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Abstract: Chaotic inflationary scenario in spatially homogeneous Bianchi Type I space-time following Linde 

[14] and using power law inflation i.e. R
3
 = t

n
, n > 1 Barrow [23], is discussed where R is scale factor. It is 

found that the inflationary parameters viz. slow roll parameters, non-Gaussianity parameter and anisotropic 

parameter are in excellent agreement with Planck results for canonical scalar field. It has also been observed 

that inflation is natural consequence of Chaotic initial conditions in the early universe and chaotic inflationary 

scenario is realized for anisotropic Bianchi Type I space-time. 
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I. Introduction 

There is a great interest in inflationary universe scenario since this scenario in its present form, solves 

many mysteries of modern cosmology like homogeneity, the isotropy, flatness of observed universe and 

primordial monopole problem. Historically, a model closely related to the inflationary universe scenario was 

first suggested by Starobinsky [1]. It was based on investigation of conformal anomalies in  quantum  gravity.  

Starobinsky’s  model  did  not  suffer   from the graceful exit problem and it was the first model predicting 

gravitational waves  with a flat spectrum which are responsible for galaxy formation and these were found by 

the observations of the CMB anisotropy, was proposed by Mukhanov and Chibisov [2]. A much simpler 

inflationary model (old inflation) with a  very clear physical motivation was proposed by Guth [3]. This model 

was based on the theory of super cooling during the cosmological phase transition (Kirzhnits and Linde [4]). 

According to this scenario, inflation is an exponential expansion state. 

Guth[3] has also suggested that rapid expansion is due to false vacuum energy and after inflation, the 

universe is filled with bubbles. This inflationary scenario is also confirmed by CMB observations. Also as 

pointed out by Myrzakulov and Sebastiaini [5] that after the inflation, the fluid turns out to be a (perfect fluid) 

with equation of state parameter by putting  = 1/3, we may recover the radiation/ultra relativistic matter 

universe of the standard model without invoking the reheating, as the energy density of fluid itself is converted 

into radiation. The inflationary period is divided into slow roll and re-heating regims. In slow roll epoch, the 

potential of inflation should remain large as compared to kinetic energy and universe inflated (Linde [6]). Also 

at the end of inflation, inflation starts oscillating about minimum of its potential while potential and kinetic 

energies are comparable during reheating regime (Albrecht and Steinhardt [7], Adams et al. [8], Sharif and 

Mohsaneen [9]). Inflation plays an important role in isotropization of universe so inflation does not start at the 

end of isotropization. Isotropization starts at the end of inflation as pointed out by after Hervik et al. [10] Bali 

[11] 

False vacuum is a metastable state without any fields or particles but with large energy density. This 

simple and infinite picture of inflation in the false vacuum state is somewhat misleading because if the 

probability of the bubble formation is large, bubbles of the new phase are formed near each other, inflation is 

too short to solve any problem and the bubblewall collisions make the universe extremely inhomogeneous. If 

they are formed far away from each other which is the case if the probability of their formation is small and 

inflation long, each of these bubbles represents a separate open universe with a small density parameter. Both of 

these options are unacceptable which led to the conclusion that this scenario does not work and can not be 

improved. 

A solution of this problem was found in 1981 with the invention of new inflationary theory [12]. In this 

theory, inflation may begin either in the false vacuum or in an unstable state at the top of the effective potential. 

Then the inflation field  slowly rolls down to the minimum of its effective potential. The density perturbations 

produced during the slow-roll inflation are inversely proportional to  [13,14]. Thus the key difference between 

the new inflationary scenario and the old one is that the useful part of inflation in the new scenario which is 

responsible for the homogeneity of our universe, does not occur in false vacuum state where 0 . This new 
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inflationary scenario becomes very popular. Unfortunately, this scenario was plagued by its own problems. In 

most versions of this scenario, the inflation field must have an extremely small coupling constant so it could not 

be thermal equilibrium with other matter fields as required in [15]. So new inflation theory does not work in this 

case. Moreover, thermal equilibrium requires many particles interacting with each other. This means new 

inflation theory could explain only why our universe was so large. 

On the basis of available observations (CMB abundance of light elements) every body believed that 

universe was created in a hot big-bang. That is why it was so difficult to overcome a certain psychological 

barrier and abandon all of these assumptions. This was done in 1983 with the invention of the Chaotic inflation 

scenario (Linde [16]). This scenario resolved all of old and new inflation. According to this scenario, inflation 

may begin even if there was no thermal equilibrium in the early universe and it may occur in the theories with 

simplest potential as such V() ~ 
2
. But it is not limited to the theories with polynomial potential. Chaotic 

inflation occurs in any theory where the potential has sufficiently flat region which allows the existence of slow-

roll region [16]. 

To understand chaotic inflation, we consider a simplest model of a scalar field with a mass m and 

potential energy density 
2

2

2

m
V(   . Since this function has a minimum at  = 0, we may expect that 

scalar field should oscillate near this minimum. This is the case if the universe does not expand and equation of 

motion of scalar field coincides with equation for harmonic oscillator  

  2m          

However, because of the expansion of the universe with Hubble parameter   H = /a,a an additional term 

3H appears in the harmonic oscillator equation 

  2m3H          (1) 

The term 3H can be interpreted as a friction term. The Einstein equation for a homogeneous universe 

containing scalar field  takes the form as 

  222

2

2 m
6

1

a

k
H         (2) 

where k = - 1, 0,1 for open, flat or closed universe respectively. Here we have used 1.G8M 2

p


 

If the scalar field  initially was large, the Hubble parameter H was large too according to the second 

equation. This means that the friction 3H  was very large and therefore the scalar field was moving very 

slowly as a ball in a viscous fluid. Therefore, at this stage, the energy density of scalar field remained almost 

constant and expansion of the universe continued with a much greater speed. Due to the rapid growth of the 

scale of the universe and slow motion of the field , we have 

 
222

2

2 m
a

k
H3H    

so that the system of equations leads to 

 2/3 m
6

m

a

a
  H 


 

 

The first equation shows that if the field changes slowly, the size of the universe in this regime grows 

exponentially as e
Ht

 where 
6

m
  H


 . This is the stage of inflation which ends when the field  becomes much 

smaller than Mp = 1. 

 Linde [17] proposed chaotic model with an assumption that the present universe is originated 

from a chaotic distribution of scalar field when potential energy of field dominates over that of the kinetic 

energy. Later, it has been shown by Bunn et al. [18] that chaotic scenario can be realized even when scalar field 

is kinetic energy dominated. Paul et al. [19] have shown that Linde’s chaotic inflationary scenario is fairly 

general and can be accommodated even if the universe is anisotropic. The first model of chaotic inflation was 
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based on theories with polynomial potential 
422

4
m

2

1
V( 


  (Linde [20]). Bali [21] investigated 

chaotic inflationary universe in Bianchi Type I space-time assuming (i) 
t03H3 eR   (ii) 

n22

n
m

2

1
V( 


  following Linde [20] assuming 




d

dV .  

In the present investigation, we consider spatially homogeneous anisotropic Bianchi Type I space-time 

and investigated chaotic inflationary scenario assuming  n22m
2

1
V(  being a constant. To get 

the deterministic model of the universe, we also assume that the scale factor 1. n , tR n3  (Power law 

inflation). It has been observed that inflation is the natural consequence of chaotic initial conditions in the early 

universe as pointed out by Linde [17]. 

 

II. The Metric and Field Equations 
We consider spatially homogeneous Bianchi Type I space-time in the form 

 
22222222 dzCdyBdxAdtds       (3) 

where metric potentials A, B, C are functions of t-alone. The Lagrangian is that of gravity minimally coupled to 

scalar field  with effective potential V() given by Stein-Schabes [22] as 

 xdV(g
2

1
Rg S 4














      (4) 

The variation of S with respect to the dynamical field, leads to the Einstein field equation 

 
j

i

j

i

j

i
Tg R

2

1
R          (5) 

 (in geometrized unit 8G = 1 = c) where 

 
ijjiij

gV( 
2

1
T  


     (6) 

and 

 



 d

dV
 g

g

1
ii

       (7) 

The Einstein field equation (5) for the space-time (3) leads to 

  V(
2

1

BC

CB

C

C

B

B
2

4

444444
     (8) 

  V(
2

1

AC

CA

C

C

A

A
2

4

444444
     (9) 

  V(
2

1

AB

BA

B

B

A

A
2

4

444444
     (10) 

  V(
2

1

BC

CB

AC

CA

AB

BA
2

4

444444
     (11) 

Equation (7) for scalar field  leads to 

 0
d

dV

C

C

B

B

A

A

4

444

44


















      (12) 
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III. Solution of the Field Equations 
To get the deterministic scenario of chaotic universe, we assume that  

(i) R
3
 = t

n
, n > 1, as considered by Barrow [23], R being scale factor (for power law of inflation) 

(ii) 
n22

n
m

2

1
V( 


  

where V() is effective potential,  is scalar field, m and  are constants. 

Equations (8) and (9) lead to 

 0
B

B

A

A

C

C

B

B

A

A
4444444 




























      (13) 

Thus, we have 

 0
B

B

A

A

C

C

B

B

A

A

B

B

A

A

dt

d 4444444 











































    (14) 

Equation (14) leads to 

 
n

44

t

L

ABC

L

B

B

A

A
        (15) 

where L is constant of integration. 

Similarly equations (8) and (10) lead to 

 
n

44

t

M

ABC

M

C

C

A

A
        (16) 

where we have used the conditions (i) R
3
= ABC = t

n
 for metric (3). Also             R

3
 = ABC = t

n
 leads to 

 
t

n

C

C

B

B

A

A
444          (17) 

Equations (15), (16) and (17) lead to 

 
1nt13(n

M)L

n/3 etA 





        (18) 

 
1nt13(n

M)(2L

n/3 et B




        (19) 

 
1nt13(n

L2M

n/3 etC




        (20) 

where ,,,M are constants of integration and  13
 

After suitable transformation of coordinates, the metric (3) leads to the form 

2t)13(n

L)2(2M

2n/32t)13(n

M)2(2L

2n/32t)1n(3

M)2(L

2n/322 dzetdyetdxetdtds
1n1n1n  












    (21) 

 

IV. To find the Value of Scalar Field () 
Using (17) in equation (12), we have 

 



d

dV

t

n
444

        (22) 

which leads to 

  1n2

444
m

t

n
      (23) 

where 
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n22

n
m

2

1
  V 


         (24) 

Following Linde [20], we have 

 



d

dV
44

, 

Now equation (23) leads to 

 dt
n

t

m

d
1n2







       (25) 

Equation (25) leads to  

 dt
n

)2(

)a(

d
2n2n

3n tn 


 

 




      (26) 

where  2ma Equation (26) leads to 

 tdt
n

a

d
.

n

)2(

)(





 



 

where   = 
2n . Thus we have 

 









 


d

a

11
tdt

an
.

n

)2( 
 

which leads to 

 log lt
n

an

a
log

2

)2( 2 










 

Now, we have 

 




a
= 

2btle
, l is constant of integration and  

b = 
n

an

2

)2( 
 and l is constant of integration. 

Thus 
21 bte

l

a







 

Therefore, 1
1 2

 bte
l

a


 

 
)e1(

e
2

2

bt

bt












a


 

Therefore, 






















2

2

bt

bt
2

e1

e
a



n        (27) 

For n = 4, equation (27) leads to  

 





















2

2

bt

bt
2

e1

e
a




         (28) 

At t = 0, 1
-1

a2 



  where 

a


1

1
  

 decreases fastly for large values of t. 
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V. Calculation of Inflationary Parameters 

We calculate the inflationary parameters i.e. slow roll parameters, non-Gaussianity parameter 
equil

NL
f  

and anisotropic parameter for the model (21) to examine whether these parameters are in excellent agreement 

with Planck results for canonical scalar field. 

To the first approximation, for the model (21), the scale factor (R) is given by  

 3  R

n

t         (29) 

The Hubble parameter (H) is given by 

 





t

n

3R

R
 H


       (30) 

where 
3

n
         (31) 

The slow roll parameter  and  are defined as given by Unnikrishnan and Sahni [24] 

 
1

2

1

H

H 





       (32) 

and 

 





2H


        (33) 

     
1         (34) 

Slow roll PLI (Power Law Inflation) corresponds to  < < 1 which occurs when      > > 1. 

 In this paper, we have discussed a new Power Law Inflation model in which inflation is driven 

by a Canonical scalar field with the Lagrangian 

  V(X  X)L(        (35) 

where 

 
2

  X
2




        (36) 

and  is Scalar field. For a generic L(,X), it is convenient to introduce a third slow roll parameters S as given 

by Hu [25]: 

 

s

s

HC

C
 S


         (37) 

where Cs is the speed of sound of the scalar field as given by Garriga and Mukhanov [26]: 

 1

X

L
 2X

X

L

X

L

C

2

2

2

s





























       (38) 

Thus S = 0 flow roll inflation requires not only  < < 1 and || < < 1 but also |S| < < 1. For a canonical 

scalar field, the value of S is identically zero and this is also the case for kinetically driven as well as the non-

canonical model (Unnikrishnan et al. [27]). 

 

Non-Gaussianity Parameter 
equil

NL
f  

We first carry out a simple estimate of non-Gaussianity for non-Canonical model with the Lagrangian 

 











V(
M

X
 XL(X,

1

4
     (39) 

where  is dimensionless while M is dimension of Mass. 



Chaotic Inflation in Spatially Homogeneous Anisotropic Bianchi Type I Space-Time  

DOI: 10.9790/4861-0803028289                                        www.iosrjournals.org                                     88 | Page 

For Canonical model  = 1, the non-Gaussianity parameter 
equil

NL
f  is given by Chen et al. [28] as  

 



























 
 1

C

1

108

35

N

2
1

C

1

81

5
f

2

s

2

s

equil

NL
    (40) 

where  

 XXXL,X
3

2
XXL,X 32 

      

(41) 

and XXL,2XXL, X N 2       (42) 

We find that 

 
3

1

N





        (43) 

Using (41) and 
12

1
C

s 
 in (40), we have 

   1C2801570f 2

s

equil

NL
    (44) 

as given by Unnikrishnan and Sahni [24]. 

For canonical model Cs = 1 and  = 1 which leads to 0f equil

NL
 . 

For  = 6, equation (44) gives 8.2f equil

NL   which is in excellent agreement with Planck result as given by 

(Ade et al. Planck 2013 results[29]). 

 

Anisotropic Parameter 

 The Higgs field  given by (27) for n  4 decreases slowly and tends to zero when t  . The average 

anisotropy parameter ( mA


) is given by 

 



















 
 



2

i
3

1i

m
H

H

3

1
A


       (45) 

where 
B

B
H

A

A
H and HHH H,HH H,HH 4

2

4

1332211
 

C

C
H 4

3
 . 

Equation (45) leads to 

 





12(n2

22

m tn

LM)M2(L
A


       (46) 

 

VI. Discussion and conclusion 
The scale factor (R), the expansion (), the Hubble parameter (H) and the deceleration parameter (q) 

for the model (21) are given by 

 
n3 tR           (47) 

 
t

n
           (48) 

 
3t

n
H          (49) 

 






 


n

3n
 q          (50) 

The spatial volume increases with time. The average anisotropy parameter (
m

A


) is not zero in 

general but tend to zero in special case i.e. if L
2
 + M

2
 = LM. The anisotropy is initially large but disappears for 
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large values of t i.e. the model isotropizes at late time. This result agrees with the result as pointed out by 

Rothman and Ellis [30], Jensen and Stein-Schabes [31]. The deceleration parameter q < 0 if n > 3 and q > 0 if n 

< 3. Thus the model (21) represents decelerating and accelerating phases of universe. This result agrees with the 

results as obtained by Perlmutter et al. [32] and Riess et al. [33]. The inflationary parameters viz. slow roll 

parameters, non-Gaussianity parameter and anisotropic parameters are in excellent agreement with Planck 

results for canonical scalar field. The Higgs field () evolves slowly but the universe expands. From equation 

(27), we find that 


 

a1

1
 and 4n   where0 at t 12n   Also 1

n
m

2

1
V( n22 


  

as 
2
 < 1 and n  4. Thus initial condition of inflation is satisfied. We also find that  V(2

4
 Therefore, 

chaotic inflationary scenario is realized for anisotropic homogeneous Bianchi Type I space-time. 
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