—1

Hence, it is always a rational number as factorials are products of integers. However when
the gamma function has a half-integer argument, irrationality arises as:

(Zn) ! Vfﬁ (38)

nl -2

r(n +—]j =
2

/

o N .
this introduces m which is irrational explicitly.

DOI: 10.9790/4861-1704010713 www.iosrjournals.org 10 | Page



On the Dimensional Sensitivity of Black Hole Entropy

Moreover as the event horizon area depends upon the gamma function with the argument
N=L, hence when the argument is even the result is a rational multiple of m which can

N1
simplify the numerator m : and then then the entropy achieves the following relation:

Secn" -2 (39)

However when the argument is odd the result of the gamma function is irrational as it in-
volves Y and hence the entropy involves irrational coefficients making the resulting entropy
irrational in its mathematical nature.

This axiomatic relation evidently shows that for the argument of the gamma function to
be even or odd it would depend on the dimension as:

FOI‘N—;]‘ to be even, N must be odd, hence an odd numbered dimension(3,5,7,9,11,...)
For N—;l to be odd, N must be even, hence an even numbered dimension(2,4,6,8,10,...)

4.1 Entropy Quantization and Rationality

When N is even,

N-—1
/N (40)
/
1
r n+l - (2nllvo
2 nl22"

Hence Qn—2 becomes irrational, and entropy picks up an irrational prefactor:

S ocirrational - 2 (41)
When N is odd, =L € N, so:
N—-1
r 5 =n—-1)1eqQ (42)
, and Qun-2> becomes a rational multiple of ™. Thus, the entropy coefficient is algebraically
clean:
Socam - 2 (43)
If area is quantized as:
A=n-¢€? (44)

Where €; represents planck length, hence 8:]“_2 represents the fundamental unit of area in
the N - dimensional then:

S “A (pref ) (45)
= = n - (prefactor 45
4Gnh P
* In odd N, this prefactor is rational, so § € Q, and microstate count:
s
N =e € algebraic integers (46)

* Ineven N, S contains irrational numbers like v T, SO:
N=e"¢gZ (47)
which contradicts the idea of discrete, countable microstates®!
If entropy or area is quantized as:

Av-2=n-€¥? = SoecQna-n (48)
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Case A: Odd N

When N is odd, N—‘Zl EN=T & qQ
2
Hence:

Qp2€Q- 1™  Sccrational - n
Microstate count:
N = ¢ = ¢3°nl < algebraic = possibly integer
Case B: Even N

When N is even, &1 £ N = 1 221 s irrational

So:
Qo2 €R\Q Seocirrational-n=>N=e5¢7Z

This breaks the assumption of discrete, countable microstates.

5 Quantum Corrections to Entropy

Quantum Corrections are small terms added to improve the accuracy of entropy predictions
when guantum effects become significant. Quantum effects include very small black holes
and the end of black hole evaporation or in loop quantum gravity models. The full entropy
expression with quantum corrections is®®:

Ap=; +aln Ap-2 g
AGph eo? Ap—

5= b (49)

where:
* @, 6 depend on the theory (Loop Quantum Gravity, string theory)
* g <0in many cases, e.g., a = —23 for LQG in 4D
Parity Effects:

* Even D: Log correction includes conformal anomaly; Euler terms from Wald entropy
are non-zero.

= Odd D: No conformal anomaly; log term cleaner; Euler term vanishes.

Dimension D Qp— Implication
Odd Rational -n" Clean quantization, e* € Z possible
Even Irrational (involves ) | Entropy not integer-multiples; e° & Z

Thus, entropy quantization and microstate interpretation are far more consistent in odd
dimensions.

6. Implications and Interpretation
This formula implies:

i Dimensionality directly influences information retention or loss
b Even-dimensional black holes may be more stable thermodynamically due to smoother corrections
b Odd-dimensional black holes might exhibit more unstable and inconsistent entropy

7. Conclusion and Future Work

We have proposed a general entropy formula and its dependence on dimensional parity suggesting
that black hole entropy behaves differently in even and odd dimensions. This research explores how black
hole entropy behaves across different spacetime dimensions, revealing a surprising sensitivity to whether
the number of dimensions is even or odd. By generalizing the Bekenstein-Hawking formula and analyzing
the role of the Gamma function mathematically, we find that entropy quantization may break down in even
dimensions due to irrational coefficients from the gamma function. Quantum corrections further highlight
distinct behaviors in even vs. odd dimensions, affecting the physical interpretation of microstates. These
findings suggest that dimensional parity could play a deeper role in quantum gravity, potentially influencing
black hole thermodynamics, evaporation, and the structure of spacetime itself.
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