The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

*Hayder I. Ali *Asaad R.S. Al-Hilphy **Amir K. Al-Darwash

*Department of Food Science, College of Agriculture, University of Basrah.
**Department of Food Science, College of Agriculture, University of Baghdad.

Abstract: The study focused on the design and manufacture of a device to magnetize milk that used to make cheese and study the net percentage of its qualities when using a fixed magnetic field with an intensity of 0.3 Tesla. Results showed the presence of the influence of magnetic field on the chemical qualities of milk, especially moisture content that significantly increased with increasing magnetic field exposure time. The results also showed a significant increase in titrated acidity and significant decrease in total bacteria count and quantity of cheese produced from magnetize milk. Organoleptic evaluation showed that cheese produced from magnetic milk was significantly better than that produced from heated pasteurize milk.

Key words: magnetic field, milk, pasteurization

I. Introduction

In spite of milk is being sterilized inside the udder, it could be contaminated by various types of bacteria during and after milking, like mastitis caused by bacteria such as Staphylococcus aureus, Streptococcus uberis and Coliform spp. (Mahmoud and Ghaly, 2004; Meng-xiang et al, 2004; Meng –xiang et al, 2005). Usually milks preserved either by thermal treatment like cooking, smoking, salting, freezing and drying. Currently other modern methods were used, such as a microwave, radiation (UV) and magnetic fields (Coughlan and Hall, 1990; Pothakamury et al., 1993; Lipiec et al., 2004). Recently, magnetic fields are used as a good method to get rid of microorganisms, asthemagnetic fields inhibit microorganisms that cause food spoilage (Frankel and Liburdy, 1995). This method was used to treat milk resulting reduction in the bacterial counts from 25000 to 970 CFU/ml at 12 field intensity of 12 Tesla, besides magnetic milk gives power and liveliness to exhausted people (Maes et al, 2000). Magnetization of milk by steady method is done by fixing a magnetic in a container which contains milk for 4-6 hours. The resulted magnified milk is useful to cure sick people, increase sexuality, preserve food quality by decrease thermal damage and enhance milk properties (Hileman, 1993; Reminick, 2000; Maehob, 2002; Miyakoshi, 2005). The aim of the present study was to design and manufacture a device to magnetize milk by a magnetic field to eliminate microorganisms, prolonged milk shelf life and to study the effect of this treatment on the resulted cheese characteristics and yield.

II. Materials and Methods

Raw cow milk was obtained from the Agricultural Station, College of Agriculture, University of Basrah during spring 2015.

Milk magnetic device:

Milk magnetic device was designed and produced at the Laboratory of Food Industry Engineering/ Food Sciences Department/ Basrah University. Figured 1 and 2 showed a diagram of the device which consisted of a frame (body) (5) made of wood and two fixed magnetic (8), each of them has an intensity of 0.365 Tesla, with a distance of 0.5 cm in between them. Northern polar was located in the front of the southern polar and with the presence of a transparency, (1 cm in diameter) plastic pipe (2) provided with reciprocating pump (12) v which discharge (10 L/min) siphoned off milk from the bottom of the 5 L tank (3) and pushed it against the magnetic (8) to expose to magnetic energy and return back to the tank again. The system was provided with a battery of 90 Ah capacity which provides 12 v. A pipe (4) provided with a valve (14) was used to discharge the magnetic milk.

Device mechanism:

When tank (3) was filled with milk and the valve (14) was closed, the electricity key (7) was put on, the current goes through the pump (12), start pumping milk from tank bottom (3), pushed it through the plastic pipe (10), milk would go through the two magnetic polar (8), through pipe (2) to tank (3), the milk which was passed through the system became magnetic. This recirculation on process was repeated several times to let the milk take required explosion to magnetic field for longer time.
The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

Figure 1: Locally produced milk magnetizer.

Figure 2: Image Locally produced milk magnetizer.

Measurement of magnetic intensity:

A Gauges and Tesla meter produced by Nvis Technology Pvt. Ltd., India was used to measure magnetic intensity by Tesla unit type Nv621.
Cheese making:

Dutch dry microbial rennet manufactured by Green Wings Co. was used. Fresh white milk cheese was made either from magnetic field exposed or not exposed milk. Temperature was elevated to 35°C, rennet was added according the supplier, curd was obtained after 35-45 min., and curd was cut, left for 5 min. and transferred to a sieve covered by cheese filtering cloth (Al-Tikrity and Al-Khal, 1984). During this stage salt was added, the three corners of the cloth was gathered and the fourth corner was used to make sag which contains the resultant curd and a heavy weight was put on to give the curd its shape in a traditional template. The resultant cheese was cut into 10 X 10 cm cubes for further tests.

Chemical, organoleptic and microbial tests:

Moisture and ash were measured according to A. O. A. C (1990), fat by Gerber method (Newlander and Atherton, 1977) and protein by Kjeldahl method (Ling, 1963). Milk clotting ability was determined and cheesewas calculated to weight percentage (Ismail and Abdul-Salam, 1971). Pour-plate method was used to count total microbes, E. coli, Staphylococcus, yeasts and fungi (APHA, 1978). Organoleptic evaluation was done according to method revealed by Hassan et al., (1983).

Ratio of survival microorganisms to total (C/CT):

Ratio of survival microorganisms to total (C/CT) was calculated by the following equation (Ferna'ndez-molina et al., 2001):

\[
(C/CT) = \exp(\frac{k}{W}t)
\]

Where, \(A_r\) is a volume of treatment chamber (m³), \(k\) is a constant, \(t\) is the time (sec.) and \(W\) is the discharge (m³/sec.).

The mathematical modeling was used to calculation \(k\) by using solver program in excel 2010.

D-value

D-value was calculated from the following equation:

\[
D = \frac{t_2 - t_1}{\log N_{0j} - \log N_j}
\]

Where \(N_{0j}\) and \(N_j\) (CFU/ml.) represent the survivor counts following magnetic for \(t_1\) and \(t_2\) (min), respectively. \(D\) is the time needed to destroy 90% of the microorganisms (to reduce their numbers by a factor of 10) is referred to as the decimal reduction time.

Data was statistically analyzed by using Complete Randomized Design (Al-Rawi and Khalfallah, 2000). Means were compared by Least Significant Difference test at 0.05 significant levels.

III. Results and Discussion

Table (1) showed the milk chemical compositions after being exposed to a magnetic field for different periods of time. Moisture was increased when milk was exposed for longer time. It was 88.97% at zero time and increased to 90.26% after 60 min of exposure. The reason behind that was that few nucleus center in the water of milk which causes inhibition of the ability of water molecules association, their magnetic power was very weak, finally they cracks and became free and scattered. This process inhibited crystal formation on pipes walls. Therefore, magnetic field cracks foreign materials found in water and increases ions movements (Al-Hilphy, 2011). However, fatshowed slight decrease in percentage, as it was decreased from 3.14% at zero time to 2.69% after 60 minutes of treatment. The reason was due to the adhesion of some fat molecules on the pipes walls of magnetic device. Since milk went through pipes at room temperature (25°C), fat molecules were solid and due to the fact that milk was not homogenizes.Milk protein showed slight decreases in percent from2.92% at zero time to 2.69% after 60 min. This may be due to association of protein with fat precipitated on pipes walls(Korolenko et al, 1995).

Ash percentwas decreased from 0.55% at zero time to 0.5% after 60 minutes of treatment which may be due to the association of some minerals with fat and protein precipitated on the pipes (Singh, 2001).

Lactose concentrate was decreased from 4.42% at zero time to 4.07% after 60 minutes of treatment. Thisis due to clear due to the small volume of milk used under the present study but on factory scale these changes would not be of importance. Homogenization of milk during large scale production will also decrease the importance of these changes.

Freezing pointwas changed from -0.509 at zero time to -0.468 after 60 minutes of treatment due to the decrease in lactose and minerals which are the main factors affecting the freezing point of milk.
The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

Table (1). Chemical composition of milk before and after magnetizing exposure for different periods of time.

<table>
<thead>
<tr>
<th>Magnetize field exposure time</th>
<th>Fat%</th>
<th>Protein%</th>
<th>Ash%</th>
<th>Moisture%</th>
<th>Lactose%</th>
<th>Freezing point °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>3.14</td>
<td>2.92</td>
<td>0.55</td>
<td>88.97</td>
<td>4.42</td>
<td>-0.509</td>
</tr>
<tr>
<td>20 min</td>
<td>2.51</td>
<td>2.89</td>
<td>0.51</td>
<td>89.81</td>
<td>4.28</td>
<td>-0.475</td>
</tr>
<tr>
<td>40 min</td>
<td>2.50</td>
<td>2.73</td>
<td>0.51</td>
<td>90.13</td>
<td>4.13</td>
<td>-0.469</td>
</tr>
<tr>
<td>60 min</td>
<td>2.48</td>
<td>2.69</td>
<td>0.50</td>
<td>90.26</td>
<td>4.07</td>
<td>-0.468</td>
</tr>
</tbody>
</table>

Microbial content of magnetize milk were decreased (P<0.05) after different exposure periods (Table 2). It decreased from 250x10^4 at zero time to 29x10^2 after 60 minutes of exposure by using magnetic field. Magnetic field causes a transfer of energy into ions which produce stream of ions which hit in high velocity (Hofmann, 1985). Ions like calcium which possibly go through cell membrane frequently since reaction sites are influenced by magnetic field. The movement of ions due to the effect of magnetic field treatment may affect the cell membrane and the ability of transference through the cell walls (Moore, 1979). As well as magnetic fieldworks ondisengagementbetweenions andproteins that are connected to the cell wall and leadsto the weakening of the bacterial cell membrane, leading to their death by damaging of DNA and the elimination of the number of microbres. Magnetic field treatment resulted in complete destruction of E. coli, Yeast and molds (Kimball, 1937; Van Nostran et al, 1967; Scaione et al., 1994). On the other hand, the following empirical equations used to calculation of log total count of Bactria and count of staphylococcus are produced from practical data.

\[
\log(y)_{\text{Total count of bacteria}} = -0.05 t + 6.3179 \\
R^2=0.986
\]

\[
\log(y)_{\text{Staphylococcus}} = -0.0069 t + 1.9601 \\
R^2=0.969
\]

Where t is the magnetic time (min.) and y is the total count.

Table (2) Microbial content of milk before and after magnetic field treatment for different period’s exposure time

<table>
<thead>
<tr>
<th>Exposure time</th>
<th>Total bacterial count</th>
<th>E. coli</th>
<th>Staphylococcus</th>
<th>Yeast & molds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>250x10^4</td>
<td>absent</td>
<td>86</td>
<td>absent</td>
</tr>
<tr>
<td>20 min</td>
<td>200x10^4</td>
<td>absent</td>
<td>70</td>
<td>absent</td>
</tr>
<tr>
<td>40 min</td>
<td>13x10^4</td>
<td>absent</td>
<td>52</td>
<td>absent</td>
</tr>
<tr>
<td>60 min</td>
<td>29x10^2</td>
<td>absent</td>
<td>33</td>
<td>absent</td>
</tr>
</tbody>
</table>

Figure 3 showed that the calculated and experimental ratio of survived to total counts of microorganisms (C/CT) in milk had been decreased with increasing time of exposure of magnetic field. The results also showed there is substantial convergence between the experimental and the calculated results and the coefficient of correlation R² and RMSE 0.999, 0.000451, respectively. Also, the k value has been calculated by using mathematical modeling (k=-0.53671) and the equation 1 becomes as follows:

\[
\left(\frac{C}{CT} \right) = \exp\left(-0.53671L_\mu \frac{t}{w} \right)
\]

Figure 4 shows the change of D-values with increasing exposure time of magnetic field. Although, changes were not significant, but it may of importance after storage of milk. The D-values of microorganisms in milk treated by the magnetic field were less than the traditional pasteurization. The decline of D-value refers to increasing speed of destruction of microorganisms.
The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

Figure 3. Calculated and experimental ratio of survival microorganisms to total (C/CT) in milk treated by magnetic field.

Figure 4. The D-values of microorganisms in milk treated by magnetic field and by traditional pasteurization.

Table (3) shows the chemical composition of cheese produced from either milk treated by fast pasteurized milk (70°C for 15 Sec.) or after exposure to magnetic field treatment. The differences in the moisteries contents in both types of cheeses were not significant. Cheese making changes the distribution of moisture within the structure of cheese as compared to that of milk components. These results were in agreement with that revealed by Kanka et al., (1989). Thermal treatments denatured whey proteins slightly and may be associated with casein. Retention of whey proteins increased water holding capacity. As moisture percent elevated due to whey protein association with casein play fundamental role in increasing cheese yield from thermally treated milk (Quintanilla and Pena, 1991). Results also showed that cheese produced from magnetic field treated milk did not differ significantly from cheese produced from milk treated with 72°C for 15 sec. However, significant (P<0.05) decrease in fat% when milk treated thermally due to losing part of milk fat with the whey, this is agreed with Ghosh et al., (1999). The table also showed insignificance differences in ash% of the resultant cheese. Cheese pH non-significantly decreased, while titrated acidity increased significantly (P<0.05) due to the dissolved CO2 and to the development of acidity during magnetic field treatments. These results are in agreement with the results of Abd El-Salam et al., (1992) and Elein et al., (1999). Thermally treated milk may cause lowering pH, increasing calcium phosphate precipitation and whey protein denaturation which interact with caseins, Millard reaction, caseins modification and increase overall hydrolysis (Robinson, 1994). These changes depend on the severity of heat treatments.
The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

Table (3) Chemical composition of Cheese produced from pasteurized milk and milk exposed to magnetic field

<table>
<thead>
<tr>
<th></th>
<th>Moisture%</th>
<th>Protein%</th>
<th>Fat%</th>
<th>Ash%</th>
<th>pH</th>
<th>Titrated Acidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese produced from milk</td>
<td>60.3 a</td>
<td>19.3 a</td>
<td>17.4 a</td>
<td>2.8 a</td>
<td>6.45 a</td>
<td>0.15 a</td>
</tr>
<tr>
<td>pasteurized at 72/15 sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese produced from magnetic milk</td>
<td>60.26 a</td>
<td>19.9 a</td>
<td>17.4 a</td>
<td>2.7 a</td>
<td>6.59 a</td>
<td>0.14 b</td>
</tr>
</tbody>
</table>

Table (4) Microbial content of white soft cheese

<table>
<thead>
<tr>
<th></th>
<th>Bacteria total count</th>
<th>E. coli</th>
<th>Staphylococcus</th>
<th>Yeast & molds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese produced from Pasteurized</td>
<td>180</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>milk at 72/15 Sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese produced from magnetic milk</td>
<td>120</td>
<td>absent</td>
<td>absent</td>
<td>absent</td>
</tr>
</tbody>
</table>

Table (5) Cheese yield from pasteurized or magnetized milk

<table>
<thead>
<tr>
<th>Type of milk that used in making cheese</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese produced from Pasteurized milk at 72/15 sec</td>
<td>17.8</td>
</tr>
<tr>
<td>Cheese produced from magnetized milk</td>
<td>18.7</td>
</tr>
</tbody>
</table>

Conclusion

In conclusion magnetic field destroyed microbes and resulted in higher cheese yield. Further studies are required on microstructures of milk and cheese treated by magnetic field and on the distribution of moisture within milk and cheese. Nature and type of interaction between protein, fat and minerals resulted from magnetic fields treatments.

References

DOI: 10.9790/2380-08926369 www.iosrjournals.org
The effect of magnetic field treatment on the characteristics and yield of Iraqi local white cheese

[17]. Mahjob (2002).Biochemical and physiological changes which occur in body when set medical magnetic over worn inflammation and pains.07101/ MHL/5.htm. Al-Bay. No.1998

