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 Abstract: The stability of a horizontal porous layer of a ferromagnetic fluid heated from below is studied when 

the fluid layer is subject to a time-periodic body force. Modified Darcy law is used to describe the fluid motion. 

The effect of gravity modulation is treated by a perturbation expansion in powers of the amplitude of 

modulation. The stability of the system, characterized by a correction Rayleigh number, is determined as a 

function of the frequency of modulation, magnetic parameters, and Vadasz number. It is found that subcritical 

instability is possible for low frequency g-jitter and that the magnetic and g-jitter mechanisms work against 

each other for small and moderate values of frequency of modulation. The effect of Vadasz number is shown to 

be reinforcing the influence of gravity modulation for small and moderate values of frequency. The magnetic, 

porous and modulation effects disappear altogether for sufficiently large values of the frequency of modulation.     
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I.         INTRODUCTION 
Ferrofluids can be used to transfer heat as heat and mass transport in such magnetic fluids can be 

controlled by means of an external magnetic field. Numerous applications can be associated with these fluids 

including novel energy conversion devices, levitation devices and rotating seals [1]. Finlayson [2] first 

explained how an external magnetic field imposed on a horizontal layer of ferrofluid with varying magnetic 

susceptibility due to a temperature gradient results in a non-uniform magnetic body force, which leads to 

thermomagnetic convection. This form of heat transfer can be useful for cases where conventional convection 
fails to provide adequate heat transfer, for instance, in miniature microscale devices or under reduced gravity 

conditions. 

      Gupta and Gupta [3] investigated thermal instability in a layer of ferromagnetic fluid subject to coriolis 

force and permeated by a vertical magnetic field. It is substantiated that overstability cannot occur if the Prandtl 

number is greater than unity. Gotoh and Yamada [4] investigated the linear convective instability of a 

ferromagnetic fluid layer heated from below and confined between two horizontal ferromagnetic boundaries. 

The Galerkin technique is used and the Legendre polynomials are taken as the trial functions. It is shown that 

the magnetization of the boundaries and the nonlinearity of fluid magnetization reduce the critical Rayleigh 

number and the effects of magnetization and buoyancy forces are shown to compensate each other.  

      Blums [5] examined the possibility of having convection in ferromagnetic fluids as a result of magneto-

diffusion of colloidal particles which give rise to non-uniform magnetization. Stiles and Kagan [6] examined the 

thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. Their work 
also questioned the satisfactory agreement claimed to exist between the experiments and the theoretical model 

of Finlayson which has been generalized by them. 

      Odenbach [7] investigated the convective flow generated by the interaction of a magnetic field gradient 

with a gradient in magnetization in a magnetic fluid. This gradient was caused by the diffusion of the magnetic 

particles in the field gradient. Aniss et al. [8] investigated the effect of a time-sinusoidal magnetic field on the 

onset of convection in a horizontal magnetic fluid layer heated from above. The Floquet theory is used to 

determine the convective threshold for free-free and rigid-rigid cases. The possibility to produce a competition 

between the harmonic and subharmonic modes at the onset of convection is discussed.   

      Abraham [9] investigated the Rayleigh-Bénard problem in a micropolar ferromagnetic fluid layer in the 

presence of a vertical uniform magnetic field analytically. It is shown that the micropolar ferromagnetic fluid 

layer heated from below is more stable as compared with the classical Newtonian ferromagnetic fluid. The 
effect of radiative heat transfer on ferroconvection has been studied by Maruthamanikandan [10] using the linear 

stability analysis. Consideration is given to two asymptotic cases, viz., transparent and opaque layers of fluid. 

The critical values marking the onset of convection are obtained using the Galerkin technique.  

      Bajaj [11] considered thermosolutal convection in magnetic fluids in the presence of a vertical 

magnetic field and bifrequency vertical vibrations. The regions of parametric instability have been obtained 

using the Floquet theory. Ramanathan and Muchikel [12] investigated the effect of temperature-dependent 

viscosity on ferroconvective instability in a porous medium. It is found that the stationary mode of instability is 
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preferred to oscillatory mode and that the effect of temperature-dependent viscosity has a destabilizing effect on 

the onset of convection. Maruthamanikandan [13] investigated the problem of gravitational instability in 

ferromagnetic fluids in the presence of internal heat generation, surface tension, and viscoelasticity.    
      Saravanan [14] made a theoretical investigation to study the influence of magnetic field on the onset of 

convection induced by centrifugal acceleration in a magnetic fluid filled porous medium. The layer is assumed 

to exhibit anisotropy in mechanical as well as thermal sense. Numerical solutions are obtained using the 

Galerkin method. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted 

depending on the anisotropy parameters to enhance convection. The effect of anisotropies of magnetic fluid 

filled porous media is shown to be qualitatively different from that of ordinary fluid filled porous media.  

      Singh and Bajaj [15] investigated numerically the effect of frequency of modulation, applied magnetic 

field, and Prandtl number on the onset of a periodic flow in the ferrofluid layer using the Floquet theory. Some 

theoretical results have also been obtained to discuss the limiting behavior of the underlying instability with the 

temperature modulation. Depending upon the parameters, the flow patterns at the onset of instability have been 

found to consist of time-periodically oscillating vertical magnetoconvective rolls. Singh and Bajaj [16] 
considered the effect of time-periodic modulation in temperatures on the onset of ferroconvection with rigid 

boundaries. It is found that, under modulation, subcritical instabilities are found to occur in the form of 

subharmonic response. Also, the onset of instability in the ferrofluid layer is found to heavily depend upon the 

frequency of modulation when it is driven solely by the magnetic forces alone, the effect being the greatest for 

the low frequency modulation and negligible for the case of high frequency modulation.       

      In view of the fact that heat transfer can be greatly enhanced due to thermomagnetic convection, the 

ferroconvection problems offer fascinating applications including cooling with motors, loudspeakers and 

transmission lines.  

      On the other hand, thermal convection induced by modulated gravitational forces has received much 

attention in recent time. When a system with density gradient is subject to vibrations, the resulting buoyancy 

force produced by the interaction of the density gradient and the gravitational field has a complex spatio-

temporal structure. The time dependent gravitational field is of interest in space laboratory experiments, in areas 
of crystal growth and other related applications. It is reported by Wadih et al. [17, 18] that this fluctuating 

gravity, referred to as g-jitter, can either substantially enhance or retard heat transfer and thus drastically affect 

the convection.  

      Govender [19] made stability analysis to investigate the effect of low amplitude gravity modulation on 

convection in a porous layer heated from below. It was shown that increasing the frequency of vibration 

stabilizes the convection. Saravanan and Purusothaman [20] carried out an investigation on the influence of non-

Darcian effects in an anisotropic porous medium and found that non-Darcian effects significantly affect the 

synchronous mode of instability. Govender [21] examined the influence of the Vadasz number on vibration in a 

rotating porous layer placed far away from the axis of rotation. It is shown that a frozen time approximation is 

appropriate for large Vadasz numbers provided the effect of vibration is modeled as small variations in the 

Rayleigh number.   
      Saravanan and Sivakumar [22] studied the effect of harmonic vibration on the onset of convection in a 

horizontal anisotropic porous layer. The influence of vibration parameters and heating condition on the 

anisotropy effects and the competition between the synchronous and sub-harmonic modes are discussed. 

Malashetty and Begum [23] analyzed the effect of thermal/gravity modulation on the onset of convection in a 

Maxwell fluid saturated porous layer. They found that low frequency gravity modulation has destabilizing effect 

on the stability of the system whereas moderate and high frequency modulation produces a stabilizing effect on 

the onset of convection.  

      More recently, Saravanan and Premalatha [24] have investigated thermovibrational convection in a 

porous layer permeated by a fluid exhibiting antisymmetric stress due to the presence of couple-stress. Low 

amplitude vibrations are considered. The critical values of the parameters are found with the help of the Mathieu 

functions. The instability limits for both synchronous and subharmonic responses and the transition between 

them are predicted. 
      The problem of control of convection is of relevance and interest in innumerable ferromagnetic fluid 

applications and is also mathematically quite challenging. The unmodulated Rayleigh-Bénard problem of 

convection in a ferromagnetic fluid has been extensively studied. However, attention has not been paid to the 

effect of gravity modulation on Rayleigh-Bénard convection in a horizontal porous layer of a ferromagnetic 

fluid. It is with this motivation that we study, in this paper, the problem of Rayleigh-Bénard convection in a 

ferromagnetic fluid saturated porous layer induced by gravity modulation with emphasis on how the stability 

criterion for the onset of ferroconvection would be modified in the presence of both porous matrix and gravity 

modulation. 
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II.        MATHEMATICAL  FORMULATION 
We consider a ferromagnetic fluid saturated densely packed porous layer confined between two infinite 

horizontal surfaces 0z  and z h  under the influence of a uniform, vertical magnetic field oH  and a time 

periodically varying gravity force (0, 0, ( ))g t g  acting on it, where  ( ) 1 cosog t g t  
 
with og  

being the mean gravity,   the small amplitude,   the frequency and t
 

the time. A uniform adverse 

temperature gradient T is maintained between the lower and upper boundaries. The Boussinesq approximation 

is invoked to account for the effect of density variation. It is assumed that the fluid and solid matrix are in local 

thermal equilibrium. With these assumptions the governing equations are 
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where  , ,u v wq  is the fluid velocity,   the density, R  
a reference density, p  the porosity of the porous 

medium, p  the pressure, H  the magnetic field, B  the magnetic induction, f  the dynamic viscosity, k  the 

permeability of the porous medium, o  
the magnetic permeability, T  the temperature, M  the magnetization, 

1K
 
the thermal conductivity,   the coefficient of thermal expansion, TR  a reference temperature and C  the 

specific heat. Here subscript s  represents the solid and 1 ,
,

o .
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 
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H , where ,CV H  is 

the specific heat at constant volume and constant magnetic field. 

     Maxwell’s equations simplified for a non-conducting fluid with no displacement current take the form 

        0. B ,      H 0                                             (5a, b) 

 o B M H                                                                            (6) 

     Since the magnetization M  is aligned with the magnetic field and is a function of temperature and magnetic 

field, we may write 

 ,M H T
H


H

M                                                                 (7) 

     The magnetic equation of state is linearized about the magnetic field oH  and the reference temperature TR  

according to 

   o oM M χ H H K T Tm R                                                   (8) 

where χ  is the magnetic susceptibility and Km  is the pyromagnetic coefficient. The surface temperatures are   

2
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at z h . 

III.        BASIC STATE 
  The basic state is quiescent and is described by 
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     In the undisturbed state, the temperature TH , the pressure pH , the magnetic field HH , magnetic 

induction HB
 
and magnetization HM

 
satisfy the following equations 
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and 

 o o oB M HH   .                                           (15) 

In what follows we examine the stability of the equilibrium state by means of the linear stability analysis. 

  

IV.       LINEAR STABILITY ANALYSIS 
Let the basic state be perturbed by an infinitesimal thermal perturbation so that 

, , ,

, ,

p p p T T TH H H H

H H H

            

       





q q q

H H H B B B M M M
                                       (16)

  

where prime indicates that the quantities are infinitesimal perturbations. Substituting (16) into Eqs. (1) – (8) and 

using basic state solution, we obtain the following equations 
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where   12 1 oC C Cp p s
     ,  , ,u v w   q ,  H 

 
with   being the magnetic potential. We 

eliminate the pressure term p
 
from Eq. (19) and then render the resulting equation and Eqs. (20) and (21) 
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  is the dimensionless frequency of modulation given by 
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     To this end we note that the typical values of 2M  are of the order of 
6

10


 [2]. Hence we neglect 2M  and 

proceed further. The appropriate boundary conditions for the problem at hand are                                
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at 0, 1z  .                                                        (25) 

     The magnetic boundary conditions in (25) are based on the assumption of infinite magnetic susceptibility. 

Finlayson [2] used this type of boundary condition in order to obtain exact solution to the ferroconvective 

instability problem with free-free, isothermal boundaries. The systematic derivation of the general boundary 

conditions for the magnetic potential is given in the work of Maruthamanikandan [13]. It is convenient to 

express the entire problem in terms of w . Upon combining Eqs. (22) – (24), we obtain an equation for the 

vertical component of the velocity w  in the form 
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where   cosf t t . The boundary conditions in (25) can also be expressed in terms of w  in the form [25] 
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  at 0, 1z  .                                                          (27) 

 

V.      METHOD OF SOLUTION 
We now seek the eigenfunction w  and eigenvalue R  of  Eq. (26) for the basic temperature profile that 

departs from the linear profile by quantities of order  . It follows that the eigenfunctions and eigenvalues of the 

problem differ from the classical Rayleigh-Bénard problem of ferroconvective instability in a Darcy porous 

layer by quantities of order  . We therefore assume the solution of Eq. (26) in the form 
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where oR
 
is the Darcy-Rayleigh number for the unmodulated Rayleigh-Bénard convection in a ferromagnetic 

fluid saturated porous layer. Substituting (28) into Eq. (26) and equating the coefficients of like powers of  , 

we obtain the following system of equations up to  2
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. 

     The zeroth order problem is equivalent to the problem of Rayleigh-Bénard ferroconvection in a porous layer 

in the absence of thermal modulation. The marginally stable solution for the unmodulated problem is given by  

                         
 exp sinow i l x m y z                                                    (32) 

where l and m are wavenumbers in the x and y directions. Upon substituting (32) into Eq. (29), we obtain the 

following expression for the Rayleigh number  
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 



  
 

                                                 (33) 

where 
2 2 2

α l m   is the overall horizontal wavenumber of the convective disturbance. Since changing the 

sign of   amounts to a shift in the time origin and such a shift does not affect the stability of the problem, it 

follows that all the odd coefficients , , .....1 3R R
 
in Eq. (28) must vanish. Following the analysis of Malashetty 

and Padmavathi [26], we obtain the following expression for 2R  
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and 

      
2

2 2 2 2 2 2 2 2 2 2 2 2
2 3 3A n n M n n M

Va


               . 

     The value of R  obtained by this procedure is the eigenvalue corresponding to the eigenfunction w , which 

though oscillating, remains bounded in time. Since R  is a function of the horizontal wavenumber   and the 

amplitude of modulation  , we may write 

2
( , ) ( ) ( ) ......o 2R R R      

                           
            (35) 

2
......o 2                                                     (36) 

     The critical value of the Rayleigh number R  is computed up to  2
O   by evaluating oR

 
and 2R

              

at o c  , where c  is the value at which oR
 
is minimum. It is only when one wishes to evaluate 4R , 2  

must be taken into account [26]. In view of this, we may write  

2
( , ) ( ) ( ) .....o 2R R Rc c c                                                           (37)  

where oR c  and 2R c  are respectively the value of oR  and 2R
 
evaluated at α α c . If 2R c  is positive, 

supercritical instability exists and R  has the minimum at 0  . On the other hand, when 2R c  becomes 

negative, subcritical instability is possible. 

 

VI.      RESULTS AND DISCUSSION 
In this paper we carried out an analytical study of the effect of time-periodically varying gravity field 

on the onset of convection in a ferromagnetic fluid saturated porous layer. The regular perturbation method 

based on small amplitude of modulation is employed to compute the value of Darcy-Rayleigh number and the 

corresponding wavenumber. The expression for critical correction Darcy-Rayleigh number 2R c  
is computed as 

a function of the frequency   of modulation, the magnetic parameters 1M  and 3M , and the Vadasz number 

Va . The effect of these parameters on the stability of the system is elucidated. The sign of 2R c  
characterizes 

the stabilizing or destabilizing effect of modulation. A positive 2R c  indicates that the modulation effect is 

stabilizing, while a negative 2R c  is indicative of the destabilizing effect of modulation. 

      The variation of critical correction Darcy-Rayleigh number 2R c  
with frequency   for different values 

of the parameters is exhibited in Figs. 1 through 6. We observe that for small values of  , 2R c  is negative 

implying that the effect of gravity modulation is to destabilize the system with convection occurring at an earlier 

point when compared with the unmodulated system. However, for moderate and large values of  , 2R c  is 

positive, meaning the effect of gravity modulation is to stabilize the system with convection occurring at a later 

point in comparison with the unmodulated system. As a result, for small values of  , subcritical instability is 

possible and supercritical instability exists otherwise. It should also be noted that the effect of gravity 

modulation disappears altogether when   is sufficiently large. 

      The effect of buoyancy-magnetization parameter 1M  on the stability of the system is displayed in Figs. 

1 and 2. The parameter 1M  is the ratio of magnetic force to gravitational force. It is found that 2R c  
increases 

with an increase in 1M  provided that   is small. However, the trend reverses for moderate and large values of 
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the frequency of gravity modulation  . Also, the magnetic mechanism reduces the destabilizing effect of 

gravity modulation when   is small and again reduces the stabilizing effect of gravity modulation when   is 

moderate and large. Further, we find that 2R c  
increases with increasing values of  , attains a peak value and 

then decreases with further increase of  . The frequency at which the peak value is attained depends on the 

strength of magnetic forces. 

     We present in Figs. 3 and 4 the effect of 3M  on the critical correction Darcy-Rayleigh number 2R c  when 

other parameters are fixed. The parameter 3M  measures the departure of linearity in the magnetic equation of 

state. The results concerning Figs. 3 and 4 are qualitatively similar to that of Figs. 1 and 2. Therefore the effect 

of 3M  is to reduce the destabilizing effect of gravity modulation for small values of   and the stabilizing 

effect of gravity modulation for moderate and large values of  . 

     In Figs. 5 and 6, we display the effect of Vadasz number Va  on the critical correction Darcy-Rayleigh 

number 2R c  
when other parameters are fixed. We observe from these figures that the critical correction 

Rayleigh number 2R c  decreases with increasing Va  for small values of   indicating the destabilizing effect of 

Vadasz  number on the convection in a gravity modulated ferrofluid saturated porous medium. However, for 

moderate and large values of  , the trend reverses. Therefore the effect of increasing Va  is to enhance the 

influence of gravity modulation on the threshold of ferroconvection in a porous layer. 

     The analysis presented in this paper is based on the assumption that the amplitude of the modulation is very 

small and the convective currents are weak so that nonlinear effects may be neglected. 

 

VII.     FIGURES 

 
Fig. 1 Variation of 2R c  

with small and moderate values of   for different values of 1M . 

 

 
Fig. 2 Variation of 2R c  

with   for different values of 1M . 
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Fig. 3 Variation of 2R c  

with small and moderate values of frequencies   for different values of 3M . 

 
Fig. 4 Variation of 2R c  

with   for different values of 3M . 

 

 
Fig. 5 Variation of 2R c  

with small and moderate values of   for different values of Va . 
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Fig. 6 Variation of 2R c  

with   for different values of Va . 

 

VIII.       CONCLUSIONS 
The effect of gravity modulation on the onset of convection in a ferromagnetic fluid saturated porous 

layer is studied by means of the regular perturbation method. The following conclusions are drawn: 

(i) Subcritical instability manifests on account of gravity modulation for low frequency. 

(ii) The effects of gravity modulation and the magnetic mechanism on the system are mutually antagonistic   

for small and moderate values of the frequency of modulation. 

(iii) Vadasz number enhances the destabilizing effect of gravity modulation for small frequency, while for 

        moderate and large frequency, its effect is to augment the stabilizing effect of gravity modulation. 

(iv) The effects of magnetic forces, porous medium and gravity modulation disappear for sufficiently large 

        values of the frequency of gravity modulation. 

     In conclusion, gravity modulation in the presence of porous medium can advance or delay the onset of 

ferroconvection depending on the frequency of gravitational modulation. The effect of gravity modulation could 
be exploited to control convective instability in a ferromagnetic fluid saturating a porous medium. 
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