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Abstract: We investigate the effect of the cubic nonlinear gain on the resonance curve in the frame of the 

dissipative soliton resonance (DSR) in a complex cubic-quintic Ginzburg-Landaumodel. The DSR occurs when 

the energy of a soliton in the system increases without limit at certain values of the system parameters. We 

remind analytical expressionfor the resonance curve,thanks to the collective variable approach.We show that 

the nonlinear gain has a linear response for the spectral filtering and the saturation of the Kerr 

nonlinearity,however, has a nonlinear response for the linear loss and the saturation of the nonlinear gain. 

Thus the gain and its saturation in the system can be suitably chosen for generation of high-energy pulses.These 

results can be helpful to design laser systems orto optimize the active parameters of cavities that generate 

solitons with the highest possible energy. 
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I. Introduction 
Dissipative solitons refer to solitary waves in nonlinear systems with nonlinear gain or loss [1, 2]. The 

formation of integrable conventional soliton, in optics, results from the single balance between nonlinearity and 

dispersion/diffraction. In non-integrable and non-conservative systems (dissipative systems), the single balance 

is replaced by the balance between gain and loss on the one hand and between dispersive and nonlinear 

conservative effects on the other hand. The existence and stability of dissipative solitons (DS) depend deeply on 

the energy balance [3]. Their dynamic and self-organization are governed by the perpetual and bidirectional 

exchange of energy with their environment. More specifically, this energy has to be dissipated in the medium 

where solitons are found. The dynamic and stability, more specifically, the amplitude, chirp, width and all other 

parameters of dissipative soliton and its energy are predetermined by the system parameters, rather by the initial 

conditions. According to system parameters, we can obtain a wide range of dissipative solitons, which show a 

huge quantity of different behaviors. In this way, the redistribution of energybetween various parts of the 

dissipative soliton can lead stationary soliton to pulsating or chaotic soliton dynamics [4, 5].However, for a 

given set of parameters;the profile of the DS is indeed fixed. These characteristics of dissipative solitons help 

for a wide range of applications, such as the generation of stable trains of laserpulses by mode-locked cavities, 

or the in-line regeneration of opticaldata streams [3].  

The laser cavities can be considered as an ideal experimental frame for the exploration of dissipative 

soliton dynamics. The mode-locked lasers with nonlinearity, saturable absorber and which allows the generation 

of ultra-short optical pulsescan be regarded as perfect surroundings for the concept of dissipativesolitons.Each 

laser model depends on thedissipative soliton dynamics, that way, agiven laser system can be modeledby 

varying several components. In addition, an exact model should involve consecutive sets of propagation 

equationsthat incorporate the mainphysical ingredients at play in mode-locked lasers. It has been shown that the 

complex cubic–quintic Ginzburg–Landau equation (CGLE) is an accurate model to approach the mode-locking 

[6] and use to describe a widerange of nonlinear optical systems, such as passively mode-lockedlasers with fast 

saturable absorbers, parametric oscillators, wideaperturelasers and nonlinear optical transmission lines [7]. The 

CGLEis very important in nonlinear optic due to the clear physical meaning of all its terms in any particular 

application. Under certain conditions, it is possible to relate all the terms of the CGLE to the physical 

parameters of the laser cavity [8]. 

For a given set of the system parameters, it has been demonstrated that the dissipative soliton energy 

can increase indefinitely and so the process resembles the resonance phenomenon in the theory of oscillators. In 

such cases, the solitons increase their width indefinitely while keeping their amplitude constant. This behavior 
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of dissipative soliton was named “dissipative soliton resonance”.Likewise, in the frame of CGLE [9, 10] Chang 

et al have foreseen a novel soliton formation, dissipative-soliton-resonance,recently. Using technique called the 

method of moments (trial function technique); they found the resonance approximately [9].It knowsthat finding 

analytical solutions of the CGLE is critical task procedure except for specific values of the complex cubic–

quintic Ginzburg–Landau equation parameters [5]. To the best of our knowledge,it is also an impossible task to 

findthe dissipative-soliton-resonance (DSR) parameters using direct analytic technique. For a given set of 

parameters and a given initial conditions, the complex cubic–quintic Ginzburg–Landau equation has several 

configuration parameters, so it is tough or even impossible to identify its solutions or the region of parameters 

where dissipative soliton resonance exists. This will requires an enormous number of numerical simulations and 

is an extremely lengthy and costly procedure. To overcome this task, it appears necessaryto acquire theoretical 

tools that help to perceive CGLE soliton solutions and to find the set of parameters, which predicts the domains 

where resonances can be found. This task can be simplified in the case of DSRmore efficiently. 

Recently, using the method of collective variable approach, we have foundthe resonance curve and 

described the influence of dissipative terms of CGLE on this curve. Accurately we have demonstrated how the 

linear loss, the gain and its saturation in the system and the spectral response of the cavity can be suitably 

chosen for generation of high-energy pulses.In the present study, we remind in section 2 the resonance curve 

found by collective variable approach and focus on specific values on nonlinear gain in order to evaluate their 

actions on the resonance curve. The section 3 is devoted to the influence of the cubic nonlinear gain and how 

this parameter affects the spectral response, the linear loss coefficient, the saturation of the nonlinear gain and 

the saturation of Kerr nonlinearity.Finally in the section 4, we conclude after the discussion of the results. 

 

 

II. Materials and method 
The dynamic of dissipative soliton in nonlinear cavity can be modeledby the complex cubic-quintic 

Ginzburg-Landau equation. The normalized propagation equation, in the (1+1) dimensional case, reads: 

𝜓𝑧 − 𝑖
𝐷

2
𝜓𝑡𝑡 − 𝑖𝛾 𝜓 2𝜓 − 𝑖𝜈 𝜓 4𝜓 = 𝛿𝜓 + 𝜀 𝜓 2𝜓 + 𝛽𝜓𝑡𝑡 + 𝜇 𝜓 4𝜓                    (1) 

Where𝑧 is the propagation distance or the cavity round-trip number and 𝑡 is the retarded time in the frame 

moving with the pulse. The normalized optical envelope𝜓 = 𝜓 𝑡, 𝑧 , is a complex function of two real 

variables. In the context of the dimensionless CGLE, the parameters𝐷,𝛾,𝜈, 𝜇, 𝜀, 𝛿 and 𝛽 havetheir standard 

meaning.𝐷the group velocity, accounts for the dispersion, being positive (negative), in the anomalous (normal) 

dispersion regime and𝛾is the Kerr nonlinearity coefficient.The dispersion is responsible for the net dispersion in 

the cavity while 𝜈the saturation coefficient of the Kerr nonlinearity, describes the active part of the reactive 

nonlinearity. 𝜀 represents the cubic nonlinear gain while the term with 𝜇 represents, if negative, the saturation of 

the nonlinear gain 𝜀.  𝛿 is here the linear loss coefficient and accounts for spectral filtering in the cavity. The 

coefficients 𝜇, 𝜀 and 𝛿are mainly determined by the gain in the system, cavity losses, and transmission 

characteristics of the mode-locking device. 𝛽describes the spectral responseof the cavity.Higher-order 

dissipative terms are responsible for the nonlinear transmission characteristics of the cavity, which allows, for 

example, passive mode locking. 

The CGLE equation (1) describes very well experimental observations of high-energy pulses from 

passively mode-locked lasers, both fiber and solid-state ones [11, 12], and its coefficients can refer to the 

physical parameters of laser cavities.Likewise, the equation (1)can be used to design laser systems for the 

generation of high-energy pulses, as the dissipative resonance effects are predictive features. The main and 

tedious problem is that each particularlaser requires specific modeling and numerical simulations [13, 14]. To 

address this critical constraint, one option, is to use the master equation approach, to a certain extent to 

overcome this problem. This procedurehelps to describe any particular laser model, and to find the critical 

parameters of the system that will generate the pulse with the highest possible energy.We have highlighted in 

our previous work [5] the stationary and pulsating solutions of the CGLE using the collective variable method 

and have demonstrated the relevance of that procedure. Using the same approach we have analytically found the 

resonance curve - see details in the reference [15] - leading to a dramatic reduction of the computation time. 

As in these works [5, 15], we are dealing with the collective variable theory [16], with the same way, 

we decompose the field 𝜓 𝑡, 𝑧  in the following way: 

 

𝜓 𝑡, 𝑧 = 𝑓 𝑋1,𝑋2,… ,𝑋𝑁 , 𝑡 + 𝑞 𝑡, 𝑧 (2) 

 

Where 𝑓 the trial function, is a function of 𝑋𝑁(the collective variable) and the other 

excitations(radiation, dressing field, noise, etc.) in the system are represented by 𝑞. Thereafter, we can consider 

that the exact pulse field 𝜓 = 𝜓 𝑡, 𝑧  is completely characterized by the trial function𝑓. The bare approximation 
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[16] is named to describe this approximation of neglecting the field 𝑞. When approximations are made, the 

precise form of the ansatz function that introduces the collective variables in the theory is rather crucial.  This 

choice is especiallyimportant for the success of the technique. 

Like this,weconsider the following higher-order Gaussian function to the success of our approach: 

𝑓 𝑡, 𝑧 = 𝐴 𝑒𝑥𝑝  −
𝑡2

𝑤2
−
𝑡4

𝑤4
+ 𝑖𝑐𝑡2 + 𝑖𝑝                                      (3) 

In this way𝐴represents the soliton amplitude, 𝑤and𝑐its width and chirp respectively.𝑝 is the global 

phase that evolves along with propagation. These parameters 𝐴,𝑤, 𝑐, 𝑝(collective variables)are variable that 

evolve along the propagation direction 𝑧. They control the dynamic of the dissipative soliton.The total energy𝑄 

is the natural control parameter to some extent. Here, in the collective variables approachone of the key benefit 

is that the total energy can also expressed as function of the trial function parameters. Here it is interesting to 

gain insight from this simple and useful quantity, which is defined as: 

𝑄 =   𝜓 2
∞

−∞

𝑑𝑡 

𝑄 = 1.051𝐴2𝑤                                         (4) 

It is clearly function to the soliton amplitude and its width. At a later stage, when the choice of the trial 

function is made, one can carry out variational analysis by setting the residual field to zero (𝑞 𝑡, 𝑧 = 0) to the 

CGLE. Hence substituting the pulse field (𝜓)by a given trial function (𝑓) and projecting the resulting equations 

in the direction [16] of 

𝜕𝑓

𝜕𝑋

∗

 𝑋 = 𝐴,𝑤, 𝑐, 𝑝                            (5) 

we obtain easily the collective variables evolve according to the set of coupled ordinary differential equations, 

which can be expressed as a function of the total energy 𝑄 as following : 

𝑄𝑧 = 𝑄  2𝛿 − 1.158 𝑐2𝑤2𝛽 + 1.433
𝑄𝜀

𝑤
+ 1.146

𝑄2

𝑤2
𝜇  

𝑤𝑧 = 𝑤  −0.815 𝑐2𝑤2𝛽 − 0.252
𝑄𝜀

𝑤
− 0.269

𝑄2

𝑤2
𝜇      (6) 

𝑐𝑧 =
1

𝑤2
 −2 𝑐2𝑤2𝐷 − 1.327

𝛾𝑄

𝑤
− 1.491

𝜈 𝑄2

𝑤2
  

 

We observe that the CGLE, equation (1) is reduced to an ordinary differential equation given by the 

soliton energy 𝑄 and width 𝑤. From the equation (6) one can easily determine the resonance curve; see details 

in [15]. It is known that near the resonance curve,the zeros of the right-hand side of the equation (6) define the 

fixed points.As well as the values 𝑄/𝑤and𝑐𝑤tend to approach constants with 𝑐 being negative. As you can see 

in [15],thus we obtain with a certain ease the expression for the resonance curve in terms of the system 

parameters: 

𝐷 = 𝑘
𝛽(0.240𝑘𝜈 − 0.533𝛾𝜇)

𝜇(0.062𝑘𝜀 − 0.863𝛿𝜇)
                (7) 

where 

𝑘 = 1.461𝜀 +  2.135 𝜀2 − 8.125𝛿𝜇                (8) 
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All the details of this calculation are referred in our previous work in [15]. So the method of collective 

variable approach helps to found approximatively the relation between the parameters of the normalized 

complex cubic-quintic Ginzburg-Landau equation and simple analytical expression for the resonance curve. For 

the chosen values of the CGLE (see inside the Fig. 1) we plot in the plane of parameters 𝐷 and 𝜀,the resonance 

curve obtained by the collective variable approach.This curve is reasonably good qualitative agreement with 

those found by the method of moments [9]. The curve is atypical, for small values on the dispersion 𝐷 and 

nonlinear gain 𝜀 it tends to a relative constant value. Conversely, when this parameters increase, the resonance 

curve rises quickly and its slope tends almost to zero. The nonlinear gain plays a key role in the dynamic of 

dissipative soliton and as well,near these curve the soliton energy and width increase to infinitely large values. If 

we carefully examine the curve (Fig. 1), we focused on four values of nonlinear gain 𝜀 = 0.17, 𝜀 = 0.27, 

𝜀 = 0.5, and 𝜀 = 2 respectively in blue, red, black and green on the Fig. 1 that we explore further in the next 

section. 

 
Figure 1. Resonance curve in the  𝐷, 𝜀  planefound by the collective variable approach. Other CGLE 

parameters appear inside the Figure. We highlight on four values of nonlinear gain 𝜀 = 0.17, 𝜀 = 0.27, 

𝜀 = 0.5  and 𝜀 = 2 respectively in blue, red, black and green. 

 

 

III. Results And Discussion 
The nonlinear gain controls the evolution of the dissipative soliton. According its value, the amplitude, 

the width, the shape of the soliton can have different characteristics. In the reference [11] the authors have 

precisely shown that when weget closer to the resonance, the pulse profile of the solitons and their spectra 

change quickly. That way, when the cubic nonlinear gain 𝜀 increases, the pulses can become narrower and of 

higher intensity.𝜀increases is mainly due tothe increase in the pulse width. Likewise,Niang et al investigated in 

[18] the effect of the gain dynamics on the collectivebehavior of solitons and shown that the gain dynamics 

modifies the soliton velocity and their interactions.In addition, as 𝜀 determine the gain in the system, it can be 

suitably chosen for generation of high-energy dissipative solitons.This is due to the fact that the dissipative 

soliton resonance effect of CGLE ispredictive. As well, it is widely known that the physical meaning of each 

particular laser depends on the real problem which must be examined and requires numerous modeling and 

numerical simulations [13, 14]. Now in this paper it seems important to consider the influence of the cubic 

nonlinear gain 𝜀termson the resonance curveand how it affects the spectral responseof the cavity, the linear loss 

coefficient, the saturation of the nonlinear gain and of the Kerr nonlinearity. 

Firstly we plot in the Fig. 2 the evolution of the resonance curve in the  𝐷,𝛽  plane for a given set of 

parameters inside of the figure. For a specific value of the cubic nonlinear gain 𝜀the resonance curve has a linear 

evolution. Thereby for 𝜀 = 0.17, 𝜀 = 0.27, 𝜀 = 0.5 , and 𝜀 = 2 respectively in blue, red, black and green we 

have three straight lines that evolve separately with the same origin. They have the commonpoint (0.0) and 

negative slopes. We note that when the nonlinear gain increases, the resonance curve moves to the right. This is 

accomplished in practice by a rapid increase of the soliton energy. It can also be noted that when the spectral 

responseof the cavity𝛽 increases the gap between the different resonance curves also increases.This 

characterizes different profiles (amplitude, wide, shape) and behaviors (stable, non-stable) of the dissipative 

structures.It can be seen here that whatever the value of the cubic nonlinear gain 𝜀,the resonance curve has the 

same qualitative dynamics.This behavior can help in the design of lasers with special characteristics. 
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Figure 2. Resonance curves in the  𝐷,𝛽  planefound by the collective variable approach for different values of 

nonlinear gain 𝜀 = 0.17 (blue), 𝜀 = 0.27 (red),𝜀 = 0.5 (black) and 𝜀 = 2 (green). Other CGLE parameters 

appear inside the Figure. 

 

As shown in the following Fig. 3, we plot the evolution on the resonance curve in the 𝐷, 𝛿  plane 

varying the linear loss coefficient𝛿 and the dispersion parameter𝐷. We notice that the resonance curve varies 

accordingto the nonlinear gain. For nonlinear gain values close to 2, the curve tends to a straight line, on the 

other hand for low values close to 0.17 the pace of the curve is totally different.It is no longer linear and 

becomesdistant from the other three. For this specific value of nonlinear gain (𝜀 = 0.17) in blue, we are seeing 

that the resonance occurs over a wide range for the dispersion from -15 to -7.15. In this instance, in spite of the 

losses in the cavity, it is possible to have pulses with highest energies, thereby benefiting for the conception and 

design of the generators with record-high energies. 

Likewise we draw the resonance curves by plotting the dispersion against the saturation of the 

nonlinear gain.Reasonably close to zero, the curves are close each other or overlap. For𝜀 = 0.27 (in red), 

𝜀 = 0.5 (in black) and 𝜀 = 2 (in green), see Fig. 4, the resulting resonance curves follow the same evolution. 

Thisthreecurves (red, black and green) are similar and have qualitatively the same behaviours and 

characteristics. A more thorough inspection reveals that the resonance curves in the  𝐷, 𝜀  plane and in the 

 𝐷, 𝜇  plane – the nonlinear gain (𝜀) and its saturation (𝜇)– have the inversely proportional features and 

evolutions. On the other hand, the curve for 𝜀 = 0.17, in blue, is clearly differentiated from the others. It follows 

approximately an arc of circle, like that, each dispersion value between -13.5 and -6 refers to two points on the 

resonance curve. The selected nonlinear gain significantly alters the dissipative soliton dynamic, changing 

𝜀 = 0.27 to 𝜀 = 0.17 the resonance curve is modified considerably.  

The saturation coefficient of the Kerr nonlinearity (𝜈) action on the resonance curve is summarize on 

the Fig. 5 for different values of nonlinear gain 𝜀 = 0.17 (blue), 𝜀 = 0.27 (red), 𝜀 = 0.5 (black) and 𝜀 = 2 

(green). These curves depict straight lines which are parallel to each other. The line segments (for 𝜀 = 0.17,𝜀 =
0.27, 𝜀 = 0.5 and 𝜀 = 2 ) with negative slope represent uniformly decreasing resonance. 

 

 
Figure 3. Resonance curves in the  𝐷, 𝛿  planefound by the collective variable approach for different values of 

nonlinear gain 𝜀 = 0.17 (blue), 𝜀 = 0.27 (red), 𝜀 = 0.5 (black) and 𝜀 = 2 (green). Other CGLE parameters 

appear inside the Figure. 
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Figure 4. Resonance curves in the  𝐷, 𝜇  planefound by the collective variable approachfor different values of 

nonlinear gain 𝜀 = 0.17 (blue), 𝜀 = 0.27 (red), 𝜀 = 0.5 (black) and 𝜀 = 2 (green). Other CGLE parameters 

appear inside the Figure. 

 

 
Figure 5. Resonance curves in the  𝐷, 𝜈  planefound by the collective variable approachfor different values of 

nonlinear gain 𝜀 = 0.17 (blue), 𝜀 = 0.27 (red), 𝜀 = 0.5 (black) and 𝜀 = 2 (green). Other CGLE parameters 

appear inside the Figure. 

 

IV. Conclusion 
In this present study, we reiterated collective variable approach for the phenomenon of dissipative 

soliton resonance. Thanks to this approach, we have found an approximate relation between the parameters of 

the normalized complex cubic-quintic Ginzburg-Landau equation and simple analytic expression for the 

resonance curve. The coefficients for the CGLE are in practice complex function or very complicated specific 

design factors, and must be clarified for each specific laser. As the master equation that describes laser systems 

has many parameters, it’s so difficult to study the influence of all of them on the soliton properties. Here we 

have investigated the influence of the cubic nonlinear gain 𝜀termof CGLE on the resonance curve and how it 

affects the spectral response of the cavity, the linear loss coefficient, the saturation of the nonlinear gain and the 

saturation of Kerr nonlinearity. This parameter (nonlinear gain 𝜀 term) is essential in the modelling of high 

energylaser systems and tunable. In this work, we clearly showed it could have a linear response for the spectral 

response of the cavity and the saturation of the Kerr nonlinearity on the one hand. On the other hand the same 

nonlinear gain 𝜀 term has a nonlinear response forthe linear loss and the saturation of the nonlinear gain.In this 

latter case, the curve is much more impacted by the low values of nonlinear gain. These facts provide useful 

hints that can be further analyzed and interpreted. Theseresults bring particular advantagesforgeneration of high-

energy pulses and to enhance the gain termsinthe mode-locked laser systems.Obviously this work can be useful 

for the configuration of the laser systems that generate record-high energy short pulses, without the need for 

additional amplifiers. 
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