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Abstract : Lithium tantalate is technologically one of the most important ferroelectric materials with a low 

poling field that has several applications in the field of photonics and memory switching devices. In a 

Hamiltonian system, such as dipolar system, the polarization behavior of such ferroelectrics can be well-

modeled by Klein-Gordon (K-G) equation. To probe the quantum states related to discrete breathers, the same 

K-G lattice is quantized to give rise to quantum breathers (QBs) that are explained by a periodic boundary 
condition. The gap between the localized and delocalized phonon-band is a function of impurity content that is 

again related to the effect of pinning of domains due to antisite tantalum defects in the system, i.e. a point of 

easier switching within the limited amount of data on poling field. 
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I. INTRODUCTION  
       In the field of applied physics, one of the most investigated materials is ferroelectric, which has 

important applications as memory switching [1-4] and in nonlinear optical communications [5], non-volatile 

memory devices [6,7], and many others [8,9]. Lithium tantalate with a low poling field appears to be a 

promising candidate as a key photonic material for a variety of devices: such as optical parametric oscillators, 
nonlinear frequency converters, electro-optics and second-order nonlinear optical material, holography, etc. 

Many of such applications include important nano-devices [9-11].  

       Ferroelectricity is an electrical phenomenon whereby certain materials exhibit a spontaneous dipole 

moment. The direction of this moment can be switched between the equivalent states by the application of an 

external electric field [1-4]. It arises in certain crystal systems that undergo second-order structural changes 

below the Curie temperature, which results in the development of spontaneous polarization. This can be 

explained by Landau-Ginzburg free energy functional [3,4,9]. The ferroelectric behavior is commonly explained 

by the rotation of domains and domain walls that are present in the crystal with uniform polarization [1-4]. This 

behavior is nonlinear in terms of hysteresis of polarization (P) and electric field (E) vectors. 

     Localization in a system is attributed either to its disorder or to its nonlinearity [13]. The first one, i.e. 

Anderson localization has been implemented in details in many types of device applications. As the nonlinearity 
arises in ferroelectrics in terms of P-E hysteresis due to the rotational movement of the discrete domains and 

domain walls, they could also give rise to the localization. Hence, the above explanations are given to relate the 

localized waves of discrete breathers and domain walls in ferroelectric materials. The above description also 

shows the importance of domain wall in ferroelectrics in describing a soliton solution, i.e. nonlinear localized 

traveling waves that are robust and propagate without change in shape, giving the polarization profile and the 

distribution of the elastic strain across the domain wall [14]. On the other hand, discrete breathers (DBs) are 

discrete solutions, periodic in time and localized in space and whose frequencies extend outside the phonon 

spectrum [27--15, 28--16]. This is described by our discrete Hamiltonian [9, 12], as detailed later.  

  In this new approach, for the characterization of DBs or classical breathers [17, 18], the bulk system 

was the right tool, but when we are dealing with smaller systems, we have to use quantum physics, which brings 

us to the quantum breathers (QBs) [19]. Once generated, QBs modify system properties such as lattice 

thermodynamics and introduce the possibility of non-dispersive energy transport, as generally described for DBs 
[20]. These are observed in many systems viz. ladder array of Josephson junction for superconductors, BEC in 

optical lattices/nonlinear photonic lattices, interacting optical waveguides, cantilever vibrations in 

micromechanical arrays, DNA, split-ring resonator (SRR) based metamaterials in antenna arrays, two-magnon 

bound states in antiferromagnets, two-phonon bound states (TPBS), i.e. quantum breathers, in ferroelectrics (see 

Ref. [21]). 
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A brief account is given here on phonon bound state or breather state. Despite our work on discrete breathers [9, 

18], so far the pinning has been explained classically, thereby prompting us to think about quantum explanations 

that have been briefly explored for ferroelectrics, such as lithium niobate with the impurity data [21]. Although 
impurity data for lithium tantalate (as antisite tantalum defects) are not available, we could work through 

Landau coefficient or nonlinearity route to explore if there is also pinning in such systems (see later). For 

quantum breathers, it is important to consider detailed information on phonons and their bound state concept, 

which is sensitive to the degree of nonlinearity. In the eigenspectrum or more traditionally Ek vs k plot, a 

quantum breather band separates itself from the delocalized phonon-band. Or in other words, it is the hopping 

tendency of the phonons that describe the quantum breathers. So, let us consider that the phonons in one 

sublattice may hop from one domain to another adjacent domain. This hopping might have some consequences 

with the change of nonlinearity or poling field for „switching‟ that is again related to the impurity in the lattice, 

thereby the „hopping strength‟ can be directly related to this phenomenon. It is determined by finding the 

phonon-band energy gap (i.e. the energy gap between the delocalized and localized phonons) in the usual eigen-

spectrum [15, 22]. 
    The paper is organized as follows: in the Section II, we present the general mathematical model for 

TPBS parameters and finally after second quantization on K-G lattice is done with Bosonic operators along with 

our method of computation.  In Section III, the results and discussion are also presented. In Section IV, the 

conclusions are given.  
 

II. THEORETICAL DEVELOPMENT  
In a previous treatment, a time-dependent formulation for the dynamics of the domain array was 

obtained as a generalization of the Landau-Ginzburg free energy form involving polarization (P) and electric 

field (E) vectors [12]: The nearest neighbor domains [i.e. the polarization in the ith domain (Pi) with that in the 

(i-1)th domain (Pi-1)] were taken to interact by a harmonic potential with a phenomenological spring constant k 

so that the  resulting  Hamiltonian for the polarization is given by [9,12]: 
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 Eq. (1) gives a general treatment of the mode dynamics in the array, particularly for modes, which are strongly 

localized over a small number of domains in the array.  For extended modes and modes which are localized, and 

slowly range over a large number of consecutive domains, our discrete Hamiltonian [Eq. (1)] can be split as:   
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For the present numerical analysis, the Fourier grid Hamiltonian method [22] with 1000 grids and 0.006 spacing 

to calculate various eigen values and eigenvectors at the grid points. For the present calculations, we restrict 

ourselves to two phonon states, since at the working temperature the number of phonon is very small. In order to 

reduce the computer memory requirement, we take the advantage of translational invariance by periodic Bloch 

wave formulation 2| | j

j

j

    , as detailed in Ref. [21, 22]. Due to translational invariance, the 

eigenstates of H are also eigenstates of the translation operator T, where: exp( )iq  is its eigenvalue with 
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With this basis, we can derive the eigenenergies for each given Bloch wave number q from: 

| |q n nH E   . Hence, 3 could be written as: 
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, where   q is the Bloch-wave number and    
i i i im n i m i n i

i

D x x x  , 
im ‟s and 

iE ‟s are eigenvectors 

and eigenvalues obtained from Fourier grid Hamiltonian method. Here, due to symmetric and asymmetric nature 

of the eigenfunctions 0mnD  , if   0m n  . Hence, for a two-phonons case, the non-zero hopping 

coefficients are 01 10 12 21,D D D D  . The energy gap between the single phonon continuum and a bound 

state is given by:  

 0102 2 EEEEEg 
         (5) 

where E0, E1 and E2 are three eigenvalues at different points of wave vector (k) that are calculated from our 

computation to generate E(k) vs. k curve, which gives the signature of quantum breathers (QB) in terms of two-

phonon bound state. The width of the single-phonon in the eigenspectrum is given by the magnitude of 4 i.e 

the width of the single delocalized phonon-band, where  is expressed as:  

2
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2

D


               (6) 

where  is an interaction term (i.e. equivalent to k). D01 represents the coefficient for zero to single phonon 

generation. The variation of the single phonon spectrum width (
phW ) represents (through 01 10D D ) the 

creation of a new phonon or annihilation of an existing phonon.  

 

III. RESULTS AND DISCUSSION 
     The eigenspectra showing TPBS in lithium tantalate are shown in Figs. 1 to 3 for a poling field value 

of 1.60, 17 and 210 kV/cm respectively. The coupling value is taken as constant at 10 for all the spectra. The 

Landau parameter () is inversely proportional to the impurity content or poling field. In the absence of the 
impurity data, we would operate through Landau coefficient (read, nonlinearity) which should also give a 

correct picture of QBs in terms of various TPBS parameters, as nonlinearity and discreteness give rise to 

quantum localization or rather to the formation of QBs. 
       It is clearly seen from Figs. 1 to 3 that as the nonlinearity decrease, i.e. the poling field increases, the 

shape of the single-phonon continuum also changes in terms of its width that could be considered as significant, 

as it shows a functional dependence on nonlinearity. This width is measured by Wph shows a slight decrease 

towards lower  values (= 514 to 421. i.e. average value=467) and then it drops quite drastically towards lower 

 values, i.e. the highest poling field of 210 kV/cm. This is in contrast to that in lithium niobate system, where it 

sharply drops towards =471 and then it sharply increases towards lower  values [34]. This may be due to the 
different levels of the degree of polarization in the respective systems [49]. It also indicates that in lithium 

niobate, as the nonlinearity decreases from 1767 towards 471, the difference in values of Wph is about 19.2 in 

absolute term, whereas that for lithium tantalate system, it is only about 1 for nonlinearity values from 4427 to 

467 (average). 

 

Fig 1: Eigenspectrum for a coupling value of k =10, for a low poling field Ec=1.6 kV/cm and  =4427. The 

continuum represents single phonon continua and the quantum breather band or two-phonon bound state is in 
the upper branch of the spectrum. 
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Fig. 2: Eigenspectrum for a coupling value of k =10, for a moderate poling field Ec=17 kV/cm and  =421. 

The similar spectra are observed with the effect of a decrease of nonlinearity in the single-phonon width. 

 

Fig. 3: Eigenspectrum for a coupling value of k =10, for the highest poling field Ec=210 kV/cm and lowest 

nonlinearity  =37. The similar spectra are observed with the effect of a further decrease of nonlinearity in the 
single-phonon width and in the appearance of a pseudo gap. 

 

Table I 
 (Poling Field in kV/cm)   

|Eg |  

  1.60 4426.68 92.45 

17.00 420.76  26.95 

 210.00      37.09  3.44 

 

From the table1 calculated by fig 1 to 3, it is clearly shows that energy gap is increased by increasing poling 

field and decreasing nonlinearity i.e  . 

 

IV. CONCLUSION  
For quantum breathers in lithium tantalate, in a periodic boundary condition approach, the second 

quantization gives rise to some interesting values of TPBS parameters against nonlinearity within the system. 

This shows that after a value of nonlinearity (421), i.e. equivalent to a poling field of 17 kV/cm, the formation of 

quantum breathers starts becoming relatively difficult thereby increasing single-phonon hopping energy that is 

observed upto this poling field and thereafter it increases monotonically toward higher values, whereas the 

energy gap after showing a small increase upto this poling field increases rapidly towards higher values; this 

was in contrast to that shown in lithium niobate system. This piece of information is considered useful for a 
future study in this new field of investigation of quantum breathers in ferroelectrics and other applications of 

QBs in important nonlinear optical materials. 
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