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Abstract:  
The classical interpretation of 2nd order coherence is studied by considering the four-point correlation function 

in case of two-photon interference. Mathematical equations governing these phenomenon are established. The 

parametric down-conversion for the generation of two entangled photons is discussed.  
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I. Introduction  
Starting with the concept of four-point correlation, the mathematics for various degrees of moment is 

established. The first and second order degrees of moment (mean and the standard deviation) are discussed in 

detail. Therefrom a 2nd order non-linear medium is considered and non-linear polarization in terms of the 

propagating electric field is discussed. The generation of two entangled photons by utilizing the parametric optical 

amplification/oscillation is highlighted. The vacuum modes which can only be explained using only the quantum 

theory are responsible for the down-conversion of a photon of high frequency into two entangled photons of lower 

frequencies. These two entangled photons interfere with themselves to capitulate the interference pattern. 

II. Background: Coherence and Correlation 

 
A pulsed laser source has perfect correlation among the frequency components emitted by it. So it has 

ideal degree of temporal coherence (unity) and ideal degree of spectral-coherence (unity). The pulsed structure in 

its intensity profile is due to fact that all its frequency components add up coherently. Common laser sources such 

as He-Ne and laser pointers have continuous wave (CW) fields due to zero correlation among its frequency 

components, implying that these are stationary sources w.r.t. time (Shimoda 2013; Thyagarajan and Ghatak 2010).    

There are certain sources which have partial correlation among the frequency components emitted by 

them and their characteristics lie in between the perfect correlation and zero correlation. Typically, sun radiations 

have a frequency bandwidth of  ∆𝜔 = 100 𝑇𝐻𝑧. It can be calculated that the sunlight has a coherence time 𝜏𝑐 ≈
10−14 𝑠 and the coherence length is 𝑐𝜏𝑐 ≈ 3 𝜇𝑚. For diode lasers and very well-stabilized lasers, the typical 

values for frequency bandwidth are 1 𝐺𝐻𝑧 and 1 𝑀𝐻𝑧 respectively; the coherence times are 1 𝑛𝑠 and 1 𝜇𝑠 

respectively; and the coherence lengths are 0.3 𝑚 and 300 𝑚 respectively.  

A coherence function  (Luo and Sun 2017; Schlosshauer 2007; Schlosshauer 2019) describes the degree 

and nature of correlation that exists in any source of electromagnetic (E. M.) field. In classical physics, coherence 

yields the degree of order in a random field. Whereas, in quantum physics, the coherence explains the entangled 

fields. 

 

Mathematically, if an experiment (engaging a random process) is performed repeatedly then the 

ensemble average or the expectation value of its outcome 𝑥 can be evaluated in terms of its probability distribution 

𝑝(𝑥) as:  
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⟨𝑥⟩ = ∫ 𝑥 𝑝(𝑥) 𝑑𝑥    (1) 

 

In a random process, it is not just the expectation value which carries relevant information, but instead one can 

evaluate a hierarchy of expectation values from the experiment outcome (𝑥), called the 𝑟𝑡ℎ order moment of the 

random process. Mathematically, it can be computed as below: 

 

⟨𝑥𝑟⟩ = ∫𝑥𝑟 𝑝(𝑥) 𝑑𝑥     (2) 

 

Eqn. (2) provides a broad over view and varying depths of information about the random process as discussed in 

the following paragraph.  

 

The first moment, i.e., for 𝑟 = 1 is called the ‘mean’ value. One can calculate the higher moments around the 

‘mean’ value and these are called the central moments of the order ‘𝑟’: 

 

⟨(𝑥 − 〈𝑥〉)𝑟⟩ = ∫(𝑥 − 〈𝑥〉𝑟) 𝑝(𝑥) 𝑑𝑥   (3) 

 

It can be seen from Eqn. (3) that the first central moment, i.e., for 𝑟 = 1, is always zero. We define the variance 

(𝜎2) and standard deviation (𝜎) as the 2nd central moment and its square root respectively. 

 

𝜎 = √⟨(𝑥 − 〈𝑥〉)2⟩ = √〈𝑥2〉 − 〈𝑥〉2    (4) 

 

In order to define the correlation function between two random processes 𝑥1 and 𝑥2, we define  

 

⟨𝑥1
𝑚⟩⟨𝑥2

𝑛⟩ = ∫𝑥1
𝑚𝑥2

𝑛 𝑝(𝑥1𝑥2) 𝑑𝑥   (5) 

 

Eqn. (5) gives the correlation between 𝑚𝑡ℎ moment of 𝑥1 and 𝑛𝑡ℎ moment of 𝑥2.  

Extending the above equations for correlation to real physical event/process/E. M. source with spatial and 

temporal dependence 𝑉(�⃗� , 𝑡), we can define the Intensity 𝐼(�⃗� , 𝑡), two-point correlation function 𝛤(�⃗� 𝟏, 𝑡1; �⃗� 𝟐, 𝑡2), 

and four point correlation function 𝛤(�⃗� 𝟏, 𝑡1; �⃗� 𝟐, 𝑡2; �⃗� 𝟑, 𝑡3; �⃗� 𝟒, 𝑡4) as: 

𝐼(�⃗� , 𝑡) = 〈𝑉∗(�⃗� , 𝑡)𝑉(�⃗� , 𝑡)〉   (6) 

Where 𝑉∗(�⃗� , 𝑡) is the complex conjugate of 𝑉(�⃗� , 𝑡). 

𝛤(�⃗� 𝟏, 𝑡1; �⃗� 𝟐, 𝑡2) = 〈𝑉∗(�⃗� 𝟏, 𝑡1)𝑉(�⃗� 𝟐, 𝑡2)〉   (7) 

And 𝛤(�⃗� 𝟏, 𝑡1; �⃗� 𝟐, 𝑡2; �⃗� 𝟑, 𝑡3; �⃗� 𝟒, 𝑡4) = 〈𝑉∗(�⃗� 𝟏, 𝑡1)𝑉
∗(�⃗� 𝟐, 𝑡2)𝑉(�⃗� 𝟑, 𝑡3)𝑉(�⃗� 𝟒, 𝑡4)〉  (8) 

 

Two-point correlation is also called cross-correlation function, and it describes the amount of correlation 

or the coherence between the values of the physical event/process at spatial points �⃗� 𝟏 and �⃗� 𝟐 at times 𝑡1 and 𝑡2 

respectively. An example to study two-point correlation is the interference pattern in the Young’s double slit 

experiment. 

 Four point correlation (and other higher order correlation) is used to study quantum coherence. It can be 

shown that the cross-correlation (spatial/temporal) makes a perfect Fourier Transform pair with the respective 

spectral density (time frequency/spatial frequency).  For the case when there is no frequency correlation that means 

the physical event/process/source is stationary w.r.t. time, e.g., He-Ne laser having CW fields. The example of 

perfect frequency correlation is a pulsed laser as discussed in the earlier in this section. Apart from temporal 

coherence, we have spatial and angular coherence where the Fourier Transform pairs are w.r.t. the linear 

momentum and orbital angular momentum respectively. In the next section, we will be elaborating on four-point 

correlation for the case of vector fields in the time domain where the direction of vibration is related with their 

polarization. We emphasize that we are not discussing the spatial and angular coherence in this paper.      

  

III. Two-photon interference and 2nd Order Coherence: Non Linear Effects 

 
In order to study 2nd order coherence, we will quantify four-point correlation in polarization basis 

(Glauber 1963; Luo and Sun 2017). To observe two-photon interference, we choose a two-photon Mach-Zehnder 

Interferometer (Rarity et al. 1990). Consider an electromagnetic field consisting of two-photons. The second order 

coherence (four-point correlation) is calculated as the expectation of detecting one photon at space-time point 
(�⃗� 𝟏, 𝑡1) and the 2nd photon being detected at space-time point (�⃗� 𝟐, 𝑡2). Upon absorption of a photon, the E. M. 

field moves from the initial quantum state |𝑖⟩ to some final quantum state |𝑓⟩. Defining the four space-time point 

correlation function for the two-photon case as: 
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𝐺(2)(�⃗� 𝟏, 𝑡1; �⃗� 𝟐, 𝑡2; �⃗� 𝟑, 𝑡3; �⃗� 𝟒, 𝑡4) = ⟨⟨𝑓|�̂�(+)(�⃗� 𝟏, 𝑡1)�̂�
(+)(�⃗� 𝟐, 𝑡2)�̂�

(+)(�⃗� 𝟑, 𝑡3)�̂�
(+)(�⃗� 𝟒, 𝑡4)|𝑖⟩⟩𝑒𝑛  (9) 

Where the subscript ‘𝑒𝑛’ stands for ensemble average. �̂�(+)(�⃗� 𝟏, 𝑡1) is the photon intensity operator at space-time 

point (�⃗� 𝟏, 𝑡1)  where one of the detectors of Mach-Zehnder interferometer is placed. The (+) superscript on �̂� 

signifies positive frequency components in its Fourier Transform. Eqn. (9) is significantly used to study quantum 

entanglement.  

 In the presence of an external field, the electrons in an atom acquire a net dipole moment from which we 

can compute the induced polarization as the dipole moment per unit volume. In a non-linear optical system when 

the applied electric field strength is strong, it can be written as (Ghatak and Thyagarajan 1989): 

𝑷(�⃗� , 𝑡) = ∑ 𝜖0𝜒
(𝑛)𝑬𝑛∞

𝑛=1      (10) 

Where 𝜒(𝑛) is the 𝑛𝑡ℎ order optical susceptibility and 𝜖0 is the permittivity constant. Usually 𝜒(1) ≈ 𝑢𝑛𝑖𝑡𝑦 which 

is the linear optical susceptibility. The 2nd and 3rd order susceptibilities are of the order of 𝜒(2) ≈ 10−12𝑚/𝑉 and 

𝜒(3) ≈ 10−24𝑚2/𝑉2. The Displacement 𝑫 can be computed as: 

𝑫 = 𝜖0𝑬 + 𝑷 = 𝜖0𝑬 + ∑ 𝜖0𝜒
(𝑛)𝑬𝑛∞

𝑛=1      (11) 

The refractive index of the medium is defined as = √1 + 𝜒(1) . 

 In order to study two-photon phenomenon, let us consider the 2nd order non-linear optical effects. We 

neglect 𝜒(3) and other higher order susceptibility terms. The most common non-linear optical phenomenon due to 

finite 𝜒(2) are i) second harmonic generation (SHG), ii) sum and difference frequencies generation, and iii) optical 

parametric amplification/oscillation. Parametric term signifies the conservation of energy. The second order 

polarization term is given by: 

𝑷(𝟐) = 𝜖0𝜒
(2)𝑬𝟐   (12) 

Considering the scalar fields, a monochromatic E. M. field 𝐸(𝑡) = 𝐸0𝑒
−𝑖𝜔𝑡 + 𝐸0

∗𝑒𝑖𝜔𝑡, when passed through 

such a medium, would result in SHG due to the presence of 𝐸2 term in Eqn. (12). 

 Another field (not monochromatic) consisting of two frequencies 𝜔1 and 𝜔2, when passed through such 

a 2nd order non-linear medium, would result in the generation of 𝜔2 ± 𝜔1, 2𝜔1, 2𝜔2 terms. The sum/difference 

frequency generation is highly efficient process due to the presence of fields at 𝜔1 and 𝜔2.  

However in order to produce the difference frequency generation 𝜔3 = 𝜔2 − 𝜔1, the field at frequency 

𝜔2 need not be present. This is possible due to the ever-presence of the vacuum mode or the idler frequency at 

𝜔2. Now this process of generating difference frequency has a very poor efficiency because this process is 

stimulated by the idler frequency/vacuum mode. The presence of vacuum mode or the idler frequency can only 

be explained by the quantum theory, with the condition that the medium should be non-centrosymmetric. The 

input field at frequency 𝜔1 is split into 𝜔2 and 𝜔3 such that 𝜔1 = 𝜔2 + 𝜔3 preserving the conservation of energy. 

With proper phase-matching with the input field, the two photons released at 𝜔2 and 𝜔3 are either collinear 

direction with 𝜔1 (pump) or non-collinear. The phase matching can also be adjusted to yield the two photons at 

𝜔2 and 𝜔3 to be in same polarization state (type-I down conversion) or orthogonal (type-II down conversion) to 

each other. These two released photons obtained by the process of parametric down-conversion are indeed 

entangled with each other. It can be shown that the quantum state of these two released photons cannot be written 

as the product of their individual quantum states due to their entanglement. 

In order to observe a two-photon interference pattern, we need two entangled photons and then we say 

that two entangled photon system is interfering with itself. The corresponding coherence is termed as 2nd order 

coherence. 

 

IV. Discussion  
A two-photon interference is studied from the quantum theory along with elaborate supporting mathematics. The 

process of generation of two-entangled photons is discussed employing a 2nd order non-linear medium. The 

concept of four-point correlation arising due to 2nd order coherence is elaborated. 
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