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Abstract: Vibrational behaviour of vacancy in bcc transition metal Ta is discussed using the modified 

embedded atom method (MEAM) potential. A second neighbours MEAM model is considered to obtain the 

force-constants of pure Ta and first and second neighbour atoms of vacancy. With the application of MEAM 

potential, the obtained force-constants are used to calculate the local vibrational density of states and mean 

square thermal displacements of first and second neighbours of vacancy using Green’s function method and 

compared with that of the atoms in pure lattice. The value of vacancy formation entropy is also calculated and 

found to be in agreement with other available results. 
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I. Introduction: 
Hu et al [1] have employed the analytic MEAM model proposed by Ouyang and Zhang et al [2, 3] to 

calculate the phonon dispersions and some point defect properties including the vacancy formation energy and 

binding energy for  bcc transition metals.  In earlier studies of vibrational properties of vacancy Pohlong and 

Ram [4] have investigated the local density of states, vacancy formation entropy and mean square displacements 

in transition metals Fe, Mo and W using Johnson and Wilson (JW) potential. In recent studies, Gairola et al [5, 

6] have employed the MEAM to investigate the vibrational properties of vacancy in some transition metals. The 

transition metal alloys have been studied for their unique properties such as high strength, toughness, soft 

magnetic properties, soft superconducting behaviour, corrosion resistance and catalytic activities. In view of the 

ability of analytic MEAM model [1] to reproduce the phonon dispersions of pure metals quite satisfactorily in 

most of the bcc transition metals, in the present work, we apply the MEAM potential to calculate the vibrational 

properties of vacancy in Ta including the local density of states, mean square displacements and vacancy 

formation entropy.  

 

II. MEAM Model: 
The MEAM potential consists of three parts: (i) the embedding function, which is the energy required 

to embed an atom in the field of other atoms, (ii) the pair potential, due to interaction of atomic cores and (iii) 

the modified term which takes in to account the non spherical distribution of electron density.  

According to MEAM model [2] the total energy including a modifying term can be expressed as:  

𝐸 = 𝐹 𝜌 +
1

2
  𝑟𝑚  + 𝑀 𝑃 ,                                                   𝑚            (1) 
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is the embedding function  and                   
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 is the  pair-potential function.          (4) 

The modified energy   term is given as: 

𝑀 𝑃 = 𝜍  1 −
𝑃
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2

exp[−(
𝑃
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The force constants  𝛷𝑖𝑗  𝑙,𝑚   required in the calculation can be obtained from the total energy as: 

𝛷𝑖𝑗  𝑙,𝑚 =
𝜕2𝐸  

𝜕𝑟𝑖
𝑙  𝜕𝑟𝑗

𝑚  
                         (6)  

where  𝑙,𝑚 are the labels of the atoms and 𝑖, 𝑗 are the Cartesian coordinates. 

With the inclusion of embedding function and a modified term with the pair potential the vacancy formation 

energy is given by: 

𝐸1𝑉
𝐹 = 8𝐹 𝜌𝑒 − 𝑓 𝑟1𝑒  + 6𝐹 𝜌𝑒 − 𝑓 𝑟2𝑒  −  4𝜙 𝑟1𝑒) + 3𝜙 𝑟2𝑒  − 14𝐹 𝜌𝑒 + 8𝑀 𝑃𝑒  −  𝑓2 𝑟1𝑒  +

6𝑀 𝑃𝑒  − 𝑓2 𝑟2𝑒  − 14𝑀(𝑃𝑒  ).                                                   (7) 
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II.1 Local density of states and mean square displacement: 

The vibrational density of states of individual atom in the lattice is called as local density of states. The 

local density of states of an atom in pure lattice does not have any special significance as it is same for all atoms 

and in all directions is same as the frequency spectrum (density of states) of the crystal, but for a defect crystal, 

the situation is different: not only the local density of states of different atoms is different, but those of the same 

atoms in different directions may also be different. The total density of states is expressed as the sum of the 

density of states of all atoms in the crystal lattice. Local density of states can be expressed in terms of the 

imaginary part of Green’s function of the defect lattice [7]. Assuming the presence of single impurity (vacancy), 

the Green’s function 𝐺 𝜔  of imperfect lattice  in terms of ideal lattice Green’s function 𝐺0 𝜔 , may be written 

as: 

 𝐺 𝜔 = 𝐺0 𝜔 [𝐼 + 𝑉(𝜔)𝐺0 𝜔 ]−1,                      (8) 

where 𝑉 𝜔 = ∆ɸ𝛷 + M𝜔2    𝑎𝑛𝑑    ∆𝛷 = 𝛷 − 𝛷
0

 is the perturbation matrix due to single vacancy, 𝛷 is the 

force-constant in a lattice with vacancy and 𝛷
0

 that of the ideal 

lattice, and  M  is the mass of host atom. The imaginary part of Green’s function 𝐺(𝜔) is used to obtain the local 

density of states of an atom 𝑙 in the 𝛼 direction in the defect lattice as: 

𝑍𝛼 𝑙,𝜔 =
2𝜔𝑀

𝜋
𝐼𝑚𝐺𝛼𝛼 (𝑙, 𝑙;𝜔)         (9) 

 

II.2 Mean Square thermal displacement and vacancy formation Entropy   
The mean-square thermal displacement of atoms in pure lattice and in a lattice with vacancy is another 

important property to know about the vibrational behaviour of vacancy. The mean square thermal displacements 

can be computed by using the local density of states 𝑍∝(𝜔) is given by the expression: 
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The vacancy formation entropy can be given by the expression: 

 

𝑆1𝑉
𝐹 = 𝑘  𝜍 𝜔,𝑇  ∆𝑍

∞

0
 𝑑𝜔                          (12)                                                

where,  ∆Z(ω) is the change in frequency spectrum due to a single vacancy     

      

III. Results and discussions: 
We have used the   potential parameters and input data for MEAM potential from [1]. Total energies of 

perfect crystal and crystal with vacancy as impurity have been calculated using MEAM potential parameters. 

From the expression of total energy (Eq. 1), corresponding force-constants are obtained. For the calculation of 

matrix elements of force constants  𝛷𝑖𝑗  in a relaxed lattice, the static displacements of first and second 

neighbours of the vacancy are taken from the molecular dynamics calculation of Taji et al. [8], which gives 

inward displacements of first neighbour and outward displacement of second neighbour from the vacant site 

along the coordinate axes. The mono vacancy formation energy is calculated by Eq. (7) and the obtained the 

value (𝐸1𝑉
𝐹 = 3.05 𝑒𝑉 ) which shows a very good agreement with the experimental and other results [9 -11] In 

the calculation of local density of states, the   ideal lattice Green’s functions   are computed using phonon data   

from [12] derived on the basis of Born-Von-Karman fit to measured phonons in neutron scattering experiments. 

With new equilibrium positions of atoms in the defective crystal, using the MEAM potential, the force constants 

in the relaxed lattice are calculated.  For the calculation of Green’s functions, we have followed the modified 

Gilat-Raubenheimer method [13]. The calculated vibrational frequency spectrum (local density of states) of pure 

Ta (solid curve), first neighbour (dashed curves) and second neighbour atoms of vacancy (dotted curve) are 

shown in Fig. (1). The calculated local density of states of host Ta shows the similar behaviour of pure metal as 

obtained on the basis of Born-Von Karman fits to neutron scattering results [12]. The obtained results of local 

density of states of first   neighbours of vacancy show a significant decrease mainly due to large relaxation in 

the presence of vacancy. For second neighbours of vacancy also, the local density of states decreases but it is 

closer to that of host atoms as a result of small change is second neighbour distance in the presence of vacancy.  
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Fig. 1: Local density of states 

 

 

The calculated local density of states of host Ta shows the similar behaviour of pure metal as obtained 

on the basis of Born-Von Karman fits to neutron scattering results [12]. The obtained results of local density of 

states of first   neighbours of vacancy show a significant decrease mainly due to large relaxation in the presence 

of vacancy. For second neighbours of vacancy also, the local density of states decreases but it is closer to that of 

host atoms as a result of small change is second neighbour distance in the presence of vacancy.  

 

 
Fig. 2: Mean Square displacement 

 

The calculated local density of states is used to determine the formation entropy  𝑆1𝑉
𝐹  of the vacancy.  

As there are no reliable experimental results of formation entropy of vacancies available in Ta, we compare our 

result (  𝑆1𝑉
𝐹 = 2.8 𝑘𝐵) of formation entropy of with the results of transition metals of other workers available in 

literature [4, 5, 14-15]. Burton [14] has reported the values (2.2 - 2.6 kB) for all bcc metals, these results were 

based on the first neighbour model taking only the pair potential. Schober et al [15] have also mentioned a value 

of 1.8 𝑘𝐵  for all bcc metals. On comparing with   other calculations the obtained value (2.8 𝑘𝐵) of formation 

entropy   𝑆1𝑉
𝐹   is found to be very close to the value obtained in the earlier paper of Vandana et al [5] for W 

metal  and falls within the range of values calculated by Pohlong and Ram [4] using JW potential. The obtained 
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density of states has been further used to calculate the mean square displacements of first and second neighbour 

atoms of vacancy. The mean square displacement of first neighbours and second neighbours is smaller than that 

of the atoms in perfect crystal as shown in Fig. 2. The overall decrease in the mean square displacement is due 

to the decrease in the frequency spectrum.  

 

IV. Conclusions: 
A theoretical study of vibrational properties of vacancy in Ta transition metal using second neighbour 

MEAM potential has been presented. Using second neighbour MEAM model the force-constants are obtained 

for pure Ta and relaxed lattice in the presence of vacancy. The obtained force constants are used to calculate 

vibrational local density of states, mean square displacement of pure Ta and first and second neighbour of 

vacancy and formation entropy are calculated. The decrease in the local density of states and mean square 

thermal displacements is largely due to strong relaxation of lattice in the presence of vacancy. The obtained 

values of vacancy formation energy and vacancy formation entropy are found to consistent with available   

experimental and other calculated values. 
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