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Abstract: In this paper we have obtained axially symmetric Bianchi type-I cosmological models for perfect 

fluid distribution in the context of Lyra’s manifold. Exact solutions of the field equations are obtained by 

assuming the expansion  in the model is proportional to the shear . This leads to the condition 
nBA 

where A  and B  are scale factors and )0(n is a constant. Some kinematical and physical parameters of the 

model have been discussed. The solutions are compatible with recent observations. 
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I. Introduction 
Einstein proposed his general theory of relativity, in which gravitation is described in terms of 

geometry and it motivated the geometrization of other physical fields. One of the attempt in this direction was 

made by Weyl [1] who proposed a more general theory in which gravitation and electromagnetism is also 

described geometrically. But this theory was not accepted as it was based on non-integrability of length transfer. 

Later Lyra [2] introduced a gauge function i.e. displacement vector in Riemannian space-time which removes 

the non-integrability condition of a vector under parallel transport. This modified geometry was named as 

Lyra’s geometry. 

In continuation of investigations, Sen [3] and Sen and Dunn [4] proposed a new scalar-tensor theory of 

gravitation. They constructed an analog of the Einstein’s field equations based on Lyra geometry.  

Halford [5] pointed out that the constant displacement vector field i  in Lyra’s geometry plays the role 

cosmological constant in the normal general relativistic treatment. It is shown by Halford [6] that the scalar- 

tensor treatment based on Lyra’s geometry predicts the same effects, within observational limits as the 

Einstein’s theory. Recently, several authors [7-10] studied cosmological models based on Lyra’s geometry in 

various contexts. Sen and Vanstone [11], Bhamra [12], Karade and Borikar [13], Kalyanshetti and Waghmode 

[14], Reddy and Innaiah [15], Reddy and Venkateswarlu [16] have studied various cosmological models in 

Lyra’s geometry with a constant displacement field. However, this restriction of the displacement field to be 

constant is merely one of convenience and there is no a priori reason for it. Soleng [17] has pointed out that the 

cosmologies based on Lyra’s manifold with constant gauge vector   will either include a creation field and be 

equal to Hoyle’s creation field cosmology [18-20] or contain a special vacuum field, which together with the 

gauge vector term may be considered as a cosmological term. In the latter case the solutions are equal to the 

general relativistic cosmologies with a cosmological term. Beesham [21] considered FRW models with time 

dependent displacement field. He has shown that by assuming the energy density of the universe to be equal to 

its critical value, the models have 1k  geometry. 

Axially symmetric cosmological models have been studied in both Riemannian and Lyra geometries. 

In context of general relativity theory, by adapting the comoving coordinate system, these models with string 

dust cloud source are studied by Bhattacharaya and Karade [22]. They shown that some of these models are 

singular free even at an initial epoch. In the context of Lyra’s geometry these models are studied in the presence 

of cosmic source and thick domain walls [23] and in the presence of perfect fluid distribution [24]. 

The purpose of this work is to analyse general features of axially symmetric Bianchi type-I 

cosmological models with time dependent displacement vector in the framework of Lyra geometry. This paper 

is organized as follows: In section II, we discuss the metric and field equations. In section III, we discuss 

solutions of the field equations. In section IV, we discuss some physical and kinematical parameters of the 

model. Finally, in section V, discussion and concluding remarks are given. 
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II. The Metric and Field equations 
We consider axially symmetric Bianchi type-I space -time  

   )( 2222222 dzdyBdxAdtds  ,     (1)  

where )(tA , )(tB  are the cosmic scale factors.  

The field equations in normal gauge for Lyra’s manifold, as obtained by Sen [3] are 
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where i  is the displacement vector field defined as ),0,0,0(  i  . Here )(t  , G 8  and other 

symbols have their usual meaning as in Riemannian geometry. 

We take a perfect fluid form for the energy momentum tensor 
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where   and p are the energy density and pressure of the cosmic fluid respectively together with comoving 

coordinates 1i

iuu , where )1,0,0,0(iu . 

The field Eq. (2) together with (3) for the metric (1) reduces to 
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The energy conservation equation 0; j

jiT  leads to 
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Eq. (8) leads to 
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Eq. (9) is automatically satisfied for 3,2,1i . 

For 4i , Eq. (9) leads to 
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which leads to 
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Here dot denotes differentiation with respect to cosmic time ‘t’. 
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III. Solutions of the Field Equations 

Eqs. (4)-(6) are three equations in five unknowns viz. A , B ,  , p  and  . In order to obtain 

explicit exact solutions, we assume that    which leads to 

    
nBA  ,    where )0(n  is a constant.    (12)   

and the equation of state is    

    mp  ,   where 10  m     (13) 

Now the set of Eqs. (4), (5), (6), (12) and (13) admit an exact solutions given by 
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Thus the geometry of the axially symmetric Bianchi type-I cosmological model is described by the metric 

       22
2

2
2

2

2
22 dzdyEDtdxEDtdtds nn

n

  .   (16) 

   

IV. Some Physical and Kinematical Parameters of the Model 
From Eqs. (4), (5) and (13) we have 
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where 1m . At 0t , the model (16) becomes flat and the pressure )( p , energy density )(  and gauge 

function   have finite values.  

Further, as time increases, the scale factors A  and B  increase indefinitely. The expansion scalar )(  

which determines the volume behaviour of the fluid given by 
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At the initial epoch 0t ,   is finite and 0  when t . Hence there is finite expansion in the 

model. 

Also, Hubble parameter )(H  is given by 
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The volume element )(V is given by 

     EDtABSV  23
,   (22) 

where S  is the average scale factor. The equation (22) shows that the volume increases as the time increases, 

that is, the model (16) is expanding with time. 

Shear scalar )(  is given by 
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From Eqs. (20) and (23), we obtain 
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Therefore the model does not approach isotropy for large values of t. 

Deceleration parameter )(q  is given by 

     2q .      (25) 

Also, anisotropy parameter )( mA  for the model is obtained as 
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Therefore the model has constant anisotropy parameter throughout the evolution of the universe. 

In this model particle horizon exists because 
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is a convergent integral.  

We have observed that at
D

E
t  , the spatial volume vanishes and it increases with cosmic time. For 1n , 

the mean anisotropy parameter vanishes and the directional scale factor 
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Therefore, isotropy is achieved in the derived model for 1n . For this particular value of n , we 

observe that )()()( tStBtA  . Therefore the metric (1) reduces to flat FRW space-time. Thus, the derived 

model acquires flatness for 1n . But in the same spirit, the shear )(  vanishes for 1n . Hence we cannot 

choose 1n  in the derived model. 

 

V. Discussion and Concluding Remarks 
In the present study we have obtained exact solutions of Sen’s equations in the presence of perfect fluid 

for axially symmetric Bianchi type-I cosmological models in normal gauge for Lyra’s manifold. The expansion 

velocity S  diverges as
D

E
t  . Hence the expansion of the universe is infinite as we approach the initial

D

E
t  . For the model (16) the above physical quantities like Hubble parameter )(H , expansion scalar )(  

and the shear scalar )(  are diverges as
D

E
t  . Thus the universe starts with an infinite rate of expansion 

and measure of anisotropy. This behaves like the big-bang model of the universe. The expansion ceases and the 

volume becomes infinitely large at large value of t  (i.e. t ). Hence the rate of expansion of the universe 

decreases with increase of time. Since deceleration parameter 0q , thus we find that the model (16) represents 

a decelerating universe. At t , the pressure p  and energy density   remain undetermined. All these 

physical quantities remain finite and physical significant at finite region. Since tcons tan
2

2





, therefore the 

model does not approach isotropy for large values of t . This model also has a point type singularity at 
D

E
t   

and it has constant anisotropy parameter )( mA  throughout the evolution of the universe. For 1n , the derived 

model reduces to flat FRW space-time. It has a particle horizon. As t , the shear dies out and the 

expansion stop. Thus the gauge function )(t  is large in the beginning of the model but decays continuously 

during its evolution. Similar results can be obtained for Hoyle’s creation field [18] if the creation field is time 

dependent. 
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