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Abstract; The present work is devoted to the numerical study of magneto hydrodynamic (MHD) natural 

convection flow of heat and mass transfer past a plate taking into account viscous dissipation and internal heat 

generation. The governing equations and the associated boundary conditions for this analysis are made non 

dimensional forms using a set of dimensionless variables. Thus, the non dimensional governing equations are 

solved numerically using finite difference method Crank-Nicolson’s scheme. Numerical outcomes are found for 

different values of the magnetic parameter, Modified Grashof number, Prandtl number, Eckert number, heat 

generation parameter and Schmidt number for the velocity and the temperature within the boundary layer as 

well as the skin friction coefficients and the rate of heat and mass transfer along the surface. Results are 

presented graphically with detailed discussion. 
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I.      Introduction 
The buoyancy force induced by density differences in a fluid causes natural convection. Natural 

convection flows are frequently encountered in physical and engineering problems such as chemical catalytic 

reactors, nuclear waste materials etc. Transient free convection is important in many practical applications, such 

as furnaces electronic components, solar collectors, thermal regulation process, security of energy systems etc. 

when a conductive fluid moves through a magnetic field and an ionized gas is electrically conductive, the fluid 

may be influenced by the magnetic field. Magnetohydrodynamic free convection heat transfer flow is of 

considerable interest in the technical field due to its frequent occurrence in industrial technology and geothermal 

application, liquid metal fluids and MHD power generation systems etc. The change in wall temperature causing 

the free convection flow could be a sudden or a periodic one, leading to a variation in the flow. In nuclear 

engineering, cooling of medium is more important safety point of view and during this cooling process the plate 

temperature starts oscillating about a non-zero constant mean temperature. Further, oscillatory flow has 

applications in industrial and aerospace engineering. Viscous mechanical dissipation effects are important in 

geophysical flows and also in certain industrial operations and are usually characterized by the Eckert number. 

Many practical heat transfer applications involve the conversion of some form of mechanical, electrical, nuclear, 

or chemical energy to thermal energy in the medium. Such mediums are said to involve internal heat generation. 

For example, a large amount of heat is generated in the fuel elements from atomic reactors as a result of atomic 

fission that serves as the heat source for the nuclear power plants. The heat generated in the sun as a result of 

fusion of hydrogen into helium makes the sun a large nuclear reactor that supplies heat to the earth. Possible 

heat generation effects may modify temperature distribution and, therefore, the particle deposition rate. 

In the literature, extensive research work is available to examine the effect of natural convection on 

flow past a plate. Examples of this include Vedhanayagam et.al. [1], Kolar et. al. [2] and Li et. al. [3]. Transient 

free convection flow past an isothermal vertical plate was first reported by Siegel [4] using an integral method. 

The experimental confirmation of these results was discussed by Goldstein et. al. [5]. A review of transient 

natural convection presented by Raithby et.al [6] wherein a large number of papers on this topic were reviewed. 

In this review, the meaning of transient convection has been explained systematically. They have defined the 

conduction regime and the steady state regime and that which lies between these two regimes as the transient 

regime. Other studies dealing with transient natural convection are by Das et.al. [7] and Saeid [8]. Simultaneous 

heat and mass transfer in laminar free convection boundary layer flows over surface can be found in Lin et .al. 

[9] and Mongruel et.al. [10]. 

Fewer studies have been carried out to investigate the magnetohydrodynamic free convection flow in 

the presence of viscous dissipation. In all the investigations mentioned above, viscous mechanical dissipation is 

neglected. A number of authors have considered viscous heating effects on Newtonian flows. Isreal-Cookey 

et.al. [11] investigated the influence of viscous dissipation and radiation on unsteady MHD free convection flow 
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past an infinite heated vertical plate in a porous medium with time dependent suction. Zueco [12] used network 

simulation method (NSM) to study the effects of viscous dissipation and radiation on unsteady MHD free 

convection flow past a vertical porous plate. Suneetha et.al. [13] have analyzed the thermal radiation effects on 

hydromagnetic free convection flow past an impulsively started vertical plate with variable surface temperature 

and concentration is analyzed by taking into account of the heat due to viscous dissipation.  Recently Hiteesh 

[14] studied the boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a 

stretching plate with viscous dissipation effect in the presence of a transverse magnetic field. 

The heat transfer in a laminar boundary layer flow of a viscous fluid over a linearly stretching 

continuous surface with viscous dissipation/frictional heating and internal heat generation was analysed by 

Vajravelu and Hadjinicolaou [15]. They considered the volumetric rate of heat generation,
3'''[ / ]q W m  , as

 3

0'''[ / ] fq W m Q T T  , for 
fT T  and, ''' 0q  , for

fT T , where 0Q  is the heat generation 

constant. Madhusudhana Rao et.al. [16] studied the analysis of unsteady free convection heat and mass transfer 

flow  through a non-homogeneous porous medium with variable permeability bounded by an infinite porous 

vertical plate in slip flow regime taking into account the radiation, chemical reaction and temperature gradient 

dependent heat source.  Mamun et al. [17] investigated MHD-conjugate heat transfer analysis for a vertical flat 

plate in presence of viscous dissipation and heat generation. Recently, Azim et al. [18] analyzed viscous Joule 

heating MHD-conjugate heat transfer for a vertical flat plate in the presence of heat generation.  

Hence, based on the above mentioned investigations and applications, the object of this paper is to 

study magnetohydrodynamic transient heat and mass transfer flow by free convection past a vertical plate in the 

presence of viscous dissipation and heat generation, when the temperature of the plate oscillates periodically 

about a constant mean temperature. The present investigation may be useful for the study of movement of oil or 

gas and water through the reservoir of an oil or gas field, underground water in river beds, filtration and water 

purification processes. This study of flow past a vertical surface can be utilized as the basis of many scientific 

and engineering applications, including earth science, nuclear engineering and metallurgy. In nuclear 

engineering, it finds its applications for the design of the blanket of liquid metal around a thermonuclear fusion-

fission hybrid reactor. In metallurgy, it can be applied during the solidification process. The results of the 

problem are also of great interest in geophysics, in the study of interaction of geomagnetic field with the fluid in 

the geothermal region. 

 

II.     Mathematical Analysis 
We consider a one – dimensional flow of an incompressible and electrically conducting viscous fluid 

along an infinite vertical plate. The 'x -axis is taken along the infinite plate and 'y - axis normal to it. Initially, 

the plate and the fluid are at same temperature T
  with concentration level C

  at all points. At time ' 0t  , 

the plate temperature is raised to wT   and a periodic temperature variation is assumed to be superimposed on this 

mean constant temperature of the plate and the concentration level at the plate is raised to wC . A magnetic field 

of uniform strength is applied perpendicular to the plate and the magnetic Reynolds number is assumed to be 

small so that the induced magnetic field is neglected [19]. There is no applied electric field. The MHD term is 

derived from an order-of-magnitude analysis of the full Navier-Stokes equations. Under these conditions and 

assuming variation of density in the body force term (Boussinesq’s approximation), the problem can be 

governed by the following set of equations: 
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with the following initial and boundary conditions: 
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The second term of R.H.S. of the momentum equation (1) denotes buoyancy effects, the third term is 

the MHD term. The second term of R.H.S. of the energy equation (2) denotes radiation term, the third term is 

viscous dissipation term. The heat generation and heat due to viscous dissipation is taken into an account in 

equation (2).  

The temperature distribution is independent of the flow and heat transfer is by conduction alone. This is 

true for fluids in initial stage due to the absence of convective heat transfer or at small Grashof number flow (Gr

1 ). 

Skin – friction is given by 
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We introduce the non-dimensional variables: 
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The equations (1) - (3) reduce to following non-dimensional form: 

 
2

2

u u
GmC Mu

t y


 
   

 
                                                                                                                            (7) 

22

2

1

Pr

u
E Q

t y y

 


   
   

   
                                      (8) 

2

2

C C
Sc

t y

 


 
                                                     (9)                                                            

with the following initial and boundary conditions: 

 

0, 0, 0 , 0u C for all y t   
                 (10) 

0, 1 cos , 1 0, 0u t C at y t      
 

 

0, 0, 0 , 0u C as y t    
                 (11) 

where  t  is phase angle. 

Skin – Friction: In non-dimensional form, the skin – friction is given by 
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Nusselt Number: From temperature field, the rate of heat transfer in non-dimensional form is expressed as 
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Sherwood Number: From concentration field, the rate of mass transfer in non-dimensional form is expressed as 
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All the physical variables are defined in the nomenclature. 

 

III.     Numerical Technique 
Equations (2 - 7) – (2 - 9) are coupled non-linear partial differential equations and are to be solved 

under the initial and boundary conditions of equations (10) – (11). However exact or approximate solutions are 

not possible for this set of equations and hence we solve these equations by the implicit finite difference method 

of Crank – Nicolson’s type. The finite difference equations corresponding to equations (7) – (9) are as follows: 
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Initial and boundary conditions take the following forms
 

 

,0 ,0 ,00 0, 0i i iu C for all i  

0, 0, 0,0, 1 cos , 1j j ju t C    
 

                        

 

where L corresponds to  , the suffix ' 'i  corresponds to y  and  ' 'j  corresponds to t . 

Also 1j jt t t    and   1i iy y y   . 

Here we consider a rectangular grid with grid lines parallel to the coordinate axes with spacing ∆y and 
∆t in space and time directions respectively. The grid points are given by yi = i.∆y, i = 1,2,3,---,L-1 and tj = j.∆t, j 

= 1,2,3,---, P. The spatial nodes on the j
th

 time grid constitute the j
th

 layer or level. The maximum value of y was 

chosen as 10 after some preliminary investigations, so that the two of the boundary conditions of equation (11) 

are satisfied. Here the maximum value of y corresponds to y = . After experimenting with few sets of mesh 

sizes, they have been fixed at the level Δy = 0.1 and the time step Δt = 0.02, in this case, special mesh size is 

reduced by 50% and the results are compared. It is observed that when mesh size is reduced by 50% in y – 

direction, the result differ only in the fifth decimal place.  

, , ,0, 0, 0L j L j L ju C  
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 The values of ‘C,  and u’ are known at all grid points at t = 0 from the initial conditions. The values of 

‘C,  and u’ at time level ‘j+1’ using the known values at previous time level ‘j’ are calculated as follows. The 

finite difference equation (17) at every internal nodal point on a particular j- level constitutes a tri-diagonal 

system of equations. Such a system of equations is solved by using Thomas algorithm as discussed in Carnahan 

et al. [20]. Thus, the values of ‘C’ are known at every nodal point at (j+1)
th

  time level. Similarly the values of 

‘’ are calculated from equation (16). Using the values of ‘C’ and ‘’ at (j+1)
th
 time level in equation (15), the 

values of ‘u’ at (j+1)
th

 time level are found in similar manner. This process is continued to obtain the solution till 

desired time‘t’. Thus the values of ‘C,  and u’ are known, at all grid points in the rectangular region at the 

desired time level. 

 The local truncation error is O
2 2( )t y   and it tends to zero when ‘∆t and ∆y’ tend to zero. Hence 

the scheme is compatible. The finite difference scheme is unconditionally stable. Compatibility and stability 

ensures the convergence of the scheme. 

           The derivatives involved in equations (12) and (14) are evaluated using five point approximation 

formula.  

 

IV.     Results And Discussion 
The convection flows driven by combinations of diffusion effects are very important in many 

applications. The foregoing formulations may be analyzed to indicate the nature of interaction of the various 

contributions to buoyancy. In order to gain physical insight into the problem, the value of   is chosen 1.0.  The 

values of Prandtl number are chosen 0.71, 7 which represent air and water respectively at 20
0
c temperature and 

1 atmospheric pressure and the values of Schmidt number are chosen to represent the presence of species by 

hydrogen (0.22), water vapour (0.60), ammonia (0.78) and carbon dioxide (0.96) at 25
0
c temperature and 1 

atmospheric pressure.  

Extensive computations were performed. Default values of the thermo physical parameters are 

specified as follows: 

Magnetic parameter M = 2, Modified Grashof number Gc = 10, Phase angle 
2

t


  , Prandtl number Pr = 

0.71(air), Eckert number E = 0.5, Heat generation parameter Q= 0.5, Schmidt number Sc = 0.22 (hydrogen) and 

time t = 0.2. All graphs therefore correspond to these values unless otherwise indicated. 

Fig (1) represents the velocity profiles due to the variations in t . It is evident from the figure that the 

velocity increases and attains its maximum value in the vicinity of the plate and then tends to zero as y  . 

Moreover, the velocity is marginally affected by the variations in the phase angle. No reverse effect is observed 

in the case of heating of the surface (Gm < 0). 

Fig (2) reveals the effects of M, on the velocity profiles. It is obvious from the figure that the velocity 

near the plate exceeds i.e., the velocity overshoot occurs. It is observed that an increase in the value of ‘M’ leads 

to fall in the velocity. It is due to the application of transverse magnetic field will result a resistive type force 

(Lorentz force) similar to drag force which tends to resist the flow and thus reducing its velocity. The presence 

of a porous medium increases the resistance to flow resulting in decrease in the flow velocity. The opposite 

phenomenon is observed for heating of the plate (Gm < 0). 

The species concentration is coupled to the velocity via Modified Grashof number as seen in equation 

(7). For various values of Modified Grashof number, the velocity profiles are plotted in figure (3). It is obvious 

from the figure that the maximum velocity attains in the vicinity of the plate then decreases to zero as y  . 

It is observed that greater cooling of surface (an increase in Gm) results in an increase in the velocity for air. It is 

due to the fact increase in the values of and mass Grashof number has the tendency to increase the mass 

buoyancy effect. This gives rise to an increase in the induced flow. The reverse effect is observed in case of Gm 

< 0.  

Fig. 4 shows the effect of variation of Prandtl number Pr. It is noticed that the velocity decreases as Pr 

increases. The velocity for Pr = 0.71 is higher than that of Pr=7. Physically, it is possible because fluids with 

high Prandtl number have high viscosity and hence move slowly. It is also observed that no reverse effect for 

Gm<0. 

Effects of variations of time t on the velocity are presented in fig. 5. It is clear from the fig that the 

velocity increases as the time t increases and the reverse effect is noticed if Gm<0. 

For different values of the Schmidt number the velocity profiles are plotted in Fig. 6. It is obvious from 

the figure that an increase in the Schmidt number results in decrease in the velocity. It is observed that the 

reverse effect is obtained for Gm<0. 

Figure (7) reveals the transient temperature profiles against y (distance from the plate). The magnitude 

of temperature is maximum at the plate and then decays to zero asymptotically. The magnitude of temperature 
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for air (Pr=0.71) is greater than that of water (Pr=7). This is due to the fact that thermal conductivity of fluid 

decreases with increasing ‘Pr’, resulting a decrease in thermal boundary layer thickness. Also the temperature 

falls with an increase in the phase angle t  for both air and water. 

In figure (8) we depict the effect of Prandtl number (Pr) on the temperature field. It is observed that an 

increase in the Prandtl number leads to decrease in the temperature field. Also, temperature field falls more 

rapidly for water in comparison to air and the temperature curve is exactly linear for mercury (Pr = 0.025), 

which is more sensible towards change in temperature. From this observation it is conclude that mercury is most 

effective for maintaining temperature differences and can be used efficiently in the laboratory. Air can replace 

mercury, the effectiveness of maintaining temperature changes are much less than mercury. However, air can be 

better and cheap replacement for industrial purpose. This is because, either increase of kinematic viscosity or 

decrease of thermal conductivity leads to increase in the value of Prandtl number (Pr). Hence temperature 

decreases with increasing of Prandtl number (Pr). 

The effect of Eckert number ‘E’ on the temperature is shown in fig (9). Eckert number is the ratio of 

the kinetic energy of the flow to the boundary layer enthalpy difference. The effect of viscous dissipation on 

flow field is to increase the energy, yielding a greater fluid temperature and as a consequence greater buoyancy 

force. The increase in the buoyancy force due to an increase in the dissipation parameter enhances the 

temperature. It is also observed that the magnitude of temperature for air (Pr=0.71) is greater than that of water 

(Pr=7).  

Effect of variations in Q on the temperature is presented in Fig. 10. It is clear from the figure that the 

temperature increases as heat generation parameter increases. It is also observed that the magnitude of 

temperature for air (Pr=0.71) is greater than that of water (Pr=7). 

Fig (11) concerns with the effect of ‘t’ on the temperature. We see that temperature ‘θ’ increases as 

time ‘t’ increases for both air (Pr = 0.71) and water (Pr = 7). 

Fig (12) concerns with the effect of ‘Sc’ on the concentration. It is noted that the concentration at all 

points in the flow field decreases exponentially with y and tends to zero as y  .  A comparison of curves in 

the figure shows a decrease in concentration with an increase in Schmidt number. Physically it is true, since the 

increase of ‘Sc’ means decrease of molecular diffusivity. That results in decrease of concentration boundary 

layer. Hence, the concentration of species is higher for small values of Sc and lower for large values of ‘Sc’. 

Fig (13) reveals the skin – friction against time t for varies values of parameters M, Gm, Sc, E, t  and 

Pr. It is noticed that the skin friction decreases with an increase in Eckert number, modified Grashof number and 

heat generator parameter while it increase with an increase in magnetic parameter, phase angle and Schmidt 

number for both air and water. The magnitude of the Skin-friction for water is greater than air and this behavior 

is reversed after ‘t=0.8’. 

Fig (14) depicts the Nusselt number against time‘t’ for various values of parameters ‘ t , Pr, Q, E and 

Sc’. It is found that the rate of heat transfer falls with increasing t , Prandtl number, Eckert number, and heat 

generation parameter while it increases with an increase in Schmidt number.  

It is marked from Fig. (15) that the rate of concentration transfer increases with 

increasing values of Schmidt number ‘Sc’. 

 

V.     Figures 

 
Fig.(1): Velocity profile for different values of  t  
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Fig.(2): Velocity profile for different values of M 

 
Fig.(3): Velocity profile for different values of Gm 

 
Fig.(4): Velocity profile for different values of Pr 

 
Fig.(5): Velocity profile for different values of t 
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Fig.(6): Velocity profile for different values of Sc 

 
Fig.(7): Temperature profile for different values of  t  

 
Fig.(8): Temperature profile for different values of Pr 

 
Fig.(9): Temperature profile for different values of E 
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Fig.(10): Temperature profile for different values of Q 

 
Fig.(11): Temperature profile for different values of t 

 
Fig.(12): Concentration profile for different values of Sc 

 

 
Fig. (13): Skin friction profile 
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Fig. (14): Nusselt number profile 

 
Fig. (15): Sherwood number profile 

 

VI.     Conclusions 
This paper presents a numerical study of heat generation effects on the transient hydromagnetic natural 

convection flow past a vertical plate with mass diffusion and fluctuating temperature about time at the plate, by 

taking into account the heat due to viscous dissipation. The governing equations are solved by an implicit finite 

difference method of Crank – Nicolson type. The results are obtained for temperature, velocity, skin – friction, 

Nusselt number and Sherwood number. The effects of various parameters are discussed on the flow variables 

and presented by graphs. 

From the present numerical investigation, following observations have been drawn: 

 Velocity increases and attains its maximum value in the vicinity of the plate and then       tends to ‘0’ as 

y→  due to the variations in phase angle (ωt), Schmidt number (Sc), time (t), Modified Grashof number 

(Gm) and Prandtl number (Pr). 

 Velocity decreases with an increase in magnetic parameter (M), Schmidt number (Sc) and the reverse 

effect is noticed for Gm<0. Also Velocity decreases with an increase in phase angle (ωt) and Prandtl 

number (Pr). 

 Velocity increases with increasing time‘t’ and modified Grashof number (Gm) and the reverse effect is 

noticed for Gm<0. 

 The magnitude of temperature is maximum at the plate and then decays to zero asymptotically. 

 Temperature falls with an increase in the phase angle (ωt) and Prandtl number (Pr) for both air and water. 

The magnitude of temperature for air (Pr = 0.71) is greater than that of water (Pr = 7). 

 Temperature enhances due to an increase in the dissipation parameter (E), heat generating parameter (Q) 

and time‘t’ for both air and water. 

 Concentration decreases with an increase in Schmidt number (Sc). 
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 Skin – friction profile for water is greater than that of air and also it decreases with an increase in Grashof 

number (Gm), Eckert number (E) and heat generation parameter (Q)’ while it increases with an increase 

in ‘magnetic parameter (M), phase angle (ωt)  and Schmidt number (Sc)’. 

 It is found that the rate of heat transfer falls with increasing t , Prandtl number (Pr), Eckert number (E), 

and heat generation parameter (Q) while it increases with an increase in Schmidt number (Sc). 

 The rate of concentration transfer increases with increasing values of Schmidt number 

(Sc). 
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NOMENCLATURE 

'u  velocity component in 'x - axis 

't  time 

0B
 

the magnetic field component along 'y - axis 

'C
 

concentration at any point in the flow field 

D   mass diffusivity 

pC
 

specific heat at constant pressure 

g  gravitational acceleration 

'T  temperature of the fluid near the plate 

Q  dimensional heat generating/absorbing parameter 

Q  dimensionless heat generating/absorbing parameter 
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k thermal conductivity of fluid 

Pr  Prandtl number 

Gm  modified Grashof number 

M  magnetic parameter 

Sc
 

Schmidt number 

t  time in dimensionless coordinate 

E
 

Eckertnumber 

RL
 

reference length 

Rt  
reference time 

u  dimensionless velocity component 

RU
 

reference velocity 

C  dimensionless  concentration 

GREEK SYMBOLS 


 

coefficient of volume of expansion 

c   concentration expansion coefficient 

   density 

  electrical conductivity 

  amplitude (constant) 

  kinematic viscosity 


 

viscosity of fluid 

  dimensionless temperature 

  frequency of oscillation 

SUBSCRIPTS 

w  conditions at the wall 

  conditions in the free stream 

 


