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Abstract: A relationship between mass as a geometric concept and motion associated with a closed curve in 
spacetime (a notion taken from differential geometry) is investigated. We show that the 4-dimensional exterior 
Schwarzschild solution of the General Theory of Relativity can be mapped to a 4-dimensional Euclidean 
spacetime manifold. As a consequence of this mapping, the quantity M in the exterior Schwarzschild solution 
which is usually attributed to a massive central object is shown to correspond to a geometric property of 
spacetime. An additional outcome of this analysis is the discovery that, because M is a property of spacetime 
geometry, an anisotropy with respect to its spacetime components measured in a Minkowski tangent space 
defined with respect to a spacetime event P by an observer O who is stationary with respect to the spacetime 
event P, may be a sensitive measure of an anisotropic cosmic accelerated expansion. The presence of anisotropy 
in the cosmic accelerated expansion may contribute to the reason that there are currently two prevailing 
measured estimates of this quantity. 
Keywords:	cosmic  accelerated expansion, Euclidean spacetime, gravitational and inertial mass, 
Schwarzschild solution, Weitzenböck manifold	
 

I. Introduction 
In 1919, an eclipse[1] expedition organized by Sir Arthur Eddington provided what was considered at 

the time to be conclusive evidence for the correctness of the General Theory of Relativity by procuring a 
measurement of the deflection angle of light grazing the solar limb which matched the prediction of Einstein’s 
theory within a 20% margin of error. In recent times, the development of Yang-Mills gravity has created a need 
for reconsideration of measurements of the deflection of starlight by the Sun as a means of resolving the 
difference in the predictions made for this phenomenon by the two theories.[2][3] Unfortunately, current 
measurements in the optical region of the spectrum lack adequate precision. The upcoming total solar eclipse of 
the Sun on August 21, 2017 will provide an outstanding opportunity to obtain new, more precise measurements.  

The purpose of this paper is not just to encourage an improvement in the precision of measurements of 
the total deflection angle of starlight by the Sun, but to motivate a new approach to looking at the problem 
which involves treating mass as a geometric quantity. It is the belief of the author that such a new perspective 
will be required to resolve the question of the relative merits of Yang-Mills gravity versus Einstein’s General 
Theory of Relativity. 

In section two, we develop a generalization of the idea of four-vector force from the flat-spacetime of 
the Special Theory of Relativity to an expression which allows one to compare components of the four-vector 
force at different locations in a Riemann-Cartan spacetime that possesses zero curvature, i.e., a Weitzenböck 
manifold. In the third section of this paper, we introduce the idea of inertial mass as a geometric quantity. In 
section four we complete our demonstration that the generalized four-vector developed in section two 
corresponds to a geometric quantity.  In section five, we argue that a spherical gravitational mass M may be 
represented by the spacetime components of proper inertial mass corresponding to a coordinate system having 
its origin defined at the center of the spherical mass. In section six, we apply this result and show that it is 
possible to map the 4-dimensional geometry of the exterior Schwarzschild solution to a 4-dimensional 
Euclidean spacetime manifold. In the seventh section, we continue our analysis by further developing its 
consequences: in particular, we complete our journey by presenting the analogue for Newton’s second law, 
expressed in a spacetime having zero curvature, but nonzero torsion. In section eight, we summarize our 
conclusions. 

 
II. The Four Vector Force and the Nature of Inertial Mass 

 The usefulness of vectors as a description of physical quantities is largely due to the remarkable 
property of vectors in Euclidean spacetime that they remain invariant with respect to translation. Thus, a vector 
provides the same description of a physical quantity no matter what coordinate system is used for the description 
of a particular physical phenomenon which constitutes a spacetime event, as long as spacetime is Euclidean. In 
this sense, a vector behaves as a simpler version of a more general mathematical object known as a tensor. A 
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tensor is more general because it can describe physical quantities that are characterized by more than one 
direction in a multidimensional spacetime. 
 In a Riemann-Cartan spacetime, however, vectors no longer possess this simple property. When a 
vector is translated along a closed curve in a Riemann-Cartan spacetime, one observes that the vector has 
undergone two changes: a rotation, or reorientation of the direction of the vector in the Riemann-Cartan 
spacetime, and a translation of the point which marks the tip of the vector in the tangent space defined at the 
origin of the vector in the Riemann-Cartan spacetime. 
 The first type of change, i.e., the reorientation of the vector in Riemann-Cartan spacetime, may be 
attributed to a property known as curvature. One may compensate for the effect of curvature on the translation 
of a vector by introducing a quantity known as a Levi-Civita connection (often referred to as Christoffel 
symbols). Here, however, we consider the simpler special case of a Riemann-Cartan spacetime manifold for 
which the curvature vanishes, i.e., for which: 
 R l

ijk =  0   (2.1) 
where Rl ijk is the Riemann curvature tensor. In this special case of a Riemann-Cartan spacetime, a vector is not 
rotated upon being translated along a closed curve. Such a spacetime is said to be described by a Weitzenböck 
manifold. 
 There still remains to be considered, however, the second type of change, i.e., the translation of the tip 
of the vector in the tangent space defined at the origin of the vector in the Weitzenböck spacetime.  In a paper 
written in 1977, Hayashi and Shirafuji[4] astutely pointed out this type of change, which they called “the 
concept of motion associated with a closed curve in an affinely connected space-time manifold”, and suggested 
that for gravity the concept of the motion associated with a loop is much more important than that of a 
nonintegrable phase factor. 
  This assertion was confirmed by the work of Bennett, Das, Laperashvili, and Nielson[5] when they 
showed, in work done in 2012, that in the formulation of four-dimensional gravity by Plebanski, gravitation 
described in terms of a Riemann-Cartan spacetime without curvature, but possessing torsion (i.e., a 
Weitzenböck manifold) is equivalent to the usual model of gravitation developed by Einstein in his General 
Theory of Relativity, expressed in terms of a curved Riemannian manifold. 
 In this paper, we attempt to extend the applicability of the concept of motion associated with a closed 
curve to the general concept of force as defined by a four-vector translated along a closed curve in a 
Weitzenböck manifold, to obtain a broader basis for unification of gravitation with the other gauge forces. 
 Newton’s second law, expressed within the context of a spacetime with zero curvature, but nonzero 
torsion may be written as: 
 Fab = maab   (2.2) 
The superscript indices a and b take on the values 0 through 3. When taken to correspond to tetrad indices, 
analogous to methods employed by Einstein when considering distant parallelism[6] these indices are necessary 
to acknowledge the fact that Newton’s second law, written in its usual form as the following 3-vector equation: 
 F = ma   (2.3) 
is strictly valid only when the Riemann curvature tensor is zero: 
  
 R l

ijk =  0   (2.4) 
In this paper, however, lower case Latin indices (a, b, . . .) denote the directions corresponding to the differential 
elements of coordinate length which define the spacetime translation of the point which defines the tip of the 
corresponding vector in a tangent Minkowski space when a force vector is translated along a closed curve in the 
Weitzenböck manifold. Ozakin and Yavari have demonstrated that such a spacetime translation corresponds to 
the displacement defined by a mathematical object corresponding to the Burgers vector of crystallography 
defined for the continuum case, where the density of this continuum version of the Burgers vector is given by a 
torsion tensor that corresponds to the density of dislocations in the elastic medium.[7] 
Equation (2.3) tells us that the acceleration of mass is an expression of force. Similarly, from the perspective of 
(2.2) one may write: 

 ? = dx
α

c0
ab   (2.5) 

and ask, “the acceleration of spacetime is an expression of what quantity?” Considering unit analysis, it makes 
sense to let: 
 ? = Vαb   (2.6)   
where Vαb  is an unknown quantity having the units of velocity. It now follows from (2.5) and (2.6) that: 
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 Vαb = dx
α

c0
ab ⇒ gαβ

dxβ

c0
Vαb =

gαβdx
αdxβ

c0
2 ab   (2.7) 

or: 

 ab =
Vβ

bdxβ

c0dτ
2   (2.8) 

where we have used the fact that: 
 gαβdx

αdxβ = c0
2dτ 2   (2.9) 

Substituting (2.8) into (2.2) one arrives at: 

 Fab =
maVβ

bdxβ

c0dτ
2   (2.10) 

Let us now consider the following quantity: 

 
Vβ

bdxβ

c0dτ
2

⎛

⎝⎜
⎞

⎠⎟
  (2.11) 

Note that the following correspondence exists: 

 Uβ = dx
β

dτ
⇔ Ub =

dxb
dτ

  (2.12) 

where Uβ  is the usual four-vector velocity defined for flat spacetime, and Ub  is the corresponding one-form 
in a Minkowski cotangent space. Making this correspondence, one may define the following quantity: 

 aβ ≡
Vβ

bUb

c0dτ
⎛

⎝⎜
⎞

⎠⎟
  (2.13)  

 This allows us to write (2.10) in the following way: 
 Fa

β = m
aaβ   (2.14) 

Equation (2.14) allows one to compare components of force at different locations of a Riemann-Cartan 
spacetime which has zero curvature, i.e., one for which (2.1) holds true. Equation (2.14) may be rearranged to 
provide an expression for ma : 

 ma =
Fa

β

aβ
  (2.15) 

In this sense, inertial mass is now seen to be a geometric property of spacetime geometry. 
 

III. Inertial Mass as a Geometric Quantity 
 Let us now see how our new understanding of the role of inertial mass as a geometric property of 
spacetime allows us to redefine the increments of length associated with the spacetime coordinate system of 
observer O, who is stationary with respect to spacetime event P, which marks the origin of the four-vector force 
Fa

β , as a set of dyads of the form: 

 dx0, mO( )0( ),  dx1, mO( )1( ),  dx2, mO( )2( ),  dx3, mO( )3( ){ }   (3.1) 

	 From the perspective of (2.14), force is now a kinematic, rather than a dynamic quantity. In other 
words, it is a property which describes the state of motion of a spacetime event without reference to any external 
agency or cause. Likewise, momentum, too, is a kinematic quantity, and the expression for the four-momentum 
is given by: 

 Pa
α = mO( )aUα   (3.2) 

The subscript O is used to specify the fact that mO( )a  here is a property of a spacetime coordinate system 
which is at rest with respect to observer O. The relationship between the four-vector force and the four-vector 
momentum is given by:[8] 
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 Fa
β =

dPa
β

dt
= mO( )a dUβ

dt
  (3.3) 

Combining (2.14) with (3.3) yields: 

 maaβ = mO( )a dUβ

dt
  (3.4) 

which may be rearranged to give: 

 mO( )a = m
aaβdt
dUβ

  (3.5) 

Equation (3.5) relates the inertial mass measured by observer O to correspond to spacetime translational 
component “a” in the Minkowski tangent space at his or her particular location in spacetime (i.e., the proper 
inertial mass associated with spacetime component “a” at a particular spacetime event P) to the inertial mass 
measured for spacetime translational component “a” at that same spacetime event P by an arbitrary observer 
moving with four-vector acceleration aβ  relative to the event at P. 

 Strictly speaking, to validate our assertion that mO( )a  is truly a geometric quantity, we must show that 

the quantity maaβ  (i.e., Fa
β ) appearing on the right hand side of (3.5) depends only on mO( )a  and other 

kinematic quantities. We proceed to do this in the next section. 
	  

IV. Four Vector Force in Terms of Proper Inertial Mass 
 We now wish to express the four-vector acceleration defined by (2.13) and the four-vector force 
defined by (2.14), respectively, in a way that makes explicit their dependence on the proper inertial mass mO and 

its spacetime components mO( )a , without reference to the inertial mass ma  of an arbitrary accelerating 
observer. Rearranging (2.13), we obtain: 

 Vβ
b =

aβdτU
b

c0
  (4.1) 

where we have used the fact that: 
 UbUb = c0

2   (4.2) 
Substituting (2.13) into (3.5) one obtains: 

 mO( )a = m
aVβ

bUbdt
c0dUβdτ

  (4.3) 

Now, by making the following replacements in (4.3): 

 
 
Ub →

dω
dkb

, dkb → dpb

!
  (4.4) 

we obtain: 

 
 
mO( )a = ! dω  maVβ

bdt
c0dpbdUβdτ

  (4.5) 

Next, using (4.1) to replace Vβ
b  in (4.5) allows us to reintroduce aβ  into this expression: 

 
 
mO( )a = ! dω  maaβUbdt

c0
2dpbdUβ

  (4.6) 

Next, making the replacements: 
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! dω  dt = h / 2π( )( ) 2πdν( )dt→ h

dpb →γ d pN( )b ,  d pN( )b = γ −1mOdUb

γ = 1

1− c2

c0
2

,  c2 = ubub ,  u
b = γ −1Ub

∴γ = 2
dUβ →γ duβ

  (4.7) 

we obtain: 

 γ mO( )a = ma =
h maaβγ ub

mOc0
2dUbduβ

  (4.8) 

Solving the second equality in (4.8) for the four-vector acceleration, aβ , we obtain: 

 aβ =
c0

2d pN( )b duβ

h ub   (4.9) 

which simplifies to: 

 aβ =
mOc0

2dubduβ

h ub   (4.10) 

where we have used the fact (from (4.7)) that: 

 d pN( )b = mOdu
b   (4.11) 

One may rewrite (4.10) in the following way: 

 aβ = λC
−1c0

dc0
c0

+ du
1

u1
+ du

2

u2
+ du

3

u3
⎛
⎝⎜

⎞
⎠⎟
duβ   (4.12) 

where we have introduced the definition of the Compton wavelength: 

 λC = h
mOc0

  (4.13) 

Since c0 is a constant, dc0 = 0, so the first term in parenthesis in (4.12) vanishes, and we are left with: 

 aβ = λC
−1c0

du1

u1
+ du

2

u2
+ du

3

u3
⎛
⎝⎜

⎞
⎠⎟
duβ   (4.14) 

The four-vector acceleration aβ  is by nature a kinematic quantity, as it can be used to specify a description of 
motion without regard to a causative (i.e., external physical) source. In other words, it is due to a property of 
spacetime. This assertion is consistent with Einstein’s geometrical description of gravitation, which thus does 
not require explanation of motion in terms of dynamical interactions. From this perspective, (4.10) may be 
rearranged to express mO as a geometric quantity: 

 mO =
h aβ

c0
2 du1

u1 + du2

u2 + du3

u3

⎛
⎝⎜

⎞
⎠⎟
duβ

  (4.15) 

Substituting (4.14) into (2.15) we obtain the corresponding definition of ma : 

 ma =
Fa

β

λC
−1c0

du1

u1
+ du

2

u2
+ du

3

u3
⎛
⎝⎜

⎞
⎠⎟
duβ

  (4.16) 

Using (4.16), one can make more explicit the idea of inertial mass as a kinematic (i.e., geometric), rather than a 
dynamic (i.e., causative) quantity. With the help of (3.3), one may rewrite (4.16) as: 
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 ma =
mO( )a dUβ

λC
−1c0

du1

u1
+ du

2

u2
+ du

3

u3
⎛
⎝⎜

⎞
⎠⎟
duβdt

  (4.17) 

which relates the inertial mass measured to correspond to spacetime translational component “a” in the 
Minkowski tangent space for a four-vector force Fa

β  which has moved along a closed curve in spacetime, 

returning to its origin at spacetime event P, by an arbitrary observer O '  who is moving with four-vector 
acceleration relative to the event at P, to the proper inertial mass measured to correspond to spacetime 
translational component “a” in the Minkowski tangent space defined at P, by an observer O   who remains 
stationary with respect to spacetime event P. 
Finally, using (2.15) to replace ma  on the left hand side of (4.17) one obtains (with help from (4.7)) the desired 
expression for the four-vector force in terms of the proper inertial mass mO and its geometric components 

mO( )a : 

 Fa
β =

2 mO( )a aβ
λC

−1c0
du1

u1
+ du

2

u2
+ du

3

u3
⎛
⎝⎜

⎞
⎠⎟
dt

  (4.18) 

Equation (4.18) allows one to connect the idea of four-vector force as a dymanic quantity found in the flat 
spacetime of Einstein’s Special Theory of Relativity, to a generalized representation as a four-vector defined by 
(3.3) in a Riemann-Cartan spacetime having zero curvature, but nonzero torsion (i.e., a Weitzenböck manifold), 
allowing one to develop an idea of force as a geometric property of spacetime, consistent with the view of 
Einstein’s General Theory of Relativity.  However, (4.18) is of general applicability, not being restricted to 
forces of a gravitational nature.  Therefore, for example, since Fa

β  which appears on the left hand side of 
(4.18) may represent a force which is electromagnetic in nature, (4.18) provides a generalization of the 
equivalence principle which allows one to describe forces of an arbitrary nature in terms of kinematic quantities 
which are described in terms of the geometry of a Riemann-Cartan spacetime. 
 

V. Introduction of the Gravitational Mass M 
If the representation of four-vector force in a Weitzenböck manifold, Fa

β , given in (4.18) and ui are 
independent of time, we may perform separation of variables and integrate (4.18): 

 2λC( )−1 c0 Fa
β d ln ui⎡⎣ ⎤⎦( )
i=1

3

∑∫ = mO( )∫
a
aβdν   (5.1) 

If mO( )a  and aβ  are independent of time, we may thus express (4.18) in the following way: 

 Fa
β d ln ui⎡⎣ ⎤⎦( ) ≡ FGeometric = mO( )a aβ 2λCν

c0i=1

3

∑∫   (5.2) 

By using (3.3) to substitute for Fa
β  on the left hand side of (5.2) and using the definition: 

 aβ =
dUβ

dt
  (5.3) 

which is valid for constant aβ  we then obtain the following result: 

 ν = 2λC( )−1 c0 ln ui⎡⎣ ⎤⎦
i=1

3

∑   (5.4) 

which defines a frequency associated with motion in a three-dimensional Euclidean space. This frequency 
corresponds to the de Broglie frequency, which, expressed in isotropic coordinates ρ, is given by: 

 νde Broglie =
m0c0

2

2h n ρ[ ]( )2   (5.5) 

provided that the following is true: 
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 n ρ[ ] = ln ui⎡⎣ ⎤⎦
i=1

3

∑⎛⎝⎜
⎞
⎠⎟

−1
2

  (5.6) 

Moshinsky[9] has shown that from an electromagnetic viewpoint, the gravitational field of a star makes the 
surrounding space behave like an inhomogeneous material medium with relative permittivity εr and relative 
permeability µr given by: 

 ε r = 1+ 2GM
c0

2ρ
,  µr = 1− 2GM

c0
2ρ

⎛
⎝⎜

⎞
⎠⎟

−1

  (5.7) 

Then the effective index of refraction in the space around the star may be expressed as: 

 n ρ[ ] = c0c =
εµ( )

1
2

ε0µ0( )
1
2

= ε rµr( )
1
2   (5.8) 

Substituting (5.7) into (5.8) one obtains: 

 n ρ[ ] =
1+ 2GM

co
2ρ

⎛
⎝⎜

⎞
⎠⎟

1
2

1− 2GM
co
2ρ

⎛
⎝⎜

⎞
⎠⎟

1
2

  (5.9) 

Combining (5.6) and (5.9), one finds the following relation: 

 ln ui⎡⎣ ⎤⎦
i=1

3

∑⎛⎝⎜
⎞
⎠⎟
=
1− 2GM

co
2ρ

⎛
⎝⎜

⎞
⎠⎟

1+ 2GM
co
2ρ

⎛
⎝⎜

⎞
⎠⎟

  (5.10) 

Since the left hand side of (5.10) contains only kinematic quantities, it is evident that the right hand side 
represents a geometric quantity. If we now consider the observer O  to be defined by a coordinate system 
having its origin at spacetime event P located at the center of spherical mass M, with P not located at the origin 
of the coordinate system of an arbitrary observer O '  (we set this restriction, because although the field point 
corresponding to the measurement of a physical quantity by an arbitrary observer may take on any value, a 
source point may not be located at the origin of the coordinate system for this observer) who is moving with 
respect to spacetime event P with four-vector acceleration aβ , then the experimentally demonstrated 
equivalence between gravitational and inertial mass allows us to reexpress (5.9) geometrically, in the following 
way: 

 n ρ[ ] = ln ui⎡⎣ ⎤⎦
i=1

3

∑⎛⎝⎜
⎞
⎠⎟

−1
2
=

1+
2G mO( )a êa

co
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

1
2

1−
2G mO( )a êa

co
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

1
2

  (5.11) 

 
VI. Euclidean Form for the Static, Isotropic Schwarzschild Metric 

 The conception of mass as a geometric quantity is not new. For example, this idea becomes evident 
from a consideration of the Schwarzschild solution of the vacuum form of Einstein’s field equations.[10] In this 
section, we wish to consider the most general Euclidean line element corresponding to a static, isotropic metric, 
which takes the form: 
 ds2 = A ρ( )c02dt 2 +B ρ( )dσ 2   (6.1) 
and show that the Schwarzschild line element expressed in isotropic coordinates may be written in this form. 
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 In Riemann-Cartan spacetime without curvature, but with nonzero torsion (where torsion may be 
thought of as a form of kinematic curvature, or curvature associated with the spacetime coordinate system), or 
equivalently in the curved Riemannian manifold of Einstein’s General Theory of Relativity, in the presence of 
free-fall acceleration, one has the following relationships: 
 cdt = dσ   (6.2) 
and: 
 cdτ = ds   (6.3) 
Squaring (6.2) and (6.3) and then subtracting the former from the latter we find: 
 c2dτ 2 − c2dt 2 = ds2 − dσ 2   (6.4) 
One may pass from the description in Riemann-Cartan and Riemannian spacetimes, respectively, to a Euclidean 
spacetime described by spherical coordinates, by introducing the following line element: 
 ds2 = c2dt 2 + dσ 2   (6.5) 
where: 
 dσ 2 = dρ2 + dρ2dθ 2 + dρ2 sin2θ  dϕ 2   (6.6) 
or: 

 dσ 2 = dρ2 1+ dθ 2 + sin2θ  dϕ 2( )   (6.7) 

 To obtain the form of (6.7) it has been necessary to apply the following transformation to the last two 
terms (i.e., the terms with angular dependence) of the usual form of the line element for spatial spherical 
coordinates: 
 ρ2 → dρ2   (6.8) 
because although Euclidean spacetime is flat in the sense of zero curvature (i.e., (2.1) applies), it is expressed 
within the context of this paper as a Riemann-Cartan spacetime with zero curvature, in the limit as the torsion 
approaches zero, not by setting the torsion identically equal to zero.  
 Using (6.5) to replace ds2 on the right hand side of (6.4) and rearranging, one obtains: 
 c2dτ 2 = 2c2dt 2   (6.9) 
Substituting (6.9) into the left hand side of (6.4) and rearranging, we recover: 
 ds2 = c2dt 2 + dσ 2         (6.10) 
which verifies that (6.2), (6.3), (6.4), and (6.5) are mutually consistent. 
The most general Euclidean line element thus has the form: 
 ds2 = A' ρ( )c2dt 2 +B' ρ( )dσ 2   (6.11) 
or: 

 ds2 =
A' ρ( )
n ρ[ ]2

c0
2dt 2 +B' ρ( )dσ 2   (6.12) 

The most general form for the Schwarzschild line element in isotropic spherical coordinates is: 
 ds2 = C ρ( )c02dt 2 −D ρ( )dσ S

2   (6.13) 
The coefficients C(ρ) and D(ρ) may be computed, following the method employed by Adler, Bazin, and 
Schiffer:[11] 

 C ρ( ) =
1− GM

2c0
2ρ

⎛
⎝⎜

⎞
⎠⎟

2

1+ GM
2c0

2ρ
⎛
⎝⎜

⎞
⎠⎟

2 ,  D ρ( ) = 1+ GM
2c0

2ρ
⎛
⎝⎜

⎞
⎠⎟

4

  (6.14) 

so that the Schwarzschild line element in isotropic spherical coordinates is: 

 ds2 =
1− GM
2c0

2ρ
⎛
⎝⎜

⎞
⎠⎟

2

1+ GM
2c0

2ρ
⎛
⎝⎜

⎞
⎠⎟

2 c0
2dt 2 − 1+ GM

2c0
2ρ

⎛
⎝⎜

⎞
⎠⎟

4

dσ S
2   (6.15) 
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 When the interval is light-like, ds2 = 0, and the line elements of (6.12) and (6.15) may be set equal, 
allowing us to compare the coefficients. Before comparing coefficients, however, one must note that dσ2 for the 
Euclidean line element, as given by (6.7) differs from dσS

2 for the Schwarzschild line element, which is given 
by: 
 dσ S

2 = dρ2 + ρ2dθ 2 + ρ2 sin2θ  dϕ 2   (6.16) 
Rearranging (6.16) we find: 
 dρ2 = dσ S

2 − ρ2dθ 2 − ρ2 sin2θ  dϕ 2   (6.17) 
Substituting (6.17) into (6.7) one obtains: 

 dσ 2 = dσ S
2 − ρ2 dθ 2 + sin2θ  dϕ 2( )⎡⎣ ⎤⎦ 1+ dθ 2 + sin2θ  dϕ 2( )   (6.18) 

which may be rearranged to yield: 

 dσ S
2 =

dσ 2 + ρ2 dθ 2 + sin2θ  dϕ 2( ) 1+ dθ 2 + sin2θ  dϕ 2( )
1+ dθ 2 + sin2θ  dϕ 2( )   (6.19) 

Thus, by substitution of (6.19) into (6.15), one obtains the following form for the Schwarzschild line element: 

 ds2 =
1− GM

2c0
2ρ

⎛
⎝⎜

⎞
⎠⎟

2

1+ GM
2c0

2ρ
⎛
⎝⎜

⎞
⎠⎟

2 c0
2dt 2 − 1+ GM

2c0
2ρ

⎛
⎝⎜

⎞
⎠⎟

4

dρ 1+ dθ 2 + sin2θ  dϕ 2( )⎡⎣ ⎤⎦   (6.20) 

where we have used the fact that: 

 
dσ 2

dρ2 = 1+ dθ 2 sin2θ  dϕ 2( )   (6.21) 

and applied the required transformation (6.8) to the line element. Thus, by considering the case when the 
interval is light-like, and comparing (6.12) to (6.20) we find: 

 A' ρ( ) = C ρ( )n ρ[ ]2 =
1−

G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2

1+
G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2

1+
2G mO( )a êa

co
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

1−
2G mO( )a êa

co
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

  (6.22) 

and: 

 B' ρ( ) = i2D ρ( ) = i2 1+ G mO( )a êa
2c0

2ρ

⎛

⎝
⎜

⎞

⎠
⎟

4

  (6.23) 

where we have used (5.11) and the corresponding geometric representation of (6.14). So, the Schwarzschild line 
element expressed in isotropic spherical coordinates may be expressed as a line element for a Euclidean 
spacetime in the following way: 

 ds2 =

1−
G mO( )a êa

2c0
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

2

1+
G mO( )a êa

2c0
2ρ

⎛

⎝
⎜

⎞

⎠
⎟

2 c0
2dt 2 + 1+

G mO( )a êa
2c0

2ρ

⎛

⎝
⎜

⎞

⎠
⎟

4

i dσ( )2
  (6.24) 

 Next, we note that: 

 dua = ∂ua

∂σ
dσ + ∂ua

∂t
dt   (6.25) 

Taking ua  to be independent of time at the location of spacetime event P so that: 
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∂ua

∂t P

= 0   (6.26) 

we find that the last term of (6.25) vanishes. Now, applying the definition: 
 dua = ∇uadσ   (6.27) 
we are able to conclude that: 

 ∇ua = ∂ua

∂σ
  (6.28) 

This allows us to express dσ in the following way: 

 dσ = dua

∇ua
  (6.29) 

Additionally, we may express dt in the following way: 

 dt = du
a

aa
  (6.30) 

Introducing (6.29) and (6.30) into (6.24), we may express the Euclidean form of the line element corresponding 
to the Schwarzschild solution of the vacuum form of the Einstein field equations as: 

 ds2 =
1−

G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2

1+
G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2

c0
2 dua( )2
aa( )2

+ 1+
G mO( )a êa
2c0

2ρ

⎛

⎝
⎜

⎞

⎠
⎟

4
i

∇ua
⎛
⎝⎜

⎞
⎠⎟
2

dua( )2   (6.31) 

 In concluding this section, we note that many preliminary efforts have been made toward the direction 
of achieving a quantum theory of gravity. These efforts have achieved partial success, but have not yet led to a 
decisive final theory. Interestingly, many of these attempts have started from the viewpoint of a relativistic 
framework for quantum mechanics, i.e., the framework of quantum field theory. Yet, in his seminal paper which 
united the foundations of quantum electrodynamics, Freeman Dyson[12] pointed out that relativistic quantum 
mechanics is a special case of non-relativistic quantum mechanics.  Thus, it makes sense that a framework with 
the potential for providing a broader base for attempts to unify gravitation with the other gauge forces should 
include ideas fundamental to non-relativistic quantum mechanics, but not necessarily the full machinery 
required for quantum field theory.  Taking this viewpoint, and noting that the momentum operator for non-
relativistic quantum mechanics is given by:[13] 
  p̂ = −i!∇   (6.32) 

we rewrite (6.31), without loss of generality, with the introduction of the four vector version , P̂ , of  the non-
relativistic quantum mechanical momentum operator in the following way: 

 

 

ds2 =
1−

G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2

1+
G mO( )a êa
2c0

2ρ
⎛

⎝
⎜

⎞

⎠
⎟

2
c0
2

aa( )2
+ 1+

G mO( )a êa
2c0

2ρ

⎛

⎝
⎜

⎞

⎠
⎟

4
!
P̂ua

⎛
⎝⎜

⎞
⎠⎟
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

dua( )2   (6.33) 

 
Equation (6.33) has been developed in this paper in a way which is consistent with the principles of the 

Special and General Theories of Relativity. The fact that the quantum mechanical momentum operator appears 
in the Euclidean form of the line element corresponding to the Schwarzschild solution of the vacuum form of 
the Einstein field equations in this way suggests the intriguing possibility that the generalization of the 
equivalence principle discussed with regard to gravitation and forces of an electromagnetic nature when 
considering (4.18) may be extended to a description of forces in the quantum domain, allowing the additional 
inclusion of gauge forces having only a microscopic range. From the viewpoint of non-relativistic quantum 
mechanics, this would entail replacing the classical form of Newton’s second law, given by (2.3) with the use of 
Ehrenfest’s theorem:[13] 



Mass as a Geometric Property of Spacetime 

DOI: 10.9790/4861-0901020114                                www.iosrjournals.org                                         11 | Page 

 
d
dt
p = − ψ * ∇V( )ψ dρ 3 sinθ  dθ  dϕ∫ = − V = F   (6.34) 

where V here is the scalar potential corresponding to the force F, and  indicates the expectation value of the 
quantity contained inside. Note also that transformation (6.8) has been applied when writing the volume 
element, so that the resulting integral is five dimensional. 
  

VII. Consequences of the Geometric Nature of Mass for our Physical Description of Nature 
 We now wish to consider the consequences of the formalism developed in this paper for our 
description of Nature. One modification introduced by applying the formalism developed in this paper, which 
follows from the representation of the gravitational mass, M, as a geometric quantity, is the replacement of the 
Schwarzschild radius, rS, with the following geometric expression: 

 RS ≡ RS( )a êa =
2G mO( )a êa

c0
2   (7.1) 

In other words, we write (6.33) as: 

 

 

ds2 =
1− RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2

1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2
c0
2

aa( )2
+ 1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

4
!
P̂ua

⎛
⎝⎜

⎞
⎠⎟
2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

dua( )2   (7.2) 

Noting that: 

 
dua

ds
= dt
cdτ

dua

dt
=

2n ρ[ ]
c0

aa   (7.3) 

where we have used (6.3) and (6.30), and the fact that: 

 
dt
dτ

= γ = 2   (7.4) 

from (4.7), and: 

 c = c0
n ρ[ ]   (7.5) 

from (5.8), we may rewrite (7.2) in the following way: 

 

 

ab = 1
2

ln ui⎡⎣ ⎤⎦
i=i

3

∑ −
1− RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2

1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2

c0
!
1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

−2

P̂ub   (7.6) 

where we have also used (5.6). Equation (7.6) represents the acceleration corresponding to spacetime 
translational component “b” in the Minkowski tangent space defined at P, measured by an observer O  who 
remains stationary with respect to spacetime event P, and resulting from the translation of a four-vector force 
along a closed curve in a Riemann-Cartan spacetime having zero curvature, but nonzero torsion. In other words, 
the components of ab  correspond to the components of the vector cosmic accelerated expansion. 
From (2.2), (4.17) and (5.6) we now arrive at: 

 

 

Fab =
2 mO( )a

!λC
−1 d ln ui⎡⎣ ⎤⎦( )dt

i=1

3

∑
1
2

ln ui⎡⎣ ⎤⎦
i=i

3

∑ −
1− RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2

1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2

1+ RS

4ρ
⎛
⎝⎜

⎞
⎠⎟

−2

P̂ub   (7.7) 

Equation (7.7) provides a geometrical description of the expression of force accompanying the action of the 
acceleration corresponding to spacetime translational component “b” (b = 0, 1, 2, 3) in the Minkowski tangent 
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space defined at P, on the proper inertial mass corresponding to spacetime translational component “a” (a = 0, 1, 
2, 3) for an observer O  who remains stationary with respect to spacetime event P, and resulting from the 
translation of a four-vector force along a closed curve in a Riemann-Cartan spacetime having zero curvature, but 
nonzero torsion. In other words, the tensor component Fab  expresses the action of the vector component ab  of 

the cosmic accelerated expansion on the geometric expression of proper inertial mass mO( )a  corresponding to 
the spacetime component “a” of an observer O , who is stationary with respect to spacetime event P.  
 If spacetime is viewed as an elastic medium, a hypothesis for which the results obtained by the Gravity 
Probe B experiment[14] provide ample evidence, then the source of the components of the cosmic accelerated 
expansion is related to the areal density of a continuum version of the Burgers vector, where the Burgers vector, 
dx , is a consequence of the translation of a four-vector force (given by (4.18)) along a closed curve in a 
Riemann-Cartan spacetime having zero curvature, but nonzero torsion. The Burgers vector corresponds to a 
measure of the distribution of dislocations in spacetime, where we identify a dislocation as any region contained 
within the Schwarzschild radius, RS, of a black hole, which may, for example, be located at a galactic center. 
 

VIII. Conclusion 
 In this paper, we develop the idea of mass as a geometric property of spacetime. Using this formalism, 
we present the analogue of Newton’s second law for a spacetime having zero curvature, but nonzero torsion. In 
particular, we emphasize that if spacetime is described by a Riemann-Cartan manifold, the vanishing of 
curvature is not a sufficient condition for the exact validity of the results of the Special Theory of Relativity: one 
must also account for the presence of nonzero torsion, by taking the limit as the torsion approaches zero. When 
this is done, one is able to write down a Euclidean version of the Schwarzschild line element that is the (only 
spherical, by Birkhoff’s theorem,) solution to the vacuum form of the Einstein field equations, in a manner 
which is suggestive of a connection to non-relativistic quantum mechanics. Finally, we have shown that the 
vector components of the cosmic accelerated expansion will correspond, in principle, to measurements 
associated with the translation of a point in the Minkowski tangent space which accompanies motion associated 
with a closed curve in a corresponding Weitzenböck manifold. This finding encourages the possibility that 
crystallographic models of elastic media with dislocations may allow us to use the formalism presented here to 
accurately determine the spacetime translational components in the Minkowski tangent space (defined with 
respect to observer O  at spacetime event P) of the proper inertial mass associated with modeling spacetime as a 
Riemann-Cartan manifold.  If it is found that these components are indeed anisotropic, resulting in an 
anisotropic vector accelerated expansion, such a discovery might serve as a decisive factor in enabling scientists 
to resolve current uncertainty surrounding why there are two prevailing measurements corresponding to the 
cosmic accelerated expansion.[15][16] 
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(a^2+b^2=n^2)

P

a

Q
P

4 vector F

b

dx=0

RS = Limit Q P[ ] 0 = 0
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Figure 1.	Diagram depicting motion of a four-vector force along a closed curve in a spacetime without defects. 
One can imagine the force to be acting at point P, which is the spacetime location of observer O, the proper 
observer for whom each unit vector of a coordinate basis corresponds also to a component of proper inertial 

mass mO( )a . One can imagine this point to be defined on the surface of a marble (size greatly exaggerated 
here) with origin at point Q (i.e., defined on the boundary of a neighborhood of Q) in the absence of friction, so 
that the marble slips along the curve, or, equivalently, rolls along a circular curve of integral radius with no 
distortion, and the force vector returns with its tip at the original position (i.e. there is no rotation because the 
space has zero curvature, and there is no translation of the tip of the vector due to motion along the closed 
curve), so that effectively the length of segment QP is equal to zero. In such a space, there would be no cosmic 
accelerated expansion. 
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Spacetime with defects
(a^2+b^2=(n^2)/2^(1/2))
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Figure 2. Diagram depicting motion of a four-vector force along a closed curve in a spacetime with defects.  In 
a spacetime with defects, one can imagine that the marble is moving on a perfectly rough surface, so that it rolls 
without slipping. In this case, the marble rolls along the closed curve, which is now elongated (due to distortions 
resulting from the presence of defects), following an elliptical path, and the force vector returns with its tip 
antiparallel to the orientation of its original position: i.e., there is no net rotation of the force vector, because the 
spacetime has zero curvature, but there is a net translation dx  of the tip of the force vector in the Minkowski 
tangent space due to motion of the force vector along the closed curve in a Weitzenböck spacetime with defects. 
The radius of the marble, segment QP (greatly exaggerated here) corresponds to the Schwarzschild radius of a 
black hole representing a defect with origin at Q. From the perspective of an observer at P, the mass M of this 
black hole is a geometric property of spacetime, with components corresponding to each component of a set of 
basis vectors with origin at P. Because of the net translation of the tip of the force vector in the Minkowski 
tangent space, there is an angular cosmic acceleration. The effective separation ½ (2 QP) of the origins of an 
accelerated observer O '  and a proper observer O, respectively, corresponds to the Schwarzschild radius of a 
defect located at the origin of the coordinates Q for an arbitrary observer O’, but at the origin of coordinates P 
for the proper observer O located at P. The product of the magnitude of the angular cosmic acceleration with the 
Schwarzschild radius vector  

!
RS

yields the (possibly anisotropic) components of the cosmic acceleration vector. 


