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Abstract: Mineral Exploration is very important for industry. There are many spectral techniques used for 

identification of elements. Un fortunately these techniques are complex and expensive. There is a need for 

simple technique for exploration. This work utilizes simple technique based on electrical conductivity. The 

experimental work shows variation of conductivity with frequency, with line shape similar to absorption line. 

There is a minimum frequency for each element, which can be used as a finger print characterizing it. 

Fortunately this conductivity –frequency relation can be explained on the basis of quantum and statistical 

physics.   
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I.  Introduction 
Spectrometers are very important in civilization [1]. They are wildly used in mineral exploration [2, 3]. 

They are also utilized in soil tests [4], beside their applications in detecting trace elements in plants and 

organisms [5, 6]. Recently spectrometers are used in medicine in diagnosis [7]. 

Spectrometers are devices to account for the concentration of elements in any sample [8]. They consist 

of detectors which detect electromagnetic waves by converting them to corresponding electrical pulses. 

A frequency or wavelength splitter unit is important for the spectrometer to split the spectrum of the 

sample [9]. The spectrum of sample is displayed on the display unit screen as a wavelength (or frequency) 

versus the photons intensity. The wavelengths are related to elemental content of samples [9]. The photon 

intensity is related to the concentration of elements in the sample [9]. 

Most of spectrometers utilize electromagnetic spectrum to identify elements existing in sample [Al, Cu, 

Au, Ag, Sn, Fe]. However some attempts were made to identify some materials by determining their energy gap, 

using simple electrical methods .Unfortunately such attempts can identify insulators and semiconductors but 

they cannot identify conductors or minerals. This requires searching for simple alternative to do this. This paper 

is concerned with performing this task by using simple electric method based on conductivity. 

This work is done experimentally in section 2 and 3, and verified theoretically in section 4, sections 5 

and 6 are devoted for for results and discussion. 

 

II.      Experimental Change of conductivity with frequency 
     In this experiment a transmitter coil emits electromagnetic waves. 

 These electromagnetic waves are allowed to incident on certain materials. The re emitted electromagnetic 

waves are receipted by a receiver. 

 

(2-1)  Apparatus: 
- 10 Resistors (10kΩ, 2.2GΩ, 39kΩ),12 Capacitors (0.1μF, 0.01μF, 220μF), 6 Transistors (NPN),2 transmitter 

and receptor Coils (400,500, 600, 700, 1000 turns),Wire connection ,Speakers, Cathode Ray Oscillator,Board 

connection, Battery (9V),Signal generator. 

 

(2-2) Samples: 
A pieces of metal (Cu, Al, Fe, Au,Ag, Sn). 

 

(2-3) Method: 
The transmitter coil current is varied by using signal generator. The emitted photons are allowed to 

incident on the sample. The sample absorps photons and re emit them. The metal detector design is the circuit 

which connected as shown in fig (3.1). Thesignals appearing at oscilloscope were taken before mounting the 

sample, and after photon emission. The frequency and the corresponding conductivity of sample are recorded 

and determined from signal generator, current, voltage, the length and cross sectional area of samples. The 

current and voltage gives resistance, which allows conductivity determination from the dimensions of the 

sample. 
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Fig (3-1) 

 
(2-4): Tables and Results: 

Table (2-4-1) Relation between frequency (f) and Conductivity ( ) without applied magnetic field for 

Cu, Al, Fe, Au, Ag, Sn 
Frequency ( Hz )   Conductivity ((106 cm.Ω) 

24 0.452 

27 0.596 

29 0.0993 

34 0.0917 

50 0.143 

56 0.337 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig (2-4-1-1) Relation between resonance frequency and Conductivityfor Cu, Al, Fe, Au, Ag, Sn 

 
Table (2-4-2) Relation between frequency (f) and Conductivity ( )for different magnetic flux densities 

for gold 
Frequency ( Hz )   Conductivity (106 

cm.Ω ) In  97.3  µT 

  Conductivity (106 

cm.Ω ) In  77.µT 

 

Conductivity (106 

cm.Ω ) In  116.7  

µT 

  Conductivity (106 

cm.Ω ) In  136.2µT 

  Conductivity (106 

cm.Ω ) In  194.53 

µT 

55.25746 0.50026 0.12637 0.04739 0.15165 0.06824 

47.48594 0.26365 0.03724 0.01396 0.04468 0.02011 

40.49329 0.16368 0.03439 0.0129 0.04126 0.01857 

35.4219 0.24726 0.05362 0.02011 0.06435 0.02896 

26.8109 0.39107 0.1695 0.06356 0.2034 0.09153 

24.81177 0.58753 0.2235 0.08381 0.2682 0.12069 
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Fig (2-4-2-2) Relation between frequency (f) and Conductivity ( )for different magnetic flux densities 

for gold 

 

III.      Theoretical Interpretation 
(3-1) Quantum Theoretical Model:
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Where  

0  =electron energy in bounded state. 

  = energy given to the electron. 

0  E = excitation energy. 

Consider solution 

tf sin  (3-1-6) 
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At near resonance 10   

 
Fig (3-1-1) Theoretical relation between frequency (f) and Conductivity ( )  
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Inserting (3-1-10) in (3-1-9) yields 
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(3-2) Classical Absorption Conductivity Resonance Curve: 

Consider an electron of mass m oscillate with natural frequency 0 .If an electric field of strength  

tieEE 
0                                                                                               (3-2-1) 

Was applied, Then the equation of motion of the electron, in a frictional medium of friction coefficient , is 

given by 
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Consider the solution  
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Thus  
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Interesting (14) and (15) and (12) in (13) yields 
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For simplicity consider large displacement amplitude 0x  compared to the electrical one 0E .Thus the last term 

in (4-5) can be neglected to get 
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But the conductivity is given by 
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Where the effective value ev is related to the maximum value through the relation 
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For small value of the power of e , one can expand exponential term to be  

xe x  1 (3-2-9) 

Therefore equation (3-2-7) becomes 
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Where near resonance  

0  00 2                                             (3-2-12) 

The relation between conductivity and frequency resembles that of (2-2-1) in its dependence on  . 

This relation is displayed graphically in Fig (2-4-2-2). 

 
Fig (3-2-1) Theoretical relation between frequency (f) and Conductivity ( )  

 

IV.     Discussion 
The experimental work which was done shows variation of conductivity for gold according to Figs (2-

4-2-1) and (2-4-2-2). The conductivity decreases then attains a minimum value in the range of (40-50 Hz), then 

increases a gain. 

The theoretical expression (3-1-11) which is displayed graphically in Fig (3-1-1) is based on the 

ordinary expression for the conductivity. The electrons density n is found by solving Klein-Gordon equation for 

free particle. This is obvious as far as conduction electrons are free. The electron density is found from the 

square of the wave function, which is a sin function. Since at resonance  is very near to 0 , thus one can 

replace sin x by x . The theoretical relation for f and   obtained by this model resembles the experimental one 

in Fig(3-1-1). 

Another classical approach based on Maxwell –Boltzmanndistribution in section (3) shows a relation 

between  and f in Fig (3-2-1) similar to experimental relation. The relations between   and f resembles that 

of resonance, with minimum conductivity. 

It is very interesting to note that each element has its own resonance conductivity at which conductivity is 

minimum. 

In this model the ordinary expression for   in eq_n (3-1-9) is used. But n here is found from Maxwell 

statistical distribution. 

 

V. Conclusion 
The experimental work done here shows that conductivity changes with the frequency and have a 

minimum at a certain frequency. This frequency can be used to identify elements. Fortunately this experimental 
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relation can be explained theoretically on the bases of Klein –Gordon eq_n or on the bases of Maxwell –

Boltzmann distribution.  
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