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Abstract: A simplified model is presented to explain and understand the quantized nature of the orbits of a 

smaller mass moving under the influence of the gravitational field due to a bigger mass. We use Einstein’s 

relativistic theory of gravitation to derive expressions for the Lagrangian and Hamiltonian of a unit mass in a 

curved spacetime continuum. Using the operator form of the Hamiltonian, we write down the equivalent 

quantum equation which includes the variation of the wave function with the curve parameter .The solutions of 

the equation bring out clearly the quantized nature of energy levels and orbits of the mass. The model is then 

applied to estimate the distances of the planets from the sun, in terms of a pair of quantum numbers. The results 

agree very well with the observed values.  
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I. Introduction  
In Newton’s theory of gravitation, gravitational force is assumed to be an action at a distance, implying 

that it can propagate instantaneously from one body to another. This assumption is in conflict with the special 

theory of relativity, according to which no interaction can propagate with a speed higher than the speed of light 

in vacuum. In 1916, Albert Einstein, in a series of classic papers [1-2] developed the general theory of relativity, 

which turned out to be the correct relativistic theory of gravitation. In Einstein’s theory , every mass curves the 

spacetime around it and any other mass in its vicinity is constrained to move in an orbit , called the geodesic, 

determined by the geometry of the curved space-time. The Newtonian gravitational field is thus replaced by a 

curved space-time around a massive body, where Riemannian geometry must be used in place of the Euclidean 
geometry. After the advent of quantum mechanics; it has been a very challenging problem for the theoretical 

physicists, to reconcile the concepts of quantum theory with those of the general theory of relativity. The 

demand for consistency between a quantum description of matter and a geometrical description of space-time 

indicated the need for a full theory of quantum gravity. Despite major efforts, this has not been achieved so far, 

although a number of exotic theories have been proposed. In this context, one can mention the loop quantum 

gravity [3, 4], the string theory [5-7] and so on.  

Kauffmann [8] attempted an orthodox quantization of Einstein’s gravity, whereas He [9] made a solar 

application of Einstein’s field equations, with some success. Recently, some work on gauge symmetries in spin-

foam gravity has been reported [10]. An interesting work on spin and quantization of gravitational space has 

also been reported [11]. 

Recently, there have been a lot of research activities to formulate the first quantization of Einstein’s 
gravitational field. In particular, it is quite interesting to examine whether the well defined planetary orbits 

around the sun can be understood as quantized orbits determined by certain quantum numbers , as one can easily 

do so in case of electronic orbits around the nucleus in an atom.  

Long ago, Bode [12-13] looked for an order in the orbits of the planets by using a simple mathematical 

relation given in terms of an integer. Nottale et.al. [14] used the relativity of scales to describe the structure of 

the solar system with the help of the hydrogen atom wave functions, assigning quantum number to the planets. 

A statistical analysis of the quantization of planetary orbits has been reported by Zoghbi [15]. A quantum 

description of the planetary systems has also been attempted by Scardigli [16]. 

In this paper, we derive an expression for the Hamiltonian operator of a unit mass moving in a four- 

dimensional curved space-time continuum, introducing a curve parameter which represents the curvature of the 

space. This Hamiltonian is used to write down a Schrodinger –like quantum equation. The solutions of this 

equation are used to explain the quantized character of the planetary orbits determined by two quantum 
numbers. 
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II. Theory And Calculation 
A. The Lagrangian and Hamiltonian of a Unit mass in a Weak Gravitational Field 

In this section, we develop expressions for the Lagrangian and Hamiltonian of a unit mass assuming 

that it is acted upon by a gravitational field due to a much bigger mass   M  . According to Einstein’s theory of 

gravitation, this gravitational field is replaced by a curved space-time continuum around the mass M, the amount 

of curvature being determined by the magnitude of M. The invariant space-time metric in this space, is given by,  

            ds2 = gαβ  dxαdxβ                                                                   (1) 

Where, (α, β) = 0,1,2,3, and(xα , xβ)  have components, x0 = ct, x1 = x, x2 = y, x3 = z. 

The components of the tensor gαβ  represent the Riemannian metric of the relevant curved space. 

         We shall assume the field to be weak and spherically symmetric. In that case the metric in (1) is given by 

the well-Known Schwarzchild metric [17], 

ds2 = − 1 −
2rg

r
 c2dt2 +   1 −

2rg

r
 
−1

dr2 + r2(dθ2 + sin2θdφ2)                                      (2) 

 

Where  rg  = 
GM

c2    is called the Schwarzschild radius of the massM.           

              We now introduce a curve parameter  p  which is related to the curvature of the space. In that case, the 

quantity   
ds

dp
  can be interpreted as the velocity of the particle of unit mass moving in a geodesic determined by 

p. The Lagrangian of this unit mass is then given by,                                                                                      

L= 
 1

2
 

ds

dp
 

2

 =   
1

2
s′

2
                                                                                                                   (3) 

 

where, we have used the convenient notation,  

A′ = 
dA

dp
                                                                                                                                      (4) 

 

with  A being any variable. 

Using (2), we can then express (3) in the following form, 

L= 
1

2
s′

2
 = −

1

2
 1 −

2rg

r
 c2t′2 + 

1

2
  1 −

2rg

r
 
−1

r′
2
 +

1

2
 r2(θ′

2
 +φ′

2sin2θ)                                (5) 

 

This Lagrangian can be used to obtain the Hamiltonian of the unit mass. To achieve this, we slightly modify the 

Lagrangian in (5) by defining  

 D(r)=  1 +
2rg

r
                                                                                                                        (6) 

 

Since  
2rg

r
  <<1 ,  we can approximate,  

 1 −
2rg

r
  =  1 +

2rg

r
 
−1

    =  
1

D(r)
                                                                                             (7) 

 

 

And again, 

r2  1 −
2rg

r
 
−1

=  
1

r2 −
2rg

r3
 
−1

≈  
1

r2
 
−1

 = r2                                                                            (8) 

(Since  
rg

r3
  <<1) 

 

Eqn.(8) implies that  r2 ≈ D(r)r2                                                                               (9) 
 

Substituting (6), (7) and (9) in (5) , we obtain  

L = −
c2

2D(r)
t′2 + 

1

2
D(r)  r′

2  +  r2(θ′
2  + φ′

2sin2θ)                                                                  (10) 

Now, 

  dxi 2 =   dxi  dxi  =   dr2 + r2(dθ2 + dφ2  sin2θ)                                                               (11)             

 (i = 1,2,3) 

∴  
dx i

dp
 

2

 =  x′
i 

2
 = r′

2  + r2(θ′
2  + φ′

2sin2θ)                                                                           (12) 

Using (12) in (10), we have, 

L = −
c2

2D(r)
 t′ 2 + 

1

2
D(r)  x′

i 
2
                                                                                                    (13) 
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which is in  a more symmetrical form. 

The 4-dimensional canonical momentum Pα  conjugate to xα  is given by  

Pα  = 
∂L

∂x ′α
                     (α = 0,1,2,3)                                                                                           (14)   

                                                                    

In  (14), x′
α
 = (x′

0  , x′
i
) = (ct′, x′

i
)                                                                                                (15) 

  

   Using (13) and (15) in (14), we then get                                                                                                                       

𝑃0  = 
𝜕𝐿

𝜕𝑥′0
 = 

1

𝑐
 
𝜕𝐿

𝜕𝑡 ′
 = − 

𝑐

𝐷(𝑟)
 𝑡′                                                                                                        (16) 

and 

𝑃𝑖  = 
𝜕𝐿

𝜕𝑥′𝑖
 = 𝐷(𝑟) 𝑥′

𝑖
                                                                                                                       (17) 

 

Now, the Hamiltonian is given by: 

H      = 𝑥′
𝛼𝑃𝛼  – L   

         = 𝑥′
0𝑃0  + 𝑥′

𝑖𝑃𝑖  −L 

          =  𝑐𝑡′ 𝑃0 +  𝑥′
𝑖𝑃𝑖  –L                                                                                                           (18) 

 
 We now substitute (16), (17) and (13) in (18), to get 

H = −
𝑐2

𝐷(𝑟)
 𝑡′ 2 + 𝐷(𝑟)  𝑥′

𝑖 
2
+ 

𝑐2

2𝐷(𝑟)
 𝑡′ 2 − 

1

2
𝐷(𝑟)  𝑥′

𝑖 
2
 

 

Or, 

 H = −
𝑐2

2𝐷(𝑟)
 𝑡′ 2 + 

1

2
𝐷(𝑟)  𝑥′

𝑖 
2
                                                                                                   (19) 

 

It will be convenient to express (19) in terms of 𝑃0  and  𝑃𝑖 , given by (16) and (17). In that case (19) becomes,  

     H = −
1

2
𝐷(𝑟) 𝑃0

2 + 
1

2𝐷(𝑟)
𝑃𝑖

2                                                                                                      (20) 

 

 
The quantum operator for the Hamiltonian in (20) can now be obtained using the following correspondence,  

𝑃0    → 
𝑖ħ

𝑐

𝜕

𝜕𝑡
  ;    𝑃𝑖→-iħ 𝛻   

𝑖
                                                                                                              (21) 

 

𝑃𝛼  =  𝑃0 ,   𝑃𝑖    =    
𝐸

𝑐
, 𝑃𝑖                                        

 

Putting (21) in (20) and using the system of units, ħ = 𝑐 = 1, we then obtain  

        H = 
1

2
𝐷(𝑟) 

𝜕2

𝜕𝑡2 −
1

2𝐷(𝑟)
𝛻2                                                                                                          (22) 

 

Eqn. (22) gives us the appropriate quantum Hamiltonian operator of the unit mass in the curved space-time 

continuum. 

 

B. The Equivalent Relativistic Quantum Equation of the unit Mass in curved Space-time 

            From (22), we note that the Hamiltonian is indeed relativistic, since space and time derivatives appear 

symmetrically. In a curved space-time we are interested in how the wave function 𝜓   of the particle changes 

with curvature (or gravity). This can be achieved if we allow 𝜓  to be a function of the curve parameter  𝑝 as 
well. Thus  

  𝜓 = 𝜓(𝑥, 𝑦, 𝑧, 𝑡, 𝑝)                                                                                                                (23) 

 

The variation of 𝜓 with (𝑥, 𝑦, 𝑧, 𝑡) is taken care of by H given in (22). For consistency, this must be equal to the 

variation of 𝜓 with respect to the curve parameter 𝑝. Hence we can write the following equivalent quantum 

equation for the particle moving in a curved space-time continuum, 

𝑖
𝜕𝜓  

𝜕𝑝
=H𝜓 , ( ħ = 1)                                                                                                                       (24)           

                                                                                                 
Using (22) in (24), we get,  

𝑖
𝜕𝜓 (𝑥,𝑦,𝑧,𝑡 ,𝑝)

𝜕𝑝
 =  

𝐷(𝑟)

2
 
𝜕2𝜓

𝜕𝑡2 −
1

2𝐷(𝑟)
𝛻2𝜓                                                                                           (25) 
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Separating the variables, we can write  

 𝜓 𝑥, 𝑦, 𝑧, 𝑡, 𝑝   =  𝜙(𝑥, 𝑦, 𝑧, 𝑡) 𝑓(𝑝)                                                                                          (26) 
 

If we substitute (26) in (25), we arrive at the following two equations   

𝑖 
𝜕𝑓

𝜕𝑝
 = 𝜆𝑓(𝑝)                                                                                                                              (27) 

 

and  
𝐷(𝑟)

2
 

1

𝜙
  
𝜕2𝜙

𝜕𝑡2 −
1

2𝐷(𝑟)
 

1

𝜙
  𝛻2𝜙 = 𝜆                                                                                             (28) 

 

where, 𝜆 is the separation constant.  
Eqn. (28) can be simplified to,  

𝐷(𝑟) 
𝜕2𝜙

𝜕𝑡2 −
1

𝐷(𝑟)
 𝛻2𝜙   =  (2𝜆)𝜙  = 𝜖𝜙(𝑥, 𝑦, 𝑧, 𝑡)                                                                    (29) 

 

Where, 𝜖 = 2𝜆 

The stationary solutions of (29) can be written as  

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓(𝑥, 𝑦, 𝑧) 𝑒−𝑖𝜔𝑡                                                                                                   (30) 
 

where 𝜔 is related to the energy.  

Substituting (30) in (29), we then get the following equation for  𝜓(𝑥, 𝑦, 𝑧) 

−𝜖𝜓(𝑥, 𝑦, 𝑧) = 𝜔2𝐷 𝑟 𝜓 𝑥, 𝑦, 𝑧 +
1

𝐷 𝑟 
𝛻2𝜓(𝑥, 𝑦, 𝑧)                                                             (31) 

 

Since the problem is spherically symmetric, we use spherical polar coordinates, so that 

𝜓(𝑥, 𝑦, 𝑧)    = 𝜓(𝑟, 𝜃, 𝜑)  =   𝑅 𝑟 𝑌(𝜃, 𝜑)                                                                                (32) 

 

We now substitute (32) in (31), and use the following relations 

𝛻2 = 
1

𝑟2

𝜕

𝜕𝑟
 𝑟2 𝜕

𝜕𝑟
 −

𝐿2

𝑟2                                                                                                               (33) 

 

𝐿2  𝑌(𝜃,𝜑)= 𝑙(𝑙 + 1) 𝑌(𝜃,𝜑)                                                                                                     (34) 

 (𝑙= 0, 1, 2,  …)  

Eqn.(31), then reduces to, 
1

𝐷 𝑟 
 
𝑑2𝑅(𝑟)

𝑑𝑟2 +
2

𝑟

𝑑𝑅(𝑟)

𝑑𝑟
−

𝑙(𝑙+1)

𝑟2 𝑅 𝑟    + 𝜔2𝐷 𝑟  𝑅 𝑟  = −𝜖 𝑅 𝑟                                               (35) 

 

To take care of the solution at  𝑟 = 0, we introduce another radial function  𝑋(𝑟) defined by 

𝑅 𝑟  = 
𝑋(𝑟) 

𝑟
                                                                                                                                (36) 

 

Using (36) in (35), one can easily arrive at the following differential equation for 𝑋 𝑟 ,     
 
𝑑2𝑋(𝑟)

𝑑𝑟2 −  
𝑙 𝑙+1 

𝑟2 −𝜔2𝐷2(𝑟) − 𝜖𝐷(𝑟) 𝑋 = 0                                                                            (37) 

 
This is the Schrodinger-like radial equation for the unit mass in an Einsteinian gravitational field. 

 

C. Solution of the Radial Equation 

We now determine the physically acceptable solutions of (37). We firs note that using (6), we can write,  

    𝜔2𝐷(𝑟)2 + 𝜖𝐷(𝑟) = 𝜔2  
𝑟2+4𝑟𝑟𝑔  +4𝑟𝑔

2

𝑟2
  + 𝜖  

𝑟+2𝑟𝑔

𝑟
  

                                  = 
4𝜔2𝑟𝑔

2

𝑟2  +  
4𝜔2𝑟𝑔+2𝜖𝑟𝑔

𝑟
  +  𝜔2 + 𝜖                                               (38) 

 

Substituting (38) in (37), we obtain  
𝑑2𝑋(𝑟)

𝑑𝑟2  −  
𝑙 𝑙+1 −4𝜔2𝑟𝑔

2

𝑟2 −
4𝜔2𝑟𝑔+2𝜖𝑟𝑔

𝑟
+   −𝜔2 − 𝜖   𝑋(𝑟)    = 0                                     (39) 

 

We now use a new variable 𝑧  defined by 

𝑧 = 2 −𝜔2 − 𝜖 𝑟                                                                                                            (40) 



Quantization of the Orbital Motion of a Mass in the Presence of Einstein’s Gravitational Field 

DOI: 10.9790/4861-07118492                                    www.iosrjournals.org                                              88 | Page 

and substitute, 

𝛼 =   
𝑟𝑔 (2𝜔2+𝜖)

 −𝜔2−𝜖
                                                                                                                     (41) 

 

Eqn.(39) can be then reduced to, 
𝑑2𝑋(𝑧)

𝑑𝑧2  - 
𝑙 𝑙+1 −4𝜔2𝑟𝑔

2

𝑧2 −
𝛼

𝑧
+  

1

4
 𝑋(𝑧) = 0                                                                             (42) 

 

We now study the behavior of the solution 𝑋(𝑧) in the two limiting cases, namely, when 𝑧 → ∞ and   𝑧 → 0 . 

In the limit 𝑧 → ∞, we can write (42) as 
𝑑2𝑋(𝑧)

𝑑𝑧2   ≅ 
1

4
 𝑋(𝑧)                                                                                                            (43) 

 
Which has the following acceptable  solution 

𝑋(𝑧) = 𝑒−
1

2
𝑧
, 𝑧 → ∞                                                                                                                  (44) 

 

In the limit 𝑧 → 0 we can write (42) as:  
𝑑2𝑋(𝑧)

𝑑𝑧2  ≅  
𝑙 𝑙+1 −4𝜔2𝑟𝑔

2

𝑧2
 𝑋(𝑧)                                                                                                     (45) 

 
Using a trial solution   

𝑋(𝑧) = 𝑧𝑏                                                                                                                                  (46) 
 

in (45), it is easy to see that  

𝑏 =  
1

2
+  

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2                                                                                           (47) 

Thus, when 𝑧 → 0, the solution (46) is given by  

𝑋 𝑧 = 𝑧
1

2
+ 

1

2
  2𝑙+1 2−16𝜔2𝑟𝑔

2

                                                                                                    (48) 
 

Combining (44) and (48), we can now write down the general solution for all 𝑧 as: 

𝑋 𝑧 = 𝑧
1

2
+ 

1

2
  2𝑙+1 2−16𝜔2𝑟𝑔

2

  𝑒−
1

2
𝑧
 𝑊(𝑧)                                                                                (49) 

 

where 𝑊(𝑧) is to be determined so that (49) is physically acceptable for all values of  𝑧 .  

To determine the differential equation for  𝑊(𝑧) , we substitute (49) in (42) 

We first calculate 
𝑑2𝑋

𝑑𝑧 2 which turns out to be: 

𝑑2𝑋

𝑑𝑧 2 = 
1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2  
−1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2  𝑧
−1

2
 −1+

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

 𝑥 𝑒−
1

2
𝑧
 𝑊(𝑧)  + 

 
1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2 𝑧
−1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

  
−1

2
 𝑒−

1

2
𝑧
 𝑊(𝑧)  + 

 
1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2 𝑧
−1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

𝑒−
1

2
𝑧 𝑑𝑊

𝑑𝑧
   

+  
1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2 𝑧
−1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

 
−1

2
 𝑒−

1

2
𝑧
 𝑊(𝑧) 

+  𝑧
1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

 
−1

2
  

−1

2
 𝑒−

1

2
𝑧𝑊(𝑧)  + 𝑧

1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

 
−1

2
 𝑒−

1

2
𝑧 𝑑𝑊

𝑑𝑧
 + 

 
1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2  𝑧
−1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

𝑒−
1

2
𝑧
 
𝑑𝑊

𝑑𝑧
   + 

𝑧
1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

 
−1

2
 𝑒−

1

2
𝑧 𝑑𝑊

𝑑𝑧
  + 𝑧

1

2
 +

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

𝑒−
1

2
𝑧
 
𝑑2𝑊

𝑑𝑧 2                                    (50) 

 

Using eqn. (50) in (42) and canceling 𝑧
1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

𝑒−
1

2
𝑧
 throughout and simplifying the coefficient of  

𝑧
−3

2
  , we arrive at the following equation. 

𝑧
1

2
 𝑑

2𝑊

𝑑𝑧 2 + −𝑧
1

2
 + 𝑧−

1

2
  1 +   2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2  
𝑑𝑊

𝑑𝑧
+  𝑧

1

2
  

1

4
 − 𝑧−

1

2
  

1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2 +

𝑧−1 𝑧−12 −1 4+14 2𝑙+12− 16𝜔2𝑟𝑔2  𝑊(𝑧)–𝑙𝑙+1−4𝜔2𝑟𝑔2𝑧2−𝛼𝑧+ 14 𝑧12 𝑊𝑧= 0                                                                         

(51) 
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Multiplying (51) by 𝑧
1

2
 
 and again simplifying, we get, 

 

𝑧 𝑑
2𝑊

𝑑𝑧 2  + −𝑧 +  1 +  2𝑙 + 1 2 −  16𝜔2𝑟𝑔
2  

𝑑𝑊

𝑑𝑧
 +  𝑧  

1

4
 −  

1

2
+

1

2
  2𝑙 + 1 2 −  16𝜔2𝑟𝑔

2 + 𝑧−1   
−1 

4
+

14 2𝑙+12− 16𝜔2𝑟𝑔2 𝑊(𝑧)− 𝑙𝑙+1−4𝜔2𝑟𝑔2𝑧2−𝛼𝑧+ 14 𝑧 𝑊𝑧= 0            (52)         

                    

If we combine the coefficients of 𝑊(𝑧) in (52), we shall finally arrive at, 

𝑧
𝑑2𝑊

𝑑𝑧2 + 1 +   2𝑙 + 1 2 − 16𝜔2𝑟𝑔
2 − 𝑧 

𝑑𝑊

𝑑𝑧
 − 

1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2 −
𝑟𝑔 2𝜔2+𝐸 

 −𝐸−𝜔2
 𝑊(𝑧)                                      

     = 0                                                                                                                                (53) 

Where we have substituted for 𝛼  given by eqn.(41). 

 Eqn.(53) is exactly identical with the well known Kummer-Laplace differential equation[18], given by                                                                                                                               

𝑧
𝑑2𝑊

𝑑𝑧2 + 𝑐 − 𝑧 
𝑑𝑊

𝑑𝑧
 −𝑎𝑊(𝑧)  = 0                                                                                             (54) 

 
  The solutions of (54) are given by the confluent hypergeometric functions written as,                   

1F1 (𝑎, 𝑐, 𝑧) = 1+ 
𝑎𝑧

1!𝑐
 + 

𝑎(𝑎+1)𝑧2

2!𝑐(𝑐+1)
 + …                                                                                      (55) 

 

Hence, we can write  

𝑊(𝑧)  = 1F1 (𝑎, 𝑐, 𝑧)                                                                                                              (56) 

 

 

Where, 

𝑎 = 
1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2 −
𝑟𝑔 2𝜔2+𝜖 

 −𝜖−𝜔2
                                                                     (57) 

 

 

𝑐 = 1 +  2𝑙 + 1 2 − 16𝜔2𝑟𝑔
2                                                                                           (58) 

 

We must now impose the condition that 𝑊(𝑧)  given by (56) must go to zero as 𝑧 𝑜𝑟  𝑟 goes to infinity, since we 

are interested in bound state solutions. 

Now, for large positive values of   𝑧, the function (55) behaves as [18], 

1F1 (𝑎, 𝑐, 𝑧) → 
⎾(𝑐)

⎾(𝑎)
𝑒𝑧𝑧𝑎−𝑐                                                                                                 (59) 

 

Where ⎾ is Euler’s gamma function, having the property  

⎾(𝑎 + 1) = 𝑎⎾(𝑎)                                                                                                             (60)        

                                                      

   Since⎾(𝑎 + 1) =  𝑎! , we have from (60), 

                   ⎾(𝑎) =  
𝑎!

𝑎
                                                                                                          (61)   

 

Using (61) in (59), we then have,  

When 𝑧 → ∞,                                    

            1F1 (𝑎, 𝑐, 𝑧) → 
𝑎⎾(𝑐)

(𝑎!)
𝑒𝑧𝑧𝑎−𝑐                                                                           (62)  

 

It is clear from (62) that 1F1 (𝑎, 𝑐, 𝑧) goes to zero, if  

                       𝑎 = 0 or  (𝑎!) → ∞                                                                           (63) 

 

     It is known that  

         𝑎! = ±∞, 

 whenever,  𝑎 is a negative integer. Thus, the condition that 1F1 (𝑎, 𝑐, 𝑧) or 𝑊(𝑧) goes to zero when   𝑧 → ∞, is 

given by: 

𝑎 = −𝑛  , where 𝑛 = 0, 1, 2, 3,….                                                                             (64) 

 

Using (64) in (57), we have 
1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2 −
𝑟𝑔 2𝜔2+𝜖 

 −𝜖−𝜔2
 = −𝑛                                                       (65) 
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 Eqn. (65) is the necessary condition for quantization of the motion of the unit mass in gravitational field.  

Writing, 𝛽 =  –𝜖 − 𝜔2                                                                                             (66) 

We can write (65) as  

−
 2𝜔2+𝜖 

𝛽
 =  −

1

𝑟𝑔
  𝑛 +

1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2                                               (67) 

Noting that, 2𝜔2 + 𝜖 = 𝜔2 − 𝛽2                                                                                    (68) 
 

We can rewrite (67) as, 𝛽2 −𝜔2 = 𝑕𝛽                                                                          (69) 
 

 

 where 𝑕 =  −
1

𝑟𝑔
  𝑛 +

1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2                                                   (70) 

 

The solutions of   (69) are given by 

𝛽 =  
𝑕± 𝑕2+4𝜔2

2
                                                                                                                  (71) 

 

Substituting for 𝛽 and 𝑕 from (66) and (70), we have from (71),  

 –𝜖 −𝜔2 =     

− 
1

2𝑟𝑔
   𝑛 +

1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2   ±   𝑛 +
1

2
+

1

2
  2𝑙 + 1 2 − 16𝜔2𝑟𝑔

2 
2

+ 4𝜔2𝑟𝑔
2                                                                  

(72) 

 Eqn.(72) gives the energy eigenvalues (– 𝜖 − 𝜔2) in terms of a quantum number  𝑛 . 

The radial eigenfunctions  𝑅 𝑟  will depend on the quantum numbers (𝑛, 𝑙), as we shall just see. 

 Using (40) in (36), we have    

𝑅(𝑧) =
2 –𝜖−𝜔2

𝑧
 𝑋(𝑧)                                                                                                                 (73) 

 

Substituting (49) and (56) in (73), we then have   

𝑅𝑛𝑙 (𝑧) =  2 −𝜔2 − 𝜖   𝑧
−1

 2
+

1

2
  2𝑙+1 2− 16𝜔2𝑟𝑔

2

  𝑒−
1

2
𝑧
  1F1(−𝑛 , 𝑐 , 𝑧)                                 (74)  

 

                                The radial functions given in (74),clearly depend on two quantum numbers 𝑛 𝑎𝑛𝑑 𝑙. 
 It should be noted that from (55), 1F1(−𝑛 , 𝑐 , 𝑧) in (74) is given by, 

1F1(−𝑛, 𝑐, 𝑧)=   
 −𝑛 𝑘 𝑧

𝑘

(𝑘!) 𝑐 𝑘
𝑘                                                                                                          (75) 

 
Where, 
 𝛼 𝑘  = 𝛼 𝛼 + 1  𝛼 + 2 …… . (𝛼 + 𝑘 − 1). 

In (75),𝑛=0, should be excluded, otherwise 1F1 = 0,for all 𝑧, which is unphysical. 

 Thus,  𝑛 =1,2,3,….                                                                                                                   (76) 

 

D. Derivation of  𝒓  of a unit Mass from the Bigger Mass 

To calculate  𝑟 , we make the following logical approximation, 

  2𝑙 + 1 2 −  16𝜔2𝑟𝑔
2 =  2𝑙 + 1  1 −

16𝜔2𝑟𝑔
2

 2𝑙+1 2  

                                     ≅  2𝑙 + 1                                                                                             (77) 

 

In that case, from (58), we have  

                           𝑐 = 2𝑙 + 2                                                                                                      (78) 

 

Using (77) and (78) in (74), we have  

𝑅𝑛𝑙 (𝑧) = 𝑁𝑛𝑙 ( 2 −𝜔2 − 𝜖  ) 𝑧𝑙  𝑒−
1

2
𝑧
  1F1(−𝑛 , 2𝑙 + 2 , 𝑧)                                                      (79) 

where the normalization constant  𝑁𝑛𝑙   has to be determined by the condition, 

 𝑅𝑛𝑙
2 (𝑟)𝑟2𝑑𝑟

∞

0
 = 1                                                                                                                                (80) 
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Changing the variable 𝑟 by 𝑧 in (80) and then using (79), we have  

𝑁𝑛𝑙
2 1

8 −𝜖−𝜔2 
3
2

 4 −𝜖2 −𝜔2   𝑧2𝑙+2  𝑒−𝑧 1𝐹1 2∞

0
𝑑𝑧 = 1                                                    (81) 

 

Now, we use (75) in (81), to get,  

 𝑁𝑛𝑙
2   

1

2 –𝜖−𝜔2
  

  −𝑛 𝑘 
2

 𝑘! 2 2𝑙+2 𝑘
2  𝑧2𝑙+2𝑘+2  𝑒−𝑧

∞

0
𝑑𝑧 = 1                                                         (82) 

 

From the definition of ⎾(𝑎 + 1), we have  

⎾(𝑎 + 1) = 𝑎! =  𝑒−𝑡𝑡𝑎𝑑𝑡
∞

0
                                                                                                 (83) 

 

Using (83) in (82), we finally get  

𝑁𝑛𝑙  =  
2 (−𝜖−𝜔2)  𝑘! 2    2𝑙+2 𝑘 

2

  −𝑛 𝑘 
2    2𝑙+2𝑘+2 !

                                                                                                  (84) 

 

Now  𝑟  is given by   

 𝑟   =  𝑟 𝑅𝑛𝑙
2 (𝑟) 𝑟2 

∞

0
𝑑𝑟                                                                                                        (85) 

 

Changing variable 𝑟 to 𝑧 and using (84) and (79) in (85), we have  

 𝑟 =
1

8(−𝜖−𝜔2)
3
2

 
1

2(−𝜖−𝜔2)
1
2

  8(−𝜖 −𝜔2)
3

2  
  𝑘! 2    2𝑙+2 𝑘 

2

  −𝑛 𝑘 
2    2𝑙+2𝑘+2 !

 𝑧2𝑙+3𝑒−𝑧  1𝐹1(−𝑛, 2𝑙 + 2, 𝑧) 2𝑑𝑧
∞

0
                                                                      

                                                                                                                                             (86) 

 
Using (75) and (78) in (86), we get  

 𝑟 =  
1

2 –𝜖−𝜔2
   

 1

   2𝑙+2𝑘+2 !
 𝑧2𝑙+2𝑘+3𝑒−𝑧𝑑𝑧

∞

0
                                                                         (87) 

 

Because of (83), we can reduce (87) to, 

 𝑟 =
2𝑙+2𝑘+3

2 –𝜖−𝜔2
                                                                                                                                       (88) 

 

Since 𝑘 =1,2,3,…., we can write 𝑘 = 𝑛 in (88), so that  

 𝑟 =
2𝑛+2𝑙+3

2 –𝜖−𝜔2
                                                                                                                                      (89) 

 

Thus  𝑟  becomes an integral multiple of a constant factor 
1

2 –𝜖−𝜔2
 

E. Calculation of  𝒓  for Solar Planets 

We can now utilize (89) to estimate the planetary distances from the sun.  We shall calculate  𝑟  
separately for the inner and outer planets of the solar system. The inner planets start from Mercury to Mars and 

their orbits lie within a distance of 1.5 A.U. from the sun, whereas the outer planets start from Jupiter to Pluto 
and are far away from the sun. For example the orbit of Jupiter lies at 5.2 A.U. from the sun. For the inner 

planets, we fix the value of 2 – 𝜖 −𝜔2  in (89), using the experimentally observed value of  𝑟  for Mercury. 

Now, for Mercury, we have [12],  

                                         𝑟 = 0.39 A.U  

 

Avoiding the value 𝑙 =0, we use (𝑛, 𝑙)=(2.1) for Mercury, so that (89) gives us 

 

                                 2 –𝜖 −𝜔2 = 23.0769  𝐴.𝑈.  −1                                                    (90) 

Using (90) and the next pairs of values of (𝑛, 𝑙) , we calculate  𝑟  from (89) for the remaining inner planets. The 

results are shown in Table I. 
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Table – I Calculated and observed values of  𝒓  of inner planets  
Planets Values of  (𝑛, 𝑙)  Calculated radius                

( in A.U.) 

Observed radius        

(in A.U.)[12] 

Mercury (2,1) 0.39(fitted) 0.39 

Venus (4,3) 0.737 0.72 

Earth (6,5) 1.083 1.00 

Mars (8,7) 1.430 1.52 

 

In a similar way, we fix the value of 2 –𝜖 −𝜔2 for the outer planets, using the value of  𝑟  of the Jupiter, with 

(n, l) =  2,1 .  For Jupiter, we have [12], 

                              r =5.2 A.U.  

So that 2 –ϵ −ω2 = 1.731  A. U.  −1  

We then calculate  r  for the remaining planets, excluding Pluto, which does not have a well-defined orbit. The 

results are shown in Table II 

 

Table- II Calculated and observed values of  𝐫  of outer planets 
Planets Values of (n, l) Calculated radius    (in A.U.) Observed radius          

in (A.U.)[12] 

Jupiter (2,1) 5.2(fitted) 5.2 

Saturn (4,3) 9.822 9.54 

Uranus (8,7) 19.064 19.18 

Neptune (13,12) 30.618 30.06 

 

From the Tables I and II, it is clear that the planetary orbital distances calculated from the model 

presented in this paper, agree quite well with the astronomically observed values. 

The orbits of each planet can be associated with a pair of quantum numbers (n, l), and we find an interesting 

order  given by (2,1);(4,3);(6,5);(8,7);(13,12) which correspond to stable orbits. Thus the planetary orbits have a 

quantized character, somewhat similar to the electronic orbits in an atom. 

 

III. Conclusion 
It has been quite interesting to observe that quantum mechanics which was originally introduced to 

study the properties of a system at the micro scale, has proved to be essential to understand many physical 

phenomena at the macro scale, such as superconductivity, super fluidity and  ferromagnetism, which are known 

as collective phenomena. In the last few decades many attempts have been made with moderate success, to 

apply quantum laws at the cosmological scale, in particular to develop a quantum theory of gravity in the light 

of Einstein’s theory of gravitation. Another aspect of this problem that has engaged the attention of many 

theoretical physicists has been to explain the striking stability of the planetary orbits around the sun. In the 

present work, we have used an effective Hamiltonian operator in a curved spacetime continuum in an equivalent 
Schrodinger-type equation. The solutions of this equation enable us to calculate the planetary orbital distance in 

terms of a pair of quantum numbers, which in a way, explain the stability of the orbits.    
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