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Abstract: The optical properties of quasiperiodic SFMs of ZnS/MgF2 are theoretically investigated, many 

transmission peaks have been observed for normal incidence of light and if the symmetry is disrupted, these 

peaks have clearly shrunk. So, it is demonstrated that the mirror symmetry plays an important role in obtaining 

the perfect transmission features in SFMs. 

 

I. Introduction 
Recently, photonic quasicrystals (PQs) with aperiodic structures have attracted many interests for their 

amusing photonic band gap properties analogical to those of periodic photonic crystals. The diversity of the 

PBGs of PQs is magnetic both theoretically and experimentally for potential applications in novel optical and 

optoelectronic devices. Among various PQs, the properties of one-dimensional PQs could be simulated more 

precisely. So, they have attracted great attention because they are more realistic from the technical point of 

view. One-dimensional photonic quasicrystals including Fibonacci [1-2] and Thue Morse (TM) [3] sequences 

have been constructed experimentally. 

The concept of a quasicrystal is a natural extension of that of a crystal, in which translational 

periodicity is relaxed, preserving quasiperiodic order. Quasi-periodic structures, where two (or more) 

incommensurate periods are superposed, can be defined as intermediate systems between a periodic crystal and 

the random amorphous solids [4-6].  Photonic quasiperiodic structures are deterministically generated dielectric 

structures with nonperiodic refractive index modulation. Quasi-periodic photonic crystals are quite different 

from periodic photonic crystals in many aspects [7-9]. The Fibonacci quasicrystal has been the subject of an 

extensive theoretical and experimental investigation in the last three decades. Merlin et al. [10] produced first 

Fibonacci superlattice in 1985 for electron transport studies. Kohmoto, Sutherland and Iguchi proposed an 

experiment using photonic Fibonacci multilayers [11] in 1987, capable of localizing photons. The transmission 

spectrum has a rich multifractal structure. 

The photonic bandgaps of quasiperiodic photonic crystals are omnidirectional gaps. It is feasible to use 

quasiperiodic structures in long range of technological applications in various different fields because more 

structural parameters can be tuned in these as compared to periodic structures. Thue-Morse structure [12], 

Fibonacci sequence [13-14], Cantor layer etc. are some examples of the one dimensional quasiperiodic 

structures. Among them, Fibonacci sequence (FS) is a well known quasi-periodic structure and is of particular 

interest. The transmission spectrum of a Fibonacci system also contains forbidden frequency regions called 

pseudo-bandgaps similar to the band gaps of a photonic crystal. The light waves are critically localized in the 

frequency regime outside the Fibonacci band gaps. Hattori et al. observed the dispersion relation of photons 

transmitting through a photonic 1-D quasi-crystal in 1994 [15] measuring the spectrum of the phase change of 

the transmitted light. Gellermann et al. [16] investigated the localization of a light wave experimentally which is 

incident normally on a dielectric multilayer following the Fibonacci sequence. They observed a scaling of the 

transmission coefficient with progression through the Fibonacci sequence. 

Lusk and Placido [17] designed an omnidirectional mirror from quasiperiodic dielectric stacks based on 

Fibonacci sequence. Dong et al. [18] reported a broad omnidirectional reflection band by combining two 

Fibonacci quasi-periodic structures and one periodic structure to form a heterostructures. Cheng et al. [19] 

calculated the density of state in a photonic quasicrystal instead of the periodic crystal, and found that there the 

photonic band gap existed as well.  

Quasicrystals represent an intermediate organization stage between periodic dielectric materials and 

random media and have fascinating properties like the formation of multiple frequency band gap regions, 

transmission resonances and the occurrence of critically localized states.  Jihene Zaghdoudi et al. have 

attempted to determine the optical properties of quasi-periodic symmetric one-dimensional photonic systems. In 

addition, it studies hybrid hetero-structure systems constructed by using periodic and quasi-periodic multilayer 

systems. The effect of symmetry applied to symmetric multilayer systems results in the appearance of optical 

windows at the photonic band gaps (PBG) of the system [20]. In this paper, the optical properties of Fibonacci 

ZnS/MgF2 multilayers with internal symmetry are theoretically investigated.  
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II. Theoretical Formulation 
The Fibonacci sequences are multilayer structures formed by two different materials as building blocks. 

Two materials are labeled as H and L, where H represents the material with high refractive index and L 

represents the material with low refractive index. The number of layers in a structure depends on the order of the 

Fibonacci sequence. The Fibonacci sequence can be generated by the recursive relation,  

  0j,S,SS 1jj2j                   (1) 

where HS0   and LS1  , and jS  ( j>1 ) is the  j
th  

generation of the Fibonacci structure. H and L are 

material with refractive index nH and nL and thicknesses dH and dL respectively. 

The number of layers in a sequence is given by jF , where jF  is a Fibonacci number obtained from the recursive 

law 1jj1j FFF   , with 1FF 10  . For 2j  , the systems jS  are known as quasiperiodic. Here, 

simple transfer matrix method is used to study the quasiperiodic Fibonacci structures [21, 22]. The transfer 

matrix for Fibonacci system jS  can be written as, 

  2j,MMM 1j2jj   ,       (2)  

with L1H0 MMandMM  . 

The transfer matrices for the single layer H and L are given by 
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LH and   are the angle of refractions in layers H and L respectively which are determined by the Snell’s 

law and   is the wavelength of incident wave. Parameters  LH qandq  are given by, HHH cosnq   

and LLL cosnq   for TE polarization and 
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Thus, the transfer matrices jM  of the Fibonacci sequences are ,MMM LH2   LHL3 MMMM   and 

LHLLH4 MMMMMM   for 32 S,S and 4S  respectively. 

Here, an N-period finite structure is considered whose basic cell is the Fibonacci structure jS . The overall 

transfer matrix M of the system is obtained to be 
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The reflection coefficient is given by 
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where t,it,it,i cosnq   for TE wave and 
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  for TM wave, where i and t represent incident 

medium and substrate respectively. The reflectivity is given by, 
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The symmetric Fibonacci sequence can be generated in the following way. The j-th generation of the sequence 

can be expressed as-   },T,G{S jjj   where Gj and Tj are Fibonacci sequences. Gj and Tj obey the recursion 

relations, ,GGG 2j1jj   and ,TTT 1j2jj    with G0=T0=L and G1=T1=H. Therefore,

 1j2j2j1jj TTGGS   (8) 

Let us consider the symmetry in the structure as shown in the above equation and using the unitary condition  

1Mdet j  , the transmission coefficient of the light wave through the multilayers with internal symmetry 

can be written as, 
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If the condition M12+M21=0 is satisfied, perfect transmission peaks are indeed obtained. Thus, resonant 

transmissions can be obtained in the dielectric multulayers with mirror symmetry.  

 

III. Results and Discussion 
Here, the optical transmission of Fibonacci ZnS/MgF2 multilayer with internal symmetry is 

theoretically investigated. I have chosen zinc sulphide (ZnS) and magnesium fluoride dioxide (MgF2) as 

dielectric materials A and B respectively. Around the optical telecommunication wavelength of 1550 nm, their 

respective refractive indices are nA = 2.38 and nB = 1.38.  
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Figure 1 Calculated transmission coefficient vs wavelength for symmetrical Fibonacci ZnS/MgF2 multilayers 

with different generations. SFM S5 with 16 layers (a) with symmetry, (b) without symmetry; SFM S6 with 26 

layers (c) with symmetry, (d) without symmetry; SFM S8 with 68 layers (e) with symmetry. 

  

The theoretically calculated transmission as a function of wavelength for SFM films with the 

generations S5, S6 and S8 respectively are shown in the figures 1(a)-(e). Various resonant transmission peaks are 

observed in the wavelength range 800 nm to 2600 nm. So, it can be found 100% transmission at different 

wavelengths by adjusting the index contrast and modulation of optical thickness. This is due to the mirror 

symmetry of the system which creates special structures in some transfer matrix elements making it easier to 

satisfy the condition of perfect transmission.  

As it was seen that in the case of ordinary Fibonacci multilayer, the transmission of electromagnetic 

waves are poor but in the case of SFMs, perfect transmission peaks has been observed. In order to confirm it, I 

have deliberately disrupted the symmetry in the S5 and S6 systems and observed the change of the transmission 

spectra. In the S5 generation, the symmetry is broken by interchanging the ninth and tenth layers. From the 

figures 1(a) and 1(b), it can be observed that the previous perfect transmission peaks have clearly shrunk. Also, 

the optical transmission changes dramatically with the loss of perfect transmission peaks if the symmetry of the 

generation S6 is disrupted by interchanging the 14
th

 and 15
th

 layers. These results confirm that the phenomenon 

of perfect transmission of light is induced by the symmetry of the internal structure in dielectric multilayer. 

This work will be useful in the applications where high transmission and high resolution 

monofrequency outputs are particularly desired such as narrow-band optical filters, wavelength division 

multiplexing systems and photonic integrated circuits. These symmetric multilayer films can be used for a wide 

range of potential applications due to the transmittivity of resonant optical modes. 
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