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Abstract: The Nield-Kuznetsov integral function is studied in this work and some of its additional properties
and representations are discussed. In particular, its representations in terms of Bessel and Hankel functions are
derived. Ascending series approximations are presented in a form more suitable for computations using Cauchy
product. An initial value problem is formulated and solved using ascending series and asymptotic
approximations.
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I.  Introduction
In their analysis of coupled, parallel flow, Nield and Kuznetsov [1] introduced the concept of a
transition layer, which we define in the current context as a porous layer of variable permeability typically
sandwished between a constant-permeability porous layer and a free-space channel. In order to obtain an exact
solution to the flow problem, Nield and Kuznetsov [1] reduced Brinkman’s equation which governs the flow
through the transition layer to the well-known inhomogeneous Airy’s equation. Their solution to Airy’s equation
resulted in the introduction of an integral function, referred to as the Nield-Kuznetsov function Ni(X), [2],

which continues to receive considerable attention in the literature due to its many mathematical properties (cf.
[2,3,4]), its usefulness in fluid flow applications, [5], and its utility in the solution of initial and boundary value
problems involving Airy’s inhomogeneous equation with both constant and variable forcing function.

The literature reports on a large number of properties and representations of Ni(X) , its derivatives, and

the many differential equations it satisfies, [2]. However, further studies of this function are still needed to
discover its many applications and the different areas of the sciences in which it arises. In this work we discuss
further properties of the Nield-Kuznetsov function and its use in the solution of initial and boundary value
problems of the Airy’s inhomogeneous equation. We offer various representations of this function, discuss its
computational aspects, and develop its relationship to other integral functions.

I1.  Solution to Airy’s Initial Value Problem
Consider the inhomogeneous Airy’s ordinary differential equation (ODE), [6]:

d’y

——xy=f(x 1
vl (x) )
subject to the initial conditions:

y(0) =« )
Y 0)-p ®
dx

Where & and £ are known constants.
General solutions to ODE (1) are given as follows, for different forcing functions f (X) .
When f (x) = 0, general solution to the homogeneous Airy’s ODE is given
y = a,Ai(x) +2,Bi(x) )
where a,and a, are arbitrary constants, and the functions Ai(x)and Bi(x) are two linearly

independent functions known as Airy’s homogeneous functions of the first and second kind, respectively, and
are defined by the following integrals (cf. [7,8,9]):
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Ai(x) =1Icos[xt+1t3jdt (5)
Ty 3
. 1% . 1 1% 1
Bi(x) = — |sin| xt+=t° |dt + = [ exp| xt—=t° |dt. 6
(x) 72'-([ ( 3 j 7T[|). p( 3 ) ©
The Wronskian of Ai(x)and Bi(x) is given by, [7]:

dBi(x)

dAi(x) _ 1
dx

W (Ai(x), Bi(x)) = Ai(x) T

—Bi(x) ©)

And the solution satisfying the initial conditions (2) and (3) takes the form

e = g IO | g g B0 ®
r1/3) 3°12/3) 3°0/3) | 37°r(2/3)

When f (x) = _l , general solution to ODE (1) is given by
T

y = b,Ai(x) + b,Bi(x) + Gi(X) ©)

and for f (x) = 1 , general solution to ODE (1) is given by
T
y = ¢, Ai(X) + ¢, Bi(x) + Hi(x) (10)

Where b,,b,,c,,and c,are arbitrary constants, and the functions Gi(x)and Hi(x) are known as Scorer’s
functions, [10,11], and are given by

Gi(x) = 1_fsin[xt+lt3jdt (11)
Ty 3

Hi(x) = lTexp(xt—ltS)dt : (12)
Ty 3

From (9) and (10) we obtain, respectively, the following solutions satisfying the initial conditions (2) and (3):

3 B B _
y= ”{r(l/s) 3“6r(2/3)}A'(X)

(13)
+7z{ S S———— B 1 }Bi(x)+ei(x)
373r@/3)  32°1(2/3) 3r/3)r(2/3)
y:ﬂ-{ 31/6a S ﬂ }Al(X)
r(1/3) 3°r(2/3) )

+7T{ 1/36¥ + 2/3ﬂ T Q2/3 : }Bi(x)_'-Hi(X)
33T/3)  32°r(2/3) 32Pr/3r(2/3)

In applying the initial conditions (2) and (3) to obtain the values of arbitrary constants in (4), (9) and
(10), we utilized the following values of the integral functions Ai(x), Bi(x),Gi(x), Hi(x),and their first

derivatives at x=0, reported in [7,8]. We list these values for convenience and reference in Table 1, below.
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Integral Functionat X = 0 Derivative of Integral Functionat X = 0
. V3 : dAi ~/3 dGi
A = —_— = —_— [ — —_
'O =3 r 2 V3Gi(0) | “E(0) FEr(/3) 375 O
. 3 . dBi 3 dGi
Bi(0) = =—————=3Gi(0 —(0) = =3 0
© 3"°r(213) © dx © 3Pr@/3) T dx ©
. 1 Ai(0) dGi 1 1 dAi
© 3°1r(2/3) /3 dx © 3r@/3) 3 dx ©
. 2 2 . dHi 2 2 dBi
HI(0) = =————=—=BIi(0 —(0) = =— 0
© 3’°r@2/13) 3 © ax O 3¥°r@/3) 3 dx ©

Tablel. Values of the integral functions and their derivatives at x=0.

We observe in the above solutions that the Scorer functions furnish the particular solution to
inhomogeneous Airy’s ODE for special values of f (x). When f (x) is a general constant or a variable

function of x, the Scorer functions do not directly render the needed particular solution.
In order to provide for a more general approach to particular solutions to ODE (1), we apply the

method of variation of parameters to obtain the following form of Yy when f(x)=R, where R is any
constant:

y = m, Ai(x) + m,Bi(x) — 7RNi(x) (15)

where m, and m,are arbitrary constants and the function Ni(X) is the Nield-Kuznetsov function,
[1,2]. The function Ni(X) is defined in terms of Airy’s functions as, [1]:

Ni(x) = Ai(x)j. Bi(t)dt — Bi (x)j. Ai(t)dt (16)
0 0
with a first derivative given by
dNi(x) _ dAi(x) f o _ dBi(x) [ ..
T ! Bi(f)dt - — = ! Ai(t)dt. (17)

Equations (16) and (17) give the values Ni(0) =

_dl\;'(o) =0, which we can use in determining the
X

arbitrary constants in (15) when initial conditions (2) and (3) are used. Solution to the initial value problem thus
d’Ni(x) 1

takes the following form (in which we use W (Ai(X), Bi(X)) = o . ):

~ 3U/6 B B - . p . |
y= 72'{1_,(1/3) 31/el—~(2/3)}AI(X)+7l'{31/31—~(1/3) + 32/3F(2/3)}B|(X) RN (X) . (18)

We note at the outset that in solving the initial value problem and expressing the solution in terms
of Ni(x) , values of the arbitrary constants are independent of the forcing function. To illustrate this point

further, when f(x)=¢1, solution to the initial value problem is simply given by equation (15) with
T

1 . . . o
R = F— . In other words, coefficients of Airy’s functions do not change in this case.
V2
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I11.  Representations of Ni(x)
In order to study the behavior of Ni(X) and its derivatives over a subset [a,b] of the real line, we need
to evaluate this function at specified values of x. This is accomplished by utilizing their definitions in terms of
Airy’s functions. In what follows, we provide expressions for Ni(X), its first derivative and its integral in

terms of asymptotic and ascending series, and in terms of Bessel functions representation of Ai(X) and
Bi(X).

3.1. Representations in terms of Scorer’s and Airy’s Functions

In this section we rely on the representations of Ai(x), Bi(x), Gi(x) and Hi(x), given by equations (5),
(6), (11), and (12).

The following relationships have also been reported in the literature (cf. [7,8,9]), and are reproduced
here for reference:

Gi(x) = Ai(x)_X[ Bi(t)dt + Bi (x)T Ai(t)dt (19)
Hi(x) = Bi(x) j Ai(t)dt — Ai(x) j Bi(t)dt (20)
Gi(x) + H|(x) Bi(X) (21)
j Ai(t)dt = § + n{e (x) dA'(X) — Ai(X) dG'(X)} 22)
iBl(t)dt - {Gl(x) dBi) _ gix) dG'(X)} 23)
.X[Ai(t)dt - —%— {Hl(x) GAIX) _ ajc )dH'(X)} (24)
.X[Bi (t)dt = — {HI(X) dBIC) _ gi() dH'(X)} (25)
Iflow, by defining the followmg Wronskians:

W, =W (Ai(x), Gi(x) = Ai(x) 2810 dG'(X) _Gi(x) S0 dA'(X) 26)
W, =W (Ai(X), Hi(x)) = Ai(X) dH'(X) — Hi(x) dA'(X) @n
W, =W (Bi(x), Gi(x)) = Bi(x) dG'(X) _Gi(x) o (X) 28)
W, =W (Bi(x), Hi(x)) = Bi(x) dH'(X) — Hi(x) dB'(X) (29)
we can write equations (22)-(25) in the followmg compact forms, respectively:

fAi(t)dt - % AW, (30)
i Bi(t)dt = —2W, (31)
JX‘Ai(t)dt _ —§+ AN, (32)
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[ Bi(t)dt = 2w, . (33)
0

Multiplying equation (23) by Ai(x) and (22) by Bi(x), then subtracting the latter product from the former, and
making use of the Wronskian of Ai(x) and Bi(x), we obtain the following two expressions for Ni(x):

Ni(x) = Gi(X) —% Bi () (34)
Ni() :gBi(x)—Hi(x). (35)
The foIIowing relationship is obtained by using (21) in (34) or (35):

Ni(x) = —GI(X)——HI(X) (36)
In addltlon, upon using (30)-(33) in (16), we obtain the following expressions for Ni(x):

Ni(x) = ( —ljBl(x) AW, AI(X) (37)
Ni(X) = (%—n\NZJBi (X) + AW, A (X) . 38)

Now, using (11) and (12) in (36), we obtain the following integral representation for Ni(x):

. 2 7. 1 1% 1
Ni(x) = — [ sin| xt+=t% [dt —— | exp| xt—=t> |dt. 39
(x) 371'-([ [ +3 j 37[;[ p( 3 ) (39)

3.2. Derivatives of Ni(x) and their values at x=0:
First derivative of Ni(x) is given by equation (17). We can write the second and third derivatives of

Ni(x) in the following equivalent forms, respectively:

d 2;\'):§X) = X{Ai(x)j' Bi (t)dt —Bi (X)JX. Ai(t)dt} —W (Ai(x), Bi(x)) (40)
o 0 0
NI xnig -w i), Bi() )
and
% {Al(x) X dA'(X)} [ Bi()dt - {Bl(x) X dB'(X)} [ Aiyat )
or
d3N|3(x) Ni(x )+XdN|(x) )

dx dx

N

Higher derivatives of Ni(x) involve W (Ai(X), Bi(X)) = —% = —% and the functions Ni(X) and

%. We develop the following iterative formula for computing the n+1* derivative of Ni(x) with the
X

knowledge of its nth derivative. Assuming that the nth derivative is of the form:
d"Ni(x N| X . :
€= gONi00-+hx) T pOow (A1), BiC) s

dx"
dNi(x)
X

where g(x), h(x), and p(x) are the coefficients of, and W (Ai(x), Bi(x)) , respectively, that

appear in the nth derivative, then the n+1* derivative is given by [2]:
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dNi(x)

I (0 N + g+ T g + P i, i) as)

Equation (45) takes the following form in terms of AI(X) and BI(X) :

dd)':“(x) - {{d?jix) #XOOBAIC0 900 + dn dA'(X) } [Bi(t)dt
(46)

{{d%ix) +xh(X)3BI(X) +{g(x) + dh dB'(X) } [ Ait)dt —[h(x) + dp(x)]\N(Al(x) BI()

The value of the n+1% derivative at X = O can be obtained from either equation (45) or (46) and is written as:

d™Ni(0 1 dp(0

% — __[h(()) + &] (47)
dx T dx

Alternatively, we develop the following iterative formula for a more convenient way of computations:

d"™Ni(0) d"2Ni(0)

— 2 =(n-1)——*%; n=234,... 48
an+l ( ) an—Z n ( )

For ease of reference, we tabulate the derivatives of Ni(X) and their values at X = 0 in Table 2, below:

Ni(X) and its derivatives Valuesat X = 0
X X Ni(0) =0
Ni(x) = Ai(x) j Bi (t)dt — Bi(X) j Ai(t)dt
dNi(0)
d,\:jl)EX) dA|J~B (t)dt—dB' IAI(t)dt ™ -0
d’Ni(x) oo 1 d’Ni(0) 1
™ = XNi(X) _ 2 .
d3Ni(x)  _dNi(x) . d®Ni(0)
0 =X i + Ni(x) e =0
d“Ni(x) _, dNi(x) CeNiG)- L x d*Ni(0) _
dx’ dx dx*
d*Ni(x) _, dNi() i3 d*Ni0) 3
dx® dx T dx® T
6N d°Ni(0
dd'\)'('ﬁ(x) d'\('j'(x) T[4+ x]Nl(x) dx'( )_
d"Ni(x) dNi(X) o a8 d’Ni(0)
™ =[10+x’]——= ™ +9x°Ni(x) x ™ =0
TNE_gomicg +hg M Loy | ANIO 1
dx T
d"Ni(0) (-2 d™*Ni(0)
X" dx 3 =345,
TN 19900 g g0+ DN E O Ay DO,
dx™* dx dx™
_[h(x)+@]w(m(x),Bi(x));n:2,3,4,... d'\ﬂfo) (n-3° dNn'z(O);n_m,...
X X

Table2. Ni(X) And its derivatives and their values at x = 0.
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3.3. Representations in terms of Bessel Functions
With the knowledge of the expressions of Ai(X)and Bi(X), their first derivatives and integrals in

terms of Bessel’s function, I, J,, namely. [7,8]:

Ai(X):g[H/s(ﬂ)— lys (1)) (49)
L X1 o)~ 1) (50
Bi(x)=ﬁ[ll,3(u)+ll,3(u)] (51)
dB'(X) f[ s () + s (1)) (52
{ Ait)dt =3 ! [1,5(t)—1,,5(t)]dt (53)
iBi (t)dt = %I[I_m(t) 1,0t (54)

2 3/2

where g =—X"*, we can express Ni(X) and its derivative, defined in equations (16) and (17), in terms of

Bessel’s function, respectively, as

Ni(x) = 2? (115 (1) j 15 @©t === [l () ][ [1 a0 Jat (5)
dNi(x) 2x
"3 z,s(u)]j ()t - ﬁn_m(u)]! [1s @t (56)

We can also expressNi(x)and its derivative using the modified Bessel function,
I, (-1, — .
namely K (t) = 71, 0-10 , and the Hankel function, namely H_(t) = J_ (t) + 1Y, (t), where Y_(t)

2 sin(zv)
J,H-J3.,0
sin( zv)
expressions of Airy’s functions and their derivatives in terms of Hankel and the modified Bessel functions,
[7.8]:

is the Weber function, defined as: YU )= . This is accomplished by relying on the following

Ai(x)=1ﬁ[r<m<u>] &7
dAi(x) 1 X

dx 7z\/§[ 2/3(#)] (58)
Bi(x) = \E Rele™"*H,,,(—ix)] (59)
dBi(x) _ x izI6 T (s

o _\@Re[e H,,5( |,u)]. (60)

Using (57)-(60) in (16) and (17) we obtain, respectively

-2 <o o, b ol S ) .
dNi(x) 1 X{ ZIB(y)H(Re[e'”’6H1,3( i£) it + Rele™H, . (- lu)l[\f [Kys(&) dt} (62)

dx
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where & = gt3’2 .

3.4. Series Representations and Computation of Ni(X)

Computing and evaluating Ni(X) are necessary in solving initial and boundary value problems

involving the inhomogeneous Airy’s equation, and entail evaluating Airy’s functions. Typically, Airy’s
functions are expressed in terms of asymptotic or ascending series that provide approximations to these

functions at given values of x. Since the Ni(X) integral function is defined in terms of Airy’s functions, we
will rely on Airy’s functions approximations to express Ni(X) in terms of the asymptotic and ascending series
for Ai(x)and Bi(X) , and their derivatives and integrals.

3.4.1  Ascending Series Representation
Asymptotic series approximation of Ni(X), valid for large x, has been discussed by Nield and

Kuznetsov [1] who provided the following approximation and implemented it in their computations of flow over
porous layers:

exp(g X3/2)
Ni(X) » ———— (63)
) 3\/;x1’ 4
« exp( X3/2)
Ni(t)dt ~ — (64)
.([ \/_XSM
3.4.2  Ascending Series Representation
For small values of x, we develop the following ascending series representation.
Letting
© 3
h, = Ai(0) = lj.cos%dt ~ 0.3550280538378172 (65)
T
dAl
=—— (0) = —jtsun 5olt ~ 0.2588194037928067 (66)

1 3k 3k+1
FilX) = Z(s) @Bk+D) 7

F,(x) = Z( j (33kx+2)' (68)
then

© 3k 3k
w0-33) a0 ©

3k 3k+1

R00= Z( j (3K +1)! o

where (b), is the Pochhammer symbol, defined as, [7]:

(b), =1 (71)

(b), :%:b(b+1)(b+2)...(b+k—1);k>0 72)

then the following representations can then be obtained, [7]:
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. dr, . dF
Ai(x)=h -1 _ph 2
100 =h dx % dx 9
. dF dF
Bi(x) =+/3h, —% ++/3h, —2
i(X) =~/3h, - +4/3h, . (74)
[ A®dt =a,F, (x) - a,F,(x) (75)
0
faamt=J§%ﬁoo+J§%Exm (76)
0

Using (65)-(72) in (73)-(76) we obtain the following ascending series representations of Airy’s functions and
their integrals:

© 3k 3k © 2 3kX3k+l
=33 @ h%H @+ "
o0 3k 3k+1
2= ﬁmZ(j EARRCDIE ) @) ®
1 3k 3k+1 3k 3k+2
J A'(t)dt_hlz( j [ DI j @+ )
3k 3k+1 3k 3k+2
foavon3 (3] G ) @ ©
In order to obtain an ascendmg series representatlon for Ni(X) , we use (65)-(72) in (16) to get either
Ni(x) = ZJ”Qh{F( )=+ F() } (81)
or
Ni(X) = AT(X) [/3F, (%) + V30, F, (x) - Bi(Of F (X) — h, F, (). 52)

Equations (81) and (82) have the following equivalent summation expressions, respectively

[ 1) 33 ) [/ 2) 3¢ x3k+2
{Z [Ej WHZ(EJ (3K + 2)!}

Ni(X)=2\/§h1h2 = (9 3y © (1) 3Kyt >
1) G
1 3k 3k+1 3k 3k+2
Ni(x) = A|(X){\/_h12( j (3 + 1)! Zz( ) (3k+2)'}
_ (84)

1 3k 3k+1 3k 3k+2
_B'(X){hlz( ) Gh+D) Z( ) (3k+2)'}

Equation (84) can be expressed in the following form when we make use of the definition of Cauchy product:

_ & (1) (2 —3k+61 -1 e
N-2aa,) 2 @(3).(31_.((& DEk-) +2>!DX >
which we can integrate to get:
) 2 —3k +6l X33
IN tht - 2\/_a1a223 (Z(Sj ( jk ,[(SI +1)'(3(k—|)+2)|D3k +3 (%)

In order to demonstrate utility of the asymptotic series expansions, above, we produced Tables 3(a,b) which
contain values of Ai(X), Bi(x) and Ni(x) for x = 1,2,3,...,10 (Table 3(a)), and for x = 0.1, 0.2, ..., 1
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(Table 3(b)). Computed values in Table 3(b) compare well with the values reported in [ ], with an agreement of
at least seven significant digits.

Graph of Ni(X) on the interval [0,1] is shown in Fig. 1, which shows its progressively decreasing
behaviour with increasing x. Comparison of graphs of Ai(X), Bi(X) and Ni(x) is shown in Fig. 2 which
demonstrates the opposite behaviours of Bi(Xx) and Ni(X). This behaviour is expected since an

approximation to Ni(X) is —% Bi(x).

X Ai(x) Bi(x) Ni(x)

1 10.1352924163 | 1.207423595 —0.1672560919

2 10.0349241297 | 3.298094995 —0.9304114376

3 [ 0.006591136 | 14.03732897 —4,564880838

4 | 0.00095155 83.84707136 —27.86619072

5 | 0.0001081 657.7920428 —219.1991376

6 | 0.000009 6536.446114 —2178.767510

7 | —0.00002 80327.79058 —26776.86426

8 | —0.0002 1199586009 % 10° | —4.000836962 x 10°
° | —0.007 2.147286890 X 107 | —7.193803430 x 10°
101 -0.1 4556411543 x 10° | —1.623380420 x 10°

Table 3(a). Computed Values of Ai(X), Bi(x) and Ni(x) Using Ascending Series

X Ai(x) Bi(x) Ni(x)

01 103292031298 | 0.6598616903 | —0.001591629009
02| 03037031543 | 0.7054642032 | —0.006368744579
03 | 0.2788064818 | 0.7524855851 | —0.01434329156

04 | 0.2547423541 | 0.8017730001 | —0.02554637147

05| 0.2316936062 | 0.8542770430 | —0.04003797119

06 | 0.2098000612 | 0.9110633416 | —0.05791696555

071 0.1891624001 | 0.9733286565 | —0.07933159847

08 | 0.1698463170 | 1.042422172 | —0.1044907107

09 | 0.1518868034 | 1.119872814 | —0.1336760520

10 | 0.1352924163 | 1.207423595 | —0.1672560919

Table 3(b). Computed Values of Ai(X), Bi(x) and Ni(X) Using Ascending Series

—0.0Zz

—o0.o04

—0.06

—0.0s8

—0.10

—0.1z

—0.14

—0.1a

MF__flamctiors

a4

x

Fig. 1. Ni(x) for 0<x<1
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3.4.3

12
1
0.8
Y
0.4

02 =

Fig. 2. Ai(x), Bi(x), Ni(x) for 0<x<1

Representation of the Solution to the Initial Value Problem
Using the ascending and asymptotic series representations above, we evaluate and plot solution (18) for

_1
the following data: ¢ =1, =2 and R =1, -1, ¥ —. These are presented in Figs. 3(a-d). All of these figures

T

show the discrepancy between the asymptotic and ascending series solutions. Since the interval chosen is [0,1]
and the asymptotic series solution is valid for x >>1, it is expected that the asymptotic series solution is
inaccurate as compared to the ascending series solution which is valid for small vales of x. This behaviour is
independent of the choice of the forcing function R.

-0.8

“1.6 //

4] 0z 04 0.6 0.8 1
X

| ----- asymptotic series ascending scricsl

Fig. 3(a) Ascending and Asymptotic Series Solutions for R=1

0 02 0.4 0.6 08 1

I """ asymptotic series ascending scricsl

Fig. 3(b) Ascending and Asymptotic Series Solutions for R=-1
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0 02 0.4 0.6 0.8 1

| """ asymptotic series ascending Rcricsl

1
Fig. 3(c) Ascending and Asymptotic Series Solutions for R = —
b

-3.5

0 02 0.4 0.6 0.8 1
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Fig. 3(d) Ascending and Asymptotic Series Solutions for R = ——
T

IV.  Conclusion
In this work, we provided further properties and representations of the Nield-Kuznetsov function. In

particular, we expressed Ni(X) in terms of Bessel and Hankel functions, and provided an ascending series

expression for its evaluation. An initial value problem was solved, and the solution was computed using both
asymptotic and ascending series for comparison. Suitability of the ascending series representation is

emphasized.
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