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Abstract: Annihilations, phase shifts, scattering lengths and elastic cross sections of low energy positrons 

scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The 

possibility of positron binding to the magnesium atoms is investigated. A trial wave function is suggested to 

represent e
+
-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and 

annihilation rates. The trial function is taken to depend on several adjustable parameters, and is improved 

iteratively by increasing the number of terms. The present results have the same behavior as reported semi-

empirical, theoretical and experimental results. Especially, the estimated positive scattering length supports the 

possibility of positron-magnesium bound state system that was confirmed in previous experimental and 

theoretical work. 
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I. Introduction 
The Positron collisions with atoms and molecules has been the subject of extensive experimental and 

theoretical work [1–2]. Only elastic scattering or direct annihilation is possible when the positron incident 

energy is less than the positronium formation threshold, the possibility of positron bound state had been often 

invoked to explain the very large annihilation [3]. Positron annihilation is a good tool to give useful information 

about matter. Positrons offer new ways to study a wide range of phenomena including plasmas [4], atomic 

clusters and nanoparticles [5], and a new method to ionize molecules, such as those of biological interest, for 

mass spectrometry [6]. 

Positron annihilation occurs whenever an electron and positron come into direct contact. If the spin 

state of the annihilating pair is a singlet (S = 0) state, the dominant decay process is the 2γ decay. This signal 

provides information about the interaction, and it is the basis of many types of measurements. For example, this 

signal has been used to characterize defects and interfaces in solids [7].  

Modified effective range theory is used to extrapolate elastic cross-sections down to thermal energies 

for positron annihilation rates and positron scattering from atomic and molecular targets [1]. 

There have been several calculations of elastic scattering to the e
+
–Mg system using the distorted-wave 

polarized orbital method [8, 9]. In addition, there has been an application of many-body perturbation theory 

(MBPT) with particular emphasis on low-energy elastic scattering [10]. There has also been an application of 

the close-coupling (CC) method with Ps(1s), Ps(2s) and Ps(2p) channels included [11].  

The existence of positron-atom bound states was predicted by many-body theory calculations and 

proved variationally more than a decade ago [12 ]. There are accurate theoretical calculations of positron 

binding to atoms [13]. 

The least squares variational method (LSVM) was applied successfully for low energy positron scattering from 

H, He [14], Kr [15] and Xe [16]. It was applied to obtain the wave function of the continuum Auger electron 

emitted from an ionized Ne atom [17] and developed to study positron-H molecule scattering [18]. 

In the present work LSVM has been developed to study positron-magnesium interaction at low energy. 

The annihilation parameter Zeff, phase shift, cross section and scattering length is calculated. Positron binding to 

of neutral magnesium is investigates. 

 

II. Theory 
1.1. Positron-atom interaction: 

In non-relativistic time-independent quantum mechanics, Schrodinger’s equation is equivalent in form 

to the conventional eigen-value problem: 

             
0)( EH

                    
     (1)                                                  

Where H and E are the total Hamiltonian and energy, respectively, of a quantum mechanical system 

described by the vector  . The interaction Hamiltonian for positron- magnesium system can be written as 
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Where TH  being the Hamiltonian for the target atom,
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X is the kinetic energy operator for the 

incident positron, and ),( xrV tni
stands for the interaction potential between the positron and the target: 
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Where x and ri are the position vectors of positron and i
th

 electrons respectively. The polarization 

potential Vp(r) is given the form [19] 

             466 2)exp(1()( rrrrV cdp                (4)                                                                                                                                                              

The dipole polarizability αd = 72 ao
3
, and the cut-off parameter rc =3.032 [19]. Large values of αd ensure 

that the positron experiences a strong attractive polarization potential outside the atom and the positron binding 

to neutral magnesium is possible. 

The total energy E of the system may be written, in Rydberg, as: 

                 
2

pkEE T  ,                                                 (5)                                                                              

Where 2

pkandET
are the energy of the target and the kinetic energy of the incident positrons 

respectively. 

 

1.2. The Least- Squares Variational Method and Trial Wave-function: 

The variational treatment [19] starts by defining a trial wave-function );,( krx N

n

t , n refers to 

the dimension of the Hilbert-space part of the trial wave-function representing all possible virtual states of 

quantum mechanical system composed of the positron and the target.  

The s-wave elastic scattering trial wave-function for the system may be written in abbreviated form as: 
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Where S is the regular part; 
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The irregular part of the asymptotic solution C has the form 
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The cut-off function )1( xe   avoid the singularity at the origin. This cut-off function will tend to zero at 

the origin and to unity at infinity, and the quadratic integrable wave-function;  
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Where α is an adjustable (free) parameter which is selected from the values that give a plateau of 11R  [14]. In 

this case the reactance matrix R11 contains a single element which is identical with the tangent of the s-wave 

scattering phase shift  0  and is calculated by: 

                011 tanR  ,                                                            (11)      

And )( NT r
 
represents the target in its ground-state, which can be determined according to Hartree-

Fock-Slater method [20]. The next step in the variational treatment is to select a proper test-wave function 

S  and   define the functional 

          VEH n

tS                                           (12)                                                                

The linear variational parameters 11R and id are chosen according to the following variational principle: 

             02 V                                                                     (13)                                            
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Thus, they are chosen according to a least-squares variational principle in which all projections of the vector 

n

tEH  )(  on 
S are minimal. The test wave-function S  is constructed [21-22] by: 

     ......,2,1;,, njCS jS                     (14)                                         

In this case we have the system of projections 
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And the LSVM implies: 
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Which means that the sum of the projections of   n

tEH  on the test function space s  are minimum. 

The minimization of  




2

1

2
n

j

jV    guarantees that the vector    n

tEH   has a minimum length. The 

variational parameters are obtained by applying this variational principle. The  matrix elements required for the 

employment of the LSVM, namely  SS ,  CS ,  iS  ,  SC ,  CC ,  jC  ,  Sj , 

 Cj , and  ij  , have the general form [14]: 

            fHEgfg                                        (18)                                                                

 Thus, the final form of the trial expansion space 
n

t can be expressed [14] in terms of vector determinants 

as 
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III. Positron Magnesium Scattering and Bound State 

The s-wave elastic scattering cross section (in 
2

0a units) is related to the phase shift 0 by the 

following relation [14]                     0

2

2

4
 Sin

k
le  .                      (20)                                                

Also, the determination of the phase shift is useful to calculate the s-wave scattering length which is defined as 

[14]:                                                                                                                                   
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A positive scattering length would indicate that the potential was strong enough to support a bound 

state [23]. Accordingly, the scattering lengths, A, defined by the s-wave phase shift 0 ≈ −A k (in the limit that 

the particle’s wave number k→0), become negative in both case.  As a result, the s-wave phase shift now passes 

through zero at a small but nonzero projectile momentum. In this situation, the elastic scattering cross sections 

enhancement at low energy can be viewed as arising from the existence of a virtual level for the projectile at an 

energy 1/(2A
2
).  These virtual levels also lead to enhanced positron annihilation cross sections.     

A bound state occurs when the long-range attractive polarization potential is large enough to overcome 

the short-range repulsive interaction with the nucleus. Calculations by Dzuba et al. suggested that alkaline earth 

metals such as Mg, Zn, Cd and Hg could stably bind positrons [24]. Ryzhikh and Mitroy rigorously investigated 

bound states for a positron and a lithium atom [25]. Their model predicted bound positron-atom with binding 
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energies in the order of 60 meV. Subsequent calculations also predicted positron binding to Be, Na, Mg, Ca, Cu, 

Zn, Ag and Cd [26]. When the scattering cross section is large the annihilation rate is greatly enhanced. Indeed, 

if the positron has a virtual or bound state with energy k
2
/ 2 close to zero, its binding energy is -1/A

2
, where A is 

the positron scattering length. These positron-binding systems decay by electron–positron annihilation with the 

annihilation rate for e
+
-A systems largely determined by the parent atom ionization potential. 

Fig. 1 shows the present work s-wave elastic scattering cross sections calculated using LSVM 

compared to the total cross sections calculated by the many body theory without including positronium 

formation but with polarization potential [27]. The figure also shows the total cross sections using semi-

empirical method [28], and the total cross sections measured by the Detroit group [29]. The figure shows the 

elastic scattering le  decreases rapidly as the energy of the incident positron increases but it starts to decrease 

slowly as the positron energy approach the positronium formation threshold. 

 
Fig. 1: Comparison of scattering cross section for e

+
-Mg scattering as a function of positron enregy in (eV). 

 

The present work is the s-wave elastic cross section, the total elastic cross-section results in semi-

empirical model [27], many body methods [28] and the total cross section measured by Detroit group [29]. 

 

 

 

 

The s-wave positron scattering phase shifts are plotted in Fig. 2. The phase shift increases from -0.0805 

rad. at k=0.01 ao
-1

 until it reaches a maximum at k=0.3 ao
-1

 with the value 1.955 rad., then starts to decrease. The 

negative sign of the phase shift means that the scattering length is positive whish support the possibility of a 

positron-magnesium bound state. The calculated scattering length is A = 8.07 ao at  k = 0.01 ao
-1

, the estimated 

positron binding energy is  - 0.21 eV. The positron binding energy (in eV) and scattering length (in a0) 

computed in different models are shown in Table I.  

TABLE I 

The positron binding energies (in Hartree), and the scattering 

length (A in a0) in different models for e+-Mg ground states. 

 
Model Binding energy [Hartree] A [a0] 

Present Work      0.0077 8.07 

model potential [12] 0.01391 7.4 

FCSVMpol [10] 0.0136 -- 

Coupled DF [30] 0.0074 30.1 

MBPT [28] 0.036 4.2 
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Fig. 2 The elastic scattering phase shifts 

0  for e
+
- Mg as a function of momentum k (in ao

-1
 units). 

 

IV. Positron Annihilation in Magnesium 
Annihilation into two  -rays is far more probable than into three  -rays [30], in such case, the 

annihilation rate in a gas is: 

)(2

0 kZcr ffe   ,                                (22)                                                             

Where ro = e
2 

/ ( mc
2
 ) is the classical radius of the electron, c the speed of light,   is the density of electrons 

per atom available to the positron for annihilation and k  is the positron  momentum. Zeff is the effective 

annihilation parameter. The value of Zeff , which varies with positron momentum,  is a measure of the probability 

of the positron being at the same position as one of the target electrons. It is calculated from the elastic 

scattering wave-function for the positron-target system as; 
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Where  krx N ;, is the scattering wave-function, including all partial waves, for a system made up of the 

incident positron with wave vector k and the target atom, x and Nr stand for the position vectors of  the positron 

and the target ( composed of N electrons), respectively. A good agreement between the calculated value of Zeff 

and an experimental value, derived from measurements of the annihilation rate, is therefore an important 

measure for the quality of the scattering wave-function. 

 

The cross section for positron annihilation in a many-electron target is obtained by [31]: 

 

zeffk
C

ann
r )(2

0                                        (24) 

 

Since r0 ≈ 10
-4

 a0, the Bohr radius, the cross section for annihilation is thus expected to be much smaller 

than that for a typical atomic scattering process. The annihilation parameter Zeff is computed numerically. It is 

found that it is sensitive to the chosen wave-function. When positrons interact with atoms they annihilate 

predominantly with valance electrons, since the repulsive force between the positrons and nucleus keeps the 

positrons away from inner electrons. However, small fraction of positrons can tunnel into inner electrons and 

annihilate with some of them [16]. 

 

The dependence of the Zeff  on the positron energy, over the range 0 eV to 2 eV is plotted in Figure 3. 

The figure shows that our calculations have the same behavior as that calculated by the semi-empirical model 

[27].  Our calculation is smaller than that of the semi-empirical model because we computed the s-wave 

scattering only. At low energies, the annihilation parameter Zeff reveals an initial decrease as positron energy 

increases. Instead of Zeff continue to decrease as expected, it starts to increase at positron energies ≈ 0.3 eV to 

make resonance with peak at energy ≈ 0.85 eV. 

 



Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and.. 

DOI: 10.9790/4861-080302105110                                     www.iosrjournals.org                                  110 | Page 

 
Fig. 3: The energy dependence of annihilation parameters Zeff of positron. The sold line is the present results. 

The dashed lines are the semi-empirical results calculated by Mitroy and Ivanove [27]. 

  

Detection of the resonances can thus provide the first evidence of positron binding to neutral atom. The 

annihilation parameters Zeff  is about 77 while it is about 35 for semi-empirical model  at room temperature 

293K (thermal energy ~ 0.024 eV, momentum ~ 0.042 a
-1

) which means that positrons annihilate is large at 

room temperature. 

 

V. Conclusion 
The   annihilation parameters, scattering length, phase shifts and cross sections for low energy positron 

scattering from Mg were obtained using the least-squares variational method (LSVM). Hartree-Fock-Slater 

method is used to generate the orbital wave-functions for target atoms. The estimated positive scattering length 

supports the possibility of existing a positron-magnesium bound state system, which was confirmed in previous 

experimental and theoretical work. The calculation of the present work for cross section and annihilation 

parameters show the same behavior as the reported theoretical, semi-empirical and experimental data of the 

Detroit group. 
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