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Abstract: The Nield-Kuznetsov integral function is studied in this work and some of its additional properties 

and representations are discussed. In particular, its representations in terms of Bessel and Hankel functions are 

derived. Ascending series approximations are presented in a form more suitable for computations using Cauchy 

product. An initial value problem is formulated and solved using ascending series and asymptotic 

approximations.  
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I. Introduction 
In their analysis of coupled, parallel flow, Nield and Kuznetsov [1] introduced the concept of a 

transition layer, which we define in the current context as a porous layer of variable permeability typically 

sandwished between a constant-permeability porous layer and a free-space channel. In order to obtain an exact 

solution to the flow problem, Nield and Kuznetsov [1] reduced Brinkman’s equation which governs the flow 

through the transition layer to the well-known inhomogeneous Airy’s equation. Their solution to Airy’s equation 

resulted in the introduction of an integral function, referred to as the Nield-Kuznetsov function )(xNi , [2], 

which continues to receive considerable attention in the literature due to its many mathematical properties (cf. 

[2,3,4]), its usefulness in fluid flow applications, [5], and its utility in the solution of initial and boundary value 

problems involving Airy’s inhomogeneous equation with both constant and variable forcing function. 

The literature reports on a large number of properties and representations of )(xNi , its derivatives, and 

the many differential equations it satisfies, [2]. However, further studies of this function are still needed to 

discover its many applications and the different areas of the sciences in which it arises. In this work we discuss 

further properties of the Nield-Kuznetsov function and its use in the solution of initial and boundary value 

problems of the Airy’s inhomogeneous equation. We offer various representations of this function, discuss its 

computational aspects, and develop its relationship to other integral functions.  

 

II. Solution to Airy’s Initial Value Problem 
Consider the inhomogeneous Airy’s ordinary differential equation (ODE), [6]: 

)(
2

2

xfxy
dx

yd
                                                                                                                                    (1) 

subject to the initial conditions: 

)0(y                                                                                                                                                               (2) 

)0(
dx

dy
                                                                                                                                                         (3) 

Where  and   are known constants. 

     General solutions to ODE (1) are given as follows, for different forcing functions )(xf . 

When 0)( xf , general solution to the homogeneous Airy’s ODE is given  

)()( 21 xBiaxAiay                                                                                                                                        (4) 

where 
1a and 

2a are arbitrary constants, and the functions )(xAi and )(xBi  are two linearly 

independent functions known as Airy’s homogeneous functions of the first and second kind, respectively, and 

are defined by the following integrals (cf.  [7,8,9]): 
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The Wronskian of )(xAi and )(xBi  is given by, [7]: 
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And the solution satisfying the initial conditions (2) and (3) takes the form 
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When


1
)( xf , general solution to ODE (1) is given by  

)()()( 21 xGixBibxAiby                                                                                                                        (9) 

 

and for


1
)( xf , general solution to ODE (1) is given by  

)()()( 21 xHixBicxAicy                                                                                                                      (10) 

 

Where ,,, 121 cbb and 
2c are arbitrary constants, and the functions )(xGi and )(xHi  are known as Scorer’s 

functions, [10,11], and are given by 
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From (9) and (10) we obtain, respectively, the following solutions satisfying the initial conditions (2) and (3): 
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In applying the initial conditions (2) and (3) to obtain the values of arbitrary constants in (4), (9) and 

(10), we utilized the following values of the integral functions ),(),(),(),( xHixGixBixAi and their first 

derivatives at x=0, reported in [7,8]. We list these values for convenience and reference in Table 1, below. 
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Integral Function at 0x  Derivative of Integral Function at 0x  
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Table1. Values of the integral functions and their derivatives at x=0. 

 

     We observe in the above solutions that the Scorer functions furnish the particular solution to 

inhomogeneous Airy’s ODE for special values of )(xf . When )(xf  is a general constant or a variable 

function of x, the Scorer functions do not directly render the needed particular solution. 

In order to provide for a more general approach to particular solutions to ODE (1), we apply the 

method of variation of parameters to obtain the following form of y  when Rxf )( , where R  is any 

constant: 

 

)()()( 21 xRNixBimxAimy                                                                                                              (15) 

 

where 
1m  and 

2m are arbitrary constants and the function )(xNi  is the Nield-Kuznetsov function, 

[1,2]. The function )(xNi  is defined in terms of Airy’s functions as, [1]: 
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with a first derivative given by 
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Equations (16) and (17) give the values 0
)0(
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Ni , which we can use in determining the 

arbitrary constants in (15) when initial conditions (2) and (3) are used. Solution to the initial value problem thus 

takes the following form (in which we use 
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We note at the outset that in solving the initial value problem and expressing the solution in terms 

of )(xNi , values of the arbitrary constants are independent of the forcing function. To illustrate this point 

further, when


1
)( xf , solution to the initial value problem is simply given by equation (15) with 



1
R . In other words, coefficients of Airy’s functions do not change in this case. 
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III. Representations of Ni(x)  
In order to study the behavior of )(xNi and its derivatives over a subset [a,b] of the real line, we need 

to  evaluate this function at specified values of x. This is accomplished by utilizing their definitions in terms of 

Airy’s functions. In what follows, we provide expressions for )(xNi , its first derivative and its integral in 

terms of asymptotic and ascending series, and in terms of Bessel functions representation of )(xAi  and 

)(xBi . 

 

3.1. Representations in terms of Scorer’s and Airy’s Functions 

In this section we rely on the representations of Ai(x), Bi(x), Gi(x) and Hi(x), given by equations (5), 

(6), (11), and (12).  

The following relationships have also been reported in the literature (cf. [7,8,9]), and are reproduced 

here for reference: 
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Now, by defining the following Wronskians: 
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we can write equations (22)-(25) in the following compact forms, respectively: 
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4
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Multiplying equation (23) by Ai(x) and (22) by Bi(x), then subtracting the latter product from the former, and 

making use of the Wronskian of Ai(x) and Bi(x), we obtain the following two expressions for Ni(x): 
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The following relationship is obtained by using (21) in (34) or (35): 
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In addition, upon using (30)-(33) in (16), we obtain the following expressions for : 
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Now, using (11) and (12) in (36), we obtain the following integral representation for Ni(x): 
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3.2. Derivatives of Ni(x) and their values at x=0: 

First derivative of )(xNi is given by equation (17). We can write the second and third derivatives of 

)(xNi  in the following equivalent forms, respectively:  
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Higher derivatives of )(xNi  involve 
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where g(x), h(x), and p(x) are the coefficients of, 
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appear in the nth derivative, then the n+1
st
 derivative is given by [2]: 
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Equation (45) takes the following form in terms of  )(xAi and )(xBi : 
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The value of the n+1
st
 derivative at 0x  can be obtained from either equation (45) or (46) and is written as: 
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Alternatively, we develop the following iterative formula for a more convenient way of computations: 
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For ease of reference, we tabulate the derivatives of )(xNi  and their values at 0x  in Table 2, below: 
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Table2. )(xNi And its derivatives and their values at x = 0. 
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3.3. Representations in terms of Bessel Functions 

With the knowledge of the expressions of )(xAi and )(xBi , their first derivatives and integrals in 

terms of Bessel’s function,  JI , , namely. [7,8]: 

 )()(
3

)( 3/13/1  II
x

xAi                                                                                                                       (49) 

 )()(
3

)(
3/23/2  II

x

dx

xdAi
 

                                                                                                              (50) 

 )()(
3

)( 3/13/1  II
x

xBi                                                                                                                       (51) 

 )()(
3

)(
3/23/2  II

x

dx

xdBi
                                                                                                                (52) 

   



0

3/13/1

0

)()(
3

1
)( dttItIdttAi

x

                                                                                                              (53) 

   



0

3/13/1

0

)()(
3

1
)( dttItIdttBi

x

                                                                                                         (54) 

where 
2/3

3

2
x , we can express )(xNi  and its derivative, defined in equations (16) and (17), in terms of 

Bessel’s function, respectively, as 

         




0

3/13/1

0

3/13/1 )()(
33

2
)()(

33

2
)( dttII

x
dttII

x
xNi                                                        (55) 

      




0

3/13/2

0

3/13/2 )()]([
33

2
)()(

33

2)(
dttII

x
dttII

x

dx

xdNi
.                                                     (56)                                                                 

We can also express )(xNi and its derivative using the modified Bessel function, 

namely
)sin(

)()(

2
)(



 


tItI
tK


  , and the Hankel function, namely )()()( tiYtJtH   , where )(tY  

is the Weber function, defined as: 
)sin(

)()(
)(






tJtJ
tY 
 . This is accomplished by relying on the following 

expressions of Airy’s functions and their derivatives in terms of Hankel and the modified Bessel functions, 

[7,8]:                                                                                        

 )(
3

1
)( 3/1 


K

x
xAi                                                                                                                                  (57) 

 )(
3

1)(
3/2 


K

x

dx

xdAi
                                                                                                                          (58) 

 )(Re
3

)( 3/1

6/  iHe
x

xBi i                                                                                                                     (59) 

 )(Re
3

)(
3/2

6/  iHe
x

dx

xdBi i  .                                                                                                               (60) 

Using (57)-(60) in (16) and (17) we obtain, respectively 

       












 
x

i
x

i dtK
t

iHedtiHe
t

K
x

xNi
0

3/13/1

6/

0

3/1

6/

3/1
)(

3
)(Re)(Re

3
)(

3

1
)( 



                                         (61) 

       





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



 
x

i
x

i dtK
t

iHedtiHe
t

K
x

dx

xdNi

0

3/13/2

6/

0

3/1
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3/2
)(

3
)(Re)(Re

3
)(

3

1)(





                              (62) 
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where 
2/3

3

2
t . 

 

3.4. Series Representations and Computation of )(xNi  

Computing and evaluating )(xNi  are necessary in solving initial and boundary value problems 

involving the inhomogeneous Airy’s equation, and entail evaluating Airy’s functions. Typically, Airy’s 

functions are expressed in terms of asymptotic or ascending series that provide approximations to these 

functions at given values of x. Since the )(xNi  integral function is defined in terms of Airy’s functions, we 

will rely on Airy’s functions approximations to express )(xNi  in terms of the asymptotic and ascending series 

for )(xAi and )(xBi , and their derivatives and integrals. 

 

3.4.1 Ascending Series Representation 

Asymptotic series approximation of )(xNi , valid for large x, has been discussed by Nield and 

Kuznetsov [1] who provided the following approximation and implemented it in their computations of flow over 

porous layers: 

4/1

2/3

3

)
3

2
exp(

)(
x

x

xNi


                                                                                                                                    (63) 

4/3

2/3

0 3

)
3

2
exp(

)(
x

x

dttNi
x


 .                                                                                                                           (64) 

 

3.4.2 Ascending Series Representation 

For small values of x, we develop the following ascending series representation. 

Letting 

8781723550280538.0
3

cos
1

)0(
0

3

1  


dt
t

Aih


                                                                              (65) 

9280672588194037.0
3

sin
1

)0(
0

3

2  


dt
t

t
dx

dAi
h


                                                                     (66) 



















0

13

1
)!13(

3

3

1
)(

k

kk

k k

x
xF                                                                                                                             (67) 

and 



















0

23

2
)!23(

3

3

2
)(

k

kk

k k

x
xF                                                                                                                             (68) 

then 
















0

3

1
)!3(

3

3

1
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k k

x
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

















0

13

2
)!13(

3
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)(

k

kk

k k

x
xF                                                                                                                             (70) 

where k
b)( is the Pochhammer symbol, defined as, [7]: 

1)( 0 b                                                                                                                                                               (71) 

0);1)...(2)(1(
)(

)(
)( 




 kkbbbb

b

kb
b k                                                                            (72) 

then the following representations can then be obtained, [7]: 
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dx

dF
h

dx

dF
hxAi 2

2
1
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dx

dF
h

dx

dF
hxBi 2

2
1
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)(3)(3)( 2211

0
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x

i                                                                                                            (76)          

Using (65)-(72) in (73)-(76) we obtain the following ascending series representations of Airy’s functions and 

their integrals: 
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In order to obtain an ascending series representation for )(xNi , we use (65)-(72) in (16) to get either 








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dx
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or 

   )()()()(3)(3)()( 22112211 xFhxFhxBixFhxFhxAixNi  .                                                (82) 

Equations (81) and (82) have the following equivalent summation expressions, respectively 
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Equation (84) can be expressed in the following form when we make use of the definition of Cauchy product: 

   






 











































0

23

0

21
)!2)(3()!13(

163

3

2

3

1
332

k

k
k

l lkl

k

i x
lkl

lk
aaxN                                             (85) 

which we can integrate to get: 
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     In order to demonstrate utility of the asymptotic series expansions, above, we produced Tables 3(a,b) which 

contain values of )(xAi , )(xBi  and )(xNi  for x = 1,2,3,…,10 (Table 3(a)),  and for x = 0.1, 0.2, …, 1 
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(Table 3(b)). Computed values in Table 3(b) compare well with the values reported in [ ], with an agreement of 

at least seven significant digits. 

Graph of )(xNi  on the interval [0,1] is shown in Fig. 1, which shows its progressively decreasing 

behaviour with increasing x. Comparison of graphs of )(xAi , )(xBi  and )(xNi  is shown in Fig. 2 which 

demonstrates the opposite behaviours of )(xBi  and )(xNi . This behaviour is expected since an 

approximation to )(xNi  is )(
3

1
xBi . 

 
x Ai(x) Bi(x) Ni(x) 

1 
   

2 
   

3 
   

4 
   

5 
   

6 
   

7 
   

8 
   

9 
   

10 
   

Table 3(a). Computed Values of )(xAi , )(xBi  and )(xNi Using Ascending Series 

 
x Ai(x) Bi(x) Ni(x) 

0.1 
   

0.2 
   

0.3 
   

0.4 
   

0.5 
   

0.6 
   

0.7 
   

0.8 
   

0.9 
   

1.0 
   

Table 3(b). Computed Values of )(xAi , )(xBi  and )(xNi Using Ascending Series 

 

 
Fig. 1. )(xNi for 10  x  
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Fig. 2. )(),(),( xNixBixAi for 10  x  

 

3.4.3 Representation of the Solution to the Initial Value Problem 

Using the ascending and asymptotic series representations above, we evaluate and plot solution (18) for 

the following data: 2,1    and R = 1, -1, 


1
 . These are presented in Figs. 3(a-d). All of these figures 

show the discrepancy between the asymptotic and ascending series solutions. Since the interval chosen is [0,1] 

and the asymptotic series solution is valid for x >>1, it is expected that the asymptotic series solution is 

inaccurate as compared to the ascending series solution which is valid for small vales of x. This behaviour is 

independent of the choice of the forcing function R. 

 

 
Fig. 3(a) Ascending and Asymptotic Series Solutions for R=1 

 

 
Fig. 3(b) Ascending and Asymptotic Series Solutions for R=-1 
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Fig. 3(c) Ascending and Asymptotic Series Solutions for 


1
R  

 

 

Fig. 3(d) Ascending and Asymptotic Series Solutions for 


1
R  

 

IV. Conclusion 
In this work, we provided further properties and representations of the Nield-Kuznetsov function. In 

particular, we expressed )(xNi in terms of Bessel and Hankel functions, and provided an ascending series 

expression for its evaluation. An initial value problem was solved, and the solution was computed using both 

asymptotic and ascending series for comparison. Suitability of the ascending series representation is 

emphasized. 
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