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Abstract: The Monte Carlo technique of random sampling was reviewed in this work. It plays an important 

role in Statistical Mechanics as well as in scientific computation especially when problems have a vast phase 

space. The purpose of this paper is to review a general method, suitable to fast electronic computing machines, 

for calculating the properties of any system which may be considered as composed of interacting particles. 

Concepts such as phase transition, the Ising model,ergodicity, simple sampling, Metropolis algorithm, quantum 

Monte Carlo and Non-Boltzmann sampling were discussed. The applications of Monte Carlo method in other 
areas of study aside Statistical Physics werealso mentioned. 

Keywords: Ising Model, Phase transition, Metropolis algorithm, Quantum Monte Carlo, Observables, Non-
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I. Introduction 
In Statistical Mechanics, many real systems can be considered: These systems can be broadly divided into 

two namely: 

 Systems which are composed of particles that do not interact with each other, therefore uncorrelated. These 

model are called Ideal gases 

 Systems which consist of particles which interact with each other such that interparticle interactions cause 

correlation between the many particles. Such systems therefore exhibit phase transition. A typical example 

of such system is the Ising model. 

For such many particle systems, systematic exploration of all possible fluctuations is often a very complicated 

task due to the huge number of microscopic states that must be considered and the cumbersome detail needed to 

characterize these states. However, there have been formulated a number of practical methods for sampling 

relevant fluctuation for non-interacting systems: the fluctuations can be handled by the Factorization and the 
Born-Oppenheimer approximation. For the interacting systems, which involve phase transition (e.g the Ising 

model), the Monte Carlo Method (MCM) and the Molecular Dynamic (MD) method can be employed to 

estimate the fluctuations (Chandler, 1987). 

The goal of statistical mechanics is to understand and interpret the measurable properties in terms of 

the properties of their constituent particles and the interactions between them. This is done by connecting 

thermodynamic function to quantum-mechanical equations. The two central quantities being the Boltzmann 

factor and the partition function. The ability to make macroscopic predictions based on microscopic properties is 

the main advantage of statistical mechanics. For problem where the phase space dimensions is very large – this 

is especially the case when the dimension of phase space depends on the number of degrees of freedom – the 

Monte Carlo Method outperforms any other integration scheme. The difficulty lies in smartly choosing the 

random samples to minimize the numerical effort. 

The Monte Carlo method in computational physics is possibly the most important numerical 
approaches to study problems spanning all unthinkable scientific discipline. These include, all physical sciences, 

Engineering, computational biology, telecommunication, finance and banking etc. The idea is seemingly simple: 

Randomly sample volume in d-dimensional space to obtain an estimate of an integral at the expense of an 

experimental error (Helmut, 2011). 

In this work, focus will be on the application of Monte Carlo Method to canonical systems with 

coupled degrees of freedom such as the Ising model. The theory of phase transition will be quickly revisited 

while the Ising model will be used as a representation of our interacting many particle systems. The simple 

sampling and the Metropolis sampling will be treated as a Monte Carlo Method.In addition, quantum extensions 

of the Monte Carlo Method such as the ‘Quantum Monte Carlo and the Path Integral method’ will be discussed. 

The non- Boltzmann sampling and the application of the Monte Carlo Method in other area of study aside 

statistical physics will also be outlined. 
 

II. Theory of Phase Transition 
 Monte Carlo method is hugely employed in systems with inter-particle interactions: Phase transition is 

a clear manifestation of such interactions. Many processes in life exhibit phase transition. A good example being 
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the solid to liquid, liquid to gas and the reverse changes due to the effect of temperature and/or pressure. A 

phase change of great importance, which is frequently used in statistical mechanics, is that of magnetic systems. 

Ferromagnets are clear example of such magnetic system. A ferromagnet is a material that exhibit spontaneous 
magnetization. In ferromagnets, magnetic ions in the material align to create zero magnetism. Each ion exerts a 

force on the surrounding ions to align with it. An aligned state is a low energy state while entropy increases at 

higher temperature to cause substantial alignment. When these individual interactions build up to a macro scale, 

alignments produce a net magnetism. If there is a sudden change in magnetism at a certain temperature, we say 

that there is a phase transition (Eva, 2010). 

 

III. The Ising Model 
Once the electrons spin was discovered, it was clear that the magnetism should be due to large number 

of electrons spinning in the same direction. A spinning charged particle has a magnetic moment associated with 
it. It was natural to ask how the electrons all know which direction to spin, because the electrons on one side of 

a magnet do not directly interact with the electrons on the other side. They can only influence their neighbors. 

The Ising model was designed to investigate whether a large fraction of the electron could be made to spin in the 

same direction using only local force (Wikipedia). 

The idealized simple model of a ferromagnet is based upon the concept of interacting spins on an 

unchanging lattices is called the Ising model. It is named after the physicist Ernst Ising. The model consists of a 

discrete variable that represents magnetic dipole moments of atomic spins𝑆𝑖  that can be in one state (+1 or - 1). 

 

   𝑆𝑖  
+1    𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 "𝑠𝑝𝑖𝑛𝑢𝑝"      ↑
−1   𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 "spin down"  ↓

  

 

The spins are arranged in a graph usually a lattice, allowing each spin to interact with its neighbors. The model 

allows the identification of phase transitions, as a simplified model of reality. The one – dimensional model has 

no phase transition and was solved by Ising in 1925; the 2- dimensional model was solved by Lans Onsager 

(Binder et al, 1992). 

In the Ising model, we consider a system of N spins arranged on a lattice as illustrated in fig 1 below. 
 

 

𝐻……     

 

𝑠𝑝𝑖𝑛𝑖𝑤𝑖𝑡𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑚𝑜𝑚𝑒𝑛𝑡 ± 𝜇  

   

 

 

Fig 1: An Ising model 

 

In the presence of a magnetic field H, the energy of the system in a particular state, 𝜐 is 

  𝐸𝜈 = − 𝐻𝜇𝑠𝑖
𝑁
𝑖=1 − 𝑗 𝑠𝑖𝑠𝑗

𝐼
𝑖𝑗      (1) 

  

external magnetic energy         energy due to interaction of the spin 

 𝑤𝑒𝑟𝑒𝑗𝑖𝑠𝑡𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
The spin at each lattice site (i) interact with its four nearest neighbor sites such that the overall Hamiltonian for 

the system is 

  𝐻 =  −𝑗 𝑠𝑖𝑠𝑗𝑖𝑗       (2) 

Where the sum over <ij> represents a sum over the nearest neighbors of all the lattice sites. 

By setting up a system obeying this Hamiltonian, we can find the mean energy,𝐸  and the specific heat, 𝐶,  per 

spin for the Ising ferromagnet from 

  𝐸 =
1

𝑁
 𝐸𝑖𝑒

−𝛽𝐸𝑖𝑖

𝑍
  (3) 

And 

  𝐶 =
𝜎𝐸

2

𝑁𝐾𝐵𝑇
   (4) 

We can also estimate the mean magnetization,𝑀 , from the following ensemble average 

  𝑀 =
1

𝑁
 𝑠𝑖𝑖    (5) 

 As also noted byFrenkelet al (1996), we are interested in the variations of these quantities with temperature as 

this system will undergo a phase change and so discontinuities should appear in its macroscopic properties at a 
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particular value T. It should be possible tocompare the behavior of 𝐸   ,𝐶,  𝑀  and also the partition 

function,𝑍 𝛽 with the result in the literature to determine if the simulation is giving a reasonable result. 

  

IV. Phase Change Behavior of the Ising Model 
  The difference between the thermal energy available𝐾𝐵𝑇, and the interaction exchange energy  𝑗  
defines the behavior of the Ising model. At high temperature𝑇 > 𝑇𝑐  , when the thermal energy is much greater 

than the interaction energy, the interaction energy will be drowned out by randomizing effect of the heat bath 

and so the patterns of the spins on the mesh will be random and there will be no overall magnetization.However, 

as the temperature is lowered, 𝑇 < 𝑇𝑐 , and  𝐽 > 0 , the correlation between the spin begin to take effect. 

Lower temperature allows clusters of like spins to form, the size of which defines the correlation length  𝜀  of 

the system, therefore it may be anticipated that for low enough temperature, the stabilization will lead to 

cooperation phenomenon called Spontaneous Magnetization: that is through interactions between nearest 

neighbors, a given magnetic moment can influence the alignment of spins that are separated from the given spin 

by a macroscopic distance. These long ranged correlations between spins are associated with long ranged order 

in which the lattice has a net magnetization even in the absence of a magnetic field. The magnetization    

      𝑀 =  𝜇𝑠𝑖
𝑁
𝑖=1                                                               (6) 

 

 In the absence of the external magnetic field H, is called the spontaneous magnetization (Chandler, 1987). 

     

    |M|  
 

 

 

             

     

 

      

     T<Tc         (Tc)     T>Tc T   

 

Fig 2: Plot of magnetization against temperature of an Ising model. 

  
 As shown in fig. 2, Tc(the Curie temperature or critical temperature) denote the highest 

temperature to which there can be non – zero magnetization, we expect that after the critical point, the system 

must make a decision as which direction is favoured, until at T=0 all spins are pointing either upwards or 

downwards. Both choices are energetically equivalent and there is no pre-guess which one the system will 

choose. The breaking of symmetry, such having to choose the favoured direction for the sins and divergence of 

system parameter such as 𝜀𝑎𝑛𝑑𝐶 are characteristics of the phase change (Binder et al,1992). 

  Chandler (1987) opined that the conditions at which all spins align in either upward or downward direction 

(at T<Tc) and when all the spin are randomly aligned (at T>Tc) can be considered or modelled as a phase change 

transition between a ferromagnetic and paramagnetic conditions of the magnetic system. The 1 – and – 2 – 

Dimensional Ising model is as shown in fig. 3. 

   1-Dimensional Ising as solved by Ising in 1925  
  Low T          High T 

          

   2 – Dimensional Ising Model as solved by Onsager in 1944 

   Low T           High T 

 

  

  

  

 

Fig 3: 1 – and – 2 – Dimensional Ising models 

 As the temperature increases, entropy increase but net magnetization decreases. This alignment and 

misalignment of spin constitute a phase change in an Ising model.  
 

V. Variables describing the system 
   According to Laetitia (2004), if we consider a lattice of 𝑁2 spins which has 2 possible states, up and 

down, In order to avoid the end effects, periodic boundary conditions are imposed. The equilibrium of the 

system can be 
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 𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ,    𝑀 =
1

𝑁2 𝑆       (7) 

 

 𝐻𝑒𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦,     𝐶 =
1

𝑁2
 

1

𝐾𝑇
 

2
  𝐸2 −  𝐸 2     (8) 

 

It is linked to the variance of the energy. 

 

 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦,       𝒳 =
1

𝑁2

1

𝐾𝑇
  𝑆2 − 𝑆 2      (9)  

 

 It is linked to the variance of the magnetization 

  

VI. Expected behaviour of the system 
The free energy satisfies  

𝐹 = −𝐾𝐵𝑇𝑙𝑛𝑍 =   𝐸 − 𝑇𝑆  (10) 

Where  𝑍 =  𝑒−𝛽𝐸 ∝𝑗  
∝𝑗  

 The system approaches the equilibrium by minimizing F (the free   energy). At low temperature, the 

interaction between the spins seem to be strong, the spins tend to align with another. In this case, the 

magnetization reaches its maximal value |M| = 1 according its formula, the magnetization exists even if there is 

no external magnetic field. At high temperature, the interaction is weak, the spins are randomly up or down, as 

such the magnetization is close to the value |M| = 0. Several configuration suits; the system is metastable. 

The magnetization disappears at a given temperature. There exists thus a transition phase. In zero external 

magnetic fields, the critical temperature is the Curie temperature 𝑇𝑐 =
2

𝑙𝑛  1+ 2 
 (obtained by Onsager’s theory). 

According to the transition phase theory, the second-order derivative of the free energy in 𝛽&𝑇 are 

discontinuous at the transition phase, as  the susceptibility and the heat capacity are expressed with these 

derivatives, they should diverge at  critical temperature. 

   

VII. The Monte Carlo Method 
   With the advent and wide availability of powerful computers, the methodology of computer simulation 

has become a ubiquitous tool in the study of many body systems. The basic idea in these methods is that with a 

computer, one may follow the trajectory of system involving 102 or even 103 degrees of freedom. If the system 
is appropriately constructed – that is, if physically meaningful and boundary conditions and interparticle 

interactions are employed – the trajectory will serve to simulate the behaviour of a real assembly of particles and 

the statistical analysis of the trajectory will determine meaningful predictions for the properties of the assembly. 

The importance of these methods is that, in principle they provide exact results for the Hamiltonian under 

investigation. These simulations provide indispensable benchmarks for approximate treatment of non-trivial 

systems composed of interacting particles (Chandler, 1987). 

  There are 2 general classes of simulations: One is called the Molecular Dynamic method (MD); Here 

one considers a classical dynamic model for atoms and molecules, and there trajectory is formed by integrating 

Newton’s equations of motion. The other class is called the Monte Carlo method (MCM). This procedure is 

more generally applicable than molecular dynamics in that it can be used to study quantum systems and lattice 
models as well as classical assemblies of molecules. As a representative of a non-trivial system of interacting 

particles, we choose the Ising magnet to show how the Monte Carlo method can be applied. 

  The term Monte Carlo method was coined in 1940’s by physicists, S. Ulam, E. Fermi, J. Von Neumann 

and N. Metropolis (amongst others) working on the nuclear weapon project at Los Alamos National Laboratory. 

Because random numbers (similar to processes occurring at in a casino, such as the Monte Carlo casino in 

Monaco) are needed, it is believed that, that was the source of the name. For problems where the phase space 

dimensions is very large – this is especially the case when the dimension of phase space depends on the number 

of degrees of freedom – the Monte Carlo method outperforms any other integration scheme. The difficulty lies 

in smartly choosing the random samples to minimize the numerical effort (Helmut, 2011).The Ising model can 

often be difficult to evaluate numerically, if there are many states in the system. Consider an Ising model with L 

lattice sites. Let      ∙ 𝐿 = | ∧ |: 𝑡𝑒𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑡𝑒𝑠𝑜𝑛𝑡𝑒𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

∙∝𝑗∈  −1, +1 :𝑎𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑝𝑖𝑛𝑠𝑖𝑡𝑒𝑜𝑛𝑡𝑒𝑙𝑎𝑡𝑡𝑖𝑐𝑒, 𝑗 = 1,…… . . 𝐿. 

∙ 𝑆 ∈  −1, +1 : 𝑠𝑡𝑎𝑡𝑒𝑜𝑓𝑡𝑒𝑠𝑦𝑠𝑡𝑒𝑚 

Since every spin has ±𝑠𝑝𝑖𝑛, there are 2𝐿  different states that are possible. This motivates the reason for the Ising 
model to be simulated using the Monte Carlo method. As an example, for a small 2-dimensional Ising magnet 

with only 20x20=400 spins, the total number of configuration is2400 . Yet Monte Carlo procedures routinely 

treat such system successfully sampling only 106 configurations. The reason is that Monte Carlo schemes are 
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devised in such a way that the trajectory probes primarily those states that are statistically most important. The 

vast majority of the 2400  states are of such high energy that they have negligible weight in the Boltzmann 
distribution (wikipedia). The Monte Carlo technique works by taking the random sample of points from phase 

space, and then using that data to find the overall behaviour of the system. This is analogous to the idea of an 

opinion poll. When trying to work on the opinion of the general public on a particular issue, holding a 
referendum on the subject is costly and time consuming. Instead, we ask a randomly sampled proportion of the 

population and use the average of their opinion as representation of the opinion of the whole country. This is 

much easier than asking everybody, but is not as reliable. We must ensure that the people asked are chosen truly 

at random (to avoid correlations between the opinions), and be aware of how accurate we can expect our results 

to be given that we are only asking a relatively small number of people. Issues as these all are analogous to the 

implementation of the Monte Carlo technique (Frenkel, 1997). To carry out a Monte Carlo method on an Ising, 

an 𝑁2-array is initialized at a low temperature with aligned spins (this is called a cold start) or at a high 
temperature with random values 1 or -1(this is called the hot start). The Monte Carlo method consists to choose 

randomly a spin to flip. The chosen spin is flipped, if is favourable for the energy. When the energy becomes 

stable, the system reached the thermalisation, then configurations are determined by the Metropolis Algorithm 

in order to determine the properties of interest as the heat capacity and the susceptibility. 

In statistical physics, expectation values of quantities such as the energy, magnetisation, specific heat etc – 

generally called ‘observables’ – are computed by performing a trace over the partition function Z. Within the 
canonical ensemble (where the temperature T is fixed), the ‘expectation value or thermal average of an 

observable, A is given by 

  𝐴 =   𝑃𝑒𝑞𝑠  𝑠 𝐴𝑠 (11) 

 Where s denotes a state, 𝐴𝑠 is the value of A in the state s. 𝑃𝑒𝑞  𝑠  is the equilibrium Boltzmann distribution. 

  𝐴 =  
1

𝑍
 𝐴 𝑠 𝑒

−𝛽𝐸 𝑠  (12) 

Represent the sum overall states S in the system and 𝛽 =
1

𝐾𝑇
 where K is the Boltzmann constant. 𝑍 =

  𝑒𝑥𝑝 −𝛽𝐸 𝑠  𝑠 is the partition function which normalises the equilibrium Boltzmann distribution. It is good to 

note that the Boltzmann factor 𝑃𝑖𝛼𝑒
−𝛽𝐸𝑖  is not a probability until it has been normalised by a partition function. 

Such that the true nature of the equilibrium Boltzmann distribution 𝑃𝑒𝑞  𝑠  is  

 𝑃𝑒𝑞  𝑠 =
𝑒
−𝛽𝐸 𝑠 

 𝑒−𝛽𝐸  𝑠 
𝑠

      (13)                                                 

One can show that the free energy,F is given by 

 𝐹 =  −𝑘𝑇𝑙𝑛𝑍   (14)      

 

All thermodynamic quantities can be computed directly from the partition function and expressed as derivatives 

of the free energy. Because the partition function is closely related to the Boltzmann distribution. It follows that 

we can ‘sample’ observables with states generated according to the corresponding Boltzmann distribution. A 

simple Monte Carlo algorithm can be used to produce such estimate (Newmannet al, 1999). 
 

VIII. Simple Sampling 
  The randomly most basic sampling technique consists of just randomly choosing points from anywhere 

within the configuration space. A large number of spins patterns are generated at random (for the whole mesh) 

and the average energy and magnetization is calculated from data. However, this technique needs to suffer from 

exactly the same problems as the quadrature approach, often sampling from unimportant areas of the phase 

space. The chances of a randomly created array of spin producing and all – up/ all- down spin pattern is remote 

(~2−𝑁), and high temperature random spin array is much likely. The most common way to avoid this problem is 
by using the Metropolis Importance Sampling, which works by applying weights to the microstates. 

 

IX. The Metropolis Sampling 
   The algorithm first chooses selection probabilities𝑔 𝜇,𝜈 , which represents the probability that state 𝜈 

is selected by the algorithm out of all states given that we are in state𝜇. It then uses acceptance probabilities 

𝐴 𝜇, 𝜈  so that detailed balance is satisfied. If the new state 𝜈 is accepted, then we move to that state and repeat 

with selecting a new state and deciding to accept it. If 𝜈is not accepted, then we stay in𝜇. The process is 

repeated until some stopping criteria is met, which for the Ising model is often when the lattice becomes 

ferromagnetic, meaning all of the sites point in the same direction (Frenkelet al, 1996). 

 We implementing the algorithm, we must ensure that 𝑔 𝜇, 𝜈  is selected such that ergodicity is met (by 

this we mean that orbit of the representative point in phase space goes through all points on the surface). In 

thermal equilibrium, a system’s energy only fluctuates within a small range. With this knowledge, the concept 

of single-spin flip dynamics – which states that in each transition, we will only change one of the spin sites on 

the lattice. Furthermore, by using a single-spin flip dynamics, we can get from one state to any other state by 
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flipping each site that differs between the 2 states one at a time. The random choices for the spins performed 

with the aid of the ‘pseudo – random number generator’ – an algorithm that generates a long sequence of 

random numbers uniformly distributed in the interval between 0 and 1- commonly available with digital 
computers. 

Having picked out a spin at random, we next consider the new configuration𝜈, generated from the old 

configuration,𝜇, by flipping the randomly identified spin 𝜇. The change in configuration changes the energy of 

the system by the amount   

Δ𝐸𝜇𝜈 =  𝐸𝜈 −𝐸𝜇      (15) 

 

Chandler (1987) opined that this energy difference governs the relative probability of configurations through the 

Boltzmann distribution, and we can build this probability into the Monte Carlo trajectory by criterion for 
accepting and rejecting moves to new configuration. The maximum amount of change between the energy of 

this present 𝐸𝜇  and any possible new state’s energy 𝐸𝜈  is 2J between the spin we choose to ‘flip’ to move to the 

new state and that spin’s neighbour. 

Specifically for the Ising model, implementing the single-spin flip dynamics, we can establish the following: 

- Since there are L total sites on the lattice, using the single – spin as the only way we transition to another 

state, we can see that there are a total of L new state 𝜈 from our present state 𝜇.‘Detailed balance tells us 

that the following equations must hold: 

  

𝐴 𝜇, 𝜈 𝑃𝛽  𝜇 = 𝐴 𝜈,𝜇 𝑃𝛽  𝜈     (16)   

 

Such that, 
𝑃 𝜇 ,𝜈 

𝑃 𝜈 ,𝜇 
=

𝑔 𝜇 ,𝜈 𝐴 𝜇 ,𝜈 

𝑔 𝜈 ,𝜇 𝐴 𝜈 ,𝜇 
=

𝐴 𝜇 ,𝜈 

𝐴 𝜈 ,𝜇 
=

𝑃𝛽  𝜈 

𝑃𝛽  𝜇  
=

𝑒−𝛽 𝐸𝜈  /𝑍

𝑒−𝛽 𝐸𝜇  /𝑍
= 𝑒−𝛽 𝐸𝜈−𝐸𝜇    (17) 

 

Where 𝑃𝛽  𝜈   is the transition probability for the next state𝜈, and it only depends on the present state𝜇. Thus we 

want to select the acceptance probability for our algorithm to satisfy 
𝐴 𝜇 ,𝜈 

𝐴 𝜈 ,𝜇 
= 𝑒−𝛽 𝐸𝜈−𝐸𝜇       (18) 

If 𝐸𝜈 > 𝐸𝜇 , then 𝐴 𝜈,𝜇 > 𝐴 𝜇,𝜈 .  
By this reasoning, the acceptance algorithm is 

𝐴 𝜇,𝜈 =  
𝑒−𝛽 𝐸𝜈−𝐸𝜇  𝑖𝑓𝐸𝜈 > 𝐸𝜇

1                              𝐸𝜈 ≤ 𝐸𝜇
  

Conclusively, the basis for the algorithm is as follows 

- Pick a spin site using the selection probability 𝑔 𝜇,𝜈  and calculate the contribution of the energy involving 

the spin. 

- Flip the value of the spin and calculate the new contribution. 

- If the new energy is less, keep the flipped value i.e.𝑖𝑓𝐸𝜈 ≤ 𝐸𝜇 , we accept the move 

- If the new energy is more, only keep the probability𝑒−𝛽 𝐸𝜈−𝐸𝜇   . 

- Repeat: we now repeat this procedure for making millions of steps thus forming a long trajectory through 
the configuration space. 

This process is repeated until the stopping criteria is met, which for the Ising model is often when the lattice 

have become ferromagnetic (at low energies𝑇 < 𝑇𝑐 ), meaning that all the sites point in the same 

direction(Wikipedia). 

 

X. Practical Implementation of the Metropolis Algorithm 

 A pseudo – code Monte Carlo program to compute an observable 𝜗 for the Ising model is the following: 

1 algorithm ising_metropolis A (T, steps) 

2         initialize starting configuration 𝜇 

3         Initialize 𝜚 = 0 

4  

5         for (counter = 1 ........steps)  do 

6                generate trial state 𝜈 

7 computep(𝜇 → 𝜈 , T) 

8 x = rand (0,1) 

9                If(p > x)  then 

10                          Accept 𝜈 

11                 fi 
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12  

13 𝜚+= 𝜚(𝜈) 
14         done 

15  

16   return 𝜚/steps 

 After initialization, in line 6 a proposed state is generated by e.g. flipping a spin. The energy of the new 

state is computed and henceforth the transition probability between states𝑃 = 𝑇 𝜇 → 𝜈 .  A uniform random 

number 𝑋 ∈  0,1  is generated. If the probability is larger than the number, the move is accepted. If the energy is 

lowered∆𝐸 > 0 , the spin is always flipped. Otherwise the spin is flipped with a probability P. Once the new 

state is accepted, we measure a given observable and record its value to perform the thermal average at a given 

temperature. For steps → ∞ the average of the observable converges to the exact value, again with an error 
inversely proportional to the square root of the number of steps. In order to obtain a correct estimate of an 

observable, it is imperative to ensure that one is actually sampling an equilibrium state. Because in general, the 

initial configuration of the simulation can be chosen at random – population choices being random or polarized 

configuration - the system will have to evolve for several Monte Carlo steps before an equilibrium state at a 

given temperature is obtained. The time 𝜏𝑒𝑞  until the system is in thermal equilibrium is called ‘equilibrium 

time’, it depends directly on the system size and it increases with decreasing temperatures. In general, it is a 

measure on ‘Monte Carlo Sweeps’ i.e. 1 MCS=N spin updates. In practice, all measures observables should be 
monitored as a function of MCS to ensure that the system is in thermal equilibrium. Some observables such as 

energy equilibrates faster than the others (e.g. Magnetization) and thus equilibration time of all observables 

measured need to be considered. It is expected that a plot of the variables when averaged over a partition 

function, shows discontinuities at a particular temperature (Helmut, 2011). 

 

XI. The Non – Boltzmann Sampling 
 According to Mezei (1987), the success of Monte Carlo is based on its ability to restrict the sample of 

the configuration space to the extremely small fractions that contributes significantly to most properties of 

interest. However, for calculating free energy difference, adequate sampling of a much larger subspace is 
required. Also for the related problems of potential of mean force calculations, the structural parameter along 

with the potential of mean force are calculated and has to be sampled uniformly. These goals can be achieved by 

performing the calculation using an appropriately modified potential energy function V or𝐸𝜈
 0 

. Specifically, 

Non Boltzmann is used in cases where one need to 

 Sample part of the phase space relevant for a particular property 

 Complete simulation when sampling of a specific region of the configuration space is required that may not 
be sampled adequately in a direct Boltzmann sampling. The technique calls for sampling with a modified 

potential 

 Sample phase space more efficiently. 

Suppose it is convenient to generate a Monte Carlo trajectory for a system with energy𝐸𝜈
 0 

, but you are 

interested in the averages for a system with a different energetic. 

 𝐸𝜈 = 𝐸𝜈
 0 

+  Δ𝐸𝜈  (19) 
 

For example, suppose we wanted to analyse a generalized Ising model with couplings between certain non – 

nearest neighbours as well as nearest neighbours. The convenient trajectory might then correspond to that for the 

simple Ising magnet, and Δ𝐸𝜈  would then be the sum of all non-nearest-neighbours interaction. How might we 

proceed to evaluate the average of interest from the convenient trajectories? 
Chandler(1987) suggested that the answer is obtained from a factorization of the Boltzmann factor: 

𝑒−𝛽𝐸𝜈 = 𝑒−𝛽𝐸𝜈  0 𝑒−𝛽Δ𝐸𝜈                                           (20) 

With this simple property, we have 

𝑄 =  𝑒−𝛽𝐸𝜈 =
𝑄0  𝑒−𝛽𝐸𝜈

 0 
𝑒−𝛽Δ𝐸𝜈𝜈

𝑄0
𝜈                        (21) 

= 𝑄0 𝑒
−𝛽Δ𝐸𝜈  0  (22) 

Where  …… . .  0 indicates the canonical ensemble average taken with energetic 𝐸𝜈
 0 . A similar result due to the 

factorization of the Boltzmann factor is  

 𝐺 = 𝑄−1  𝐺𝜈𝑒
−𝛽𝐸𝜈

𝜈 (23) 

=  𝑄0 𝑄   𝑒−𝛽Δ𝐸𝜈  0  (24) 

=  𝐺𝜈𝑒
−𝛽Δ𝐸𝜐  0/ 𝑒−𝛽Δ𝐸𝜈  0                                        (25) 

The formula provides a basis for Monte Carlo procedures called the ‘non-Boltzmann sampling’ and ‘the 

Umbrella sampling’. In particular, since a Metropolis Monte Carlo trajectory with energy 𝐸𝜈
 0 

 can be used to 
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compute the averages denoted by  …… .  0 , we can use the factorization formulas to compute  𝐺  and  𝑄 𝑄0   

even though the sampling employing 𝐸𝜈
 0 

is not consistent with the Boltzmann distribution 𝑒𝑥𝑝 −𝛽𝐸𝜈  . 
     Non – Boltzmann sampling can also be useful in removing bottlenecks that create quasi-ergodic problems 

and in focussing attention on rare events. Consider the former first, suppose a large activation barrier separates 

one region of configuration space from another, and suppose this barrier can be identified and located at a 

configuration or sets of configurations. We can then form a reference system in which the barrier has been 

removed: that is, we take 

 𝐸𝜈
 0 =  𝐸𝜈 − 𝑉𝜈                                                           (26) 

 

Where 𝑉𝜈 is large in the region where 𝐸𝜈has the barrier and it is zero otherwise. Trajectories based upon the 

energy 𝐸𝜈
 0 

 will indeed waste time in the barrier region, but they will also pass one side of the barrier to the 
other thus providing scheme for solving problems of quasi-ergodicity. 

Also an example of the latter occurs when we are interested in a relatively rare event. For example, suppose we 

want to analyze the behaviour of surrounding spins given that an n x n block were all perfectly aligned. While 

such blocks do form spontaneously and their existence might catalyze something of interest, the natural 

occurrence of this perfectly aligned n x n block might be very infrequent during the course of the Monte Carlo 

trajectory. To obtain a meaningful statistics from these rare events, without wasting time with irrelevant though 

accessible configurations, we have to perform a non-Boltzmann the Monte Carlo trajectory with energy like: 

𝐸𝜈
 0 = 𝐸𝜈 + 𝑊𝜈                                             (27) 

 

Where 𝑊𝜈 is zero for the interesting class of configurations, and for all others𝑊𝜈  is large. The energy 𝑊𝜈  is then 

called an Umbrella potential. It biases the Monte Carlo trajectory to sample only the rare configurations of 

interest. The non – Boltzmann sampling performed this way is called the umbrella Sampling (Chandler, 1987). 

 

XII. Quantum Monte Carlo 
 In addition to the aforementioned Monte Carlo Methods that treat classical problems, quantum 

extensions such as variational Monte Carlo, Path Integral Monte Carlo etc have been developed for quantum 

systems. In quantum Monte Carlo simulation, the goal is toavoid considering the full Hilbert space, but 

randomly sample the most relevant degree of freedom and try to extract the quantities of interest such as the 

Magnetization by averaging over a stochastic process.  

According to Chandler (1987), to pursue this goal, we first need to establish a framework in which we 

can interpret quantum-mechanical observables in terms of classical probabilities. The process is called 

‘quantum-classical’ mapping and it allows us to reformulate quantum many-body problems in terms of models 

from classical statistical mechanics, albeit in higher dimensions. To achieve this ‘quantum classical 
mapping’and carry out a quantum Monte Carlo, the concept of ‘discretized quantum paths’ will be followed. In 

this representation, quantum mechanics is Isomorphic with the Boltzmann weighted sampling of fluctuations in 

a discretized classical systems with many degrees of freedoms. Such sampling can be done by Monte Carlo and 

thus this mapping provides a basis for performing quantum Monte Carlo calculations. 

Many Monte Carlo sampling schemes exist that can be used to generate numerical solutions to Schrodinger 

equation. To illustrate the Quantum Monte Carlo simulation, we will focus on one – ‘path integral Monte Carlo’ 

which is popularly used to study quantum systems at non-zero temperatures. 

As an example, one can look at a simple one model: the two-state quantum system coupled to a 

Gaussian fluctuating field.It is a system that can be analyzed analytically and comparison of the exact analytical 

treatment with the quantum Mont Carlo procedure serves as a useful illustration if the convergence of Monte 

Carlo sampling. 
The quantal fluctuations of the model are to be sampled from the distribution 

𝑊 𝑢1 ,……… . , 𝑢𝑝 ; 𝜉 ∝ 𝑒𝑥𝑝 𝒮 𝑢1, …… ,𝑢𝑝 ;𝜉  ,                               (28) 

 

Where  

𝒮 = −
𝛽𝜉2

2𝜎
+  𝛽/𝑃 𝜇  𝑢𝑖𝜉

𝑃
𝑖=1     (29) 

=
1

2
𝑙𝑛 𝛽∆/𝑃  𝑢𝑖𝑢𝑖+1.

𝑃
𝑖=1   (30) 

       Here                            𝑢𝑖 = ±1     (31) 

specifies the state of the quantum system at 𝑖𝑡 point on the quantum path, there are P such points, the 

parameters 𝜇𝑎𝑛𝑑∆ correspond to the magnitude of the dipole and half the tunnel splitting of the two-state 

system, respectively. The electric field,𝜉, is a continuous variable that fluctuates between −∞𝑎𝑛𝑑 + ∞, but due 

to the finite of 𝜎, the values of 𝜉 close to  𝜎 𝛽  in magnitude are quite common. 
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The quantity 𝒮is often called the action. It is a function of the P points on the quantum path (𝑢1, … . , 𝑢𝑝). The 

discretized representation of the quantum path becomes exact in the continuum limit of an infinite number of 

points on the path- that is, P→ ∞ . In that limit, the path changes from a set of P variables, 𝑢1to𝑢𝑝 , to a function 

of a continuous variable. The action is then a quantity whose value depends upon a function, and such a quantity 

is called a functional. 

Consequently, a computer program can be written in BASIC to run on an IBMPC. Such program, samples the 

discretized weight function 𝑊 𝑢1 ,……… . , 𝑢𝑝 ; 𝜉  by the following procedure: 

- Begin with a configuration 

- One of the P+1 variables 𝑢1  through𝑢𝑝  and 𝜉 is identified at random, and the identified variable is changed. 

For instance, if the variable is 𝑢1the change corresponds to𝑢𝑖 → −𝑢𝑖 . If on the other hand, the identified 

variable is the field 𝜉 → 𝜉 + ∆𝜉, where the size of ∆𝜉 is taken at random from a continuous set of numbers 

generated with aid of the ‘pseudorandom-number generator’ 

- This change in one of the variables causes a change in the action∆𝒮 . For example , if 𝑢𝑖 → −𝑢𝑖 then 

∆𝒮 = 𝒮 𝑢1 ,… . ,−𝑢𝑖 , …… . , 𝜉 -𝒮 𝑢1, …… , 𝑢𝑖 , …… . . ; 𝜉  
- The Boltzmann factor associated with this change,𝑒𝑥𝑝 ∆𝒮 , then compared with a random number x taken 

from the uniform distribution between 0 to 1. 

- If 𝑒𝑥𝑝 ∆𝒮 > 𝑥, the move is accepted. 

- If however 𝑒𝑥𝑝 ∆𝒮 < 𝑥 the move is rejected. 

An accepted move means that the new configuration of the system is the changed configuration. A rejected 

move means that the new configuration is unchanged from the previous one. 

As with the Ising model, this standard Metropolis procedure for a Monte Carlo step is repeated over and over 

again producing a trajectory that samples configuration space according to the statistical 

weight𝑊 𝑢1 ,……… . ,𝑢𝑝 ;𝜉 . Typical results are then being obtained by averaging properties over these 

trajectories. A particular example of such results is the ‘solvation energy’ corresponding to the average of the 

coupling between the electric field and the quantal dipole, that is  

𝐸𝑠𝑜𝑙𝑣 = 
1

𝑝
 𝜇𝜉𝜇𝑖

𝑃
𝑖=1                                                      (32) 

 

XIII. Conclusion 
 The Monte Carlo method of random sampling was reviewed in this work. It works by taking the 
random sample of points from phase space, and then using the data to find the overall behaviour of the system. 

To carry out this method on interacting systems, an array is initialized at a low or high temperature; spins are 

chose randomly to flip. The chosen spin is flipped if it satisfies the boundary condition that is favourable to the 

energy. Expectation values of the Observables such as the energy, magnetization, specific heat etc are computed 

by performing a trace over the partition function, Z. The Monte Carlo applied to the Ising model which 

describes the properties of materials allows obtaining the thermodynamic quantities variations. For such model, 

when the Monte Carlo method is carried out, it is expected that 

 Without magnetic field, a phase transition at the critical temperature is strongly marked. This transition 

separates𝑇 < 𝑇𝑐 , where the magnetization is maximum, the spins are aligned, and 𝑇 > 𝑇𝑐   where the 

magnetization is in order of zero, the spins are randomly oriented. 

 In the presence of magnetic field, the phase transition is not so marked. At a very high temperature, the field 

has no effect because of the thermal agitation. In a general way, the spins align with the magnetic field but 

at 𝑇 < 𝑇𝑐  the changes of direction happen only if field is above a critical value. 

The use of the Monte Carlo stretches beyond statistical mechanics as its use is seen in Engineering, 

telecommunication, biology etc. 
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