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Abstract: The financial sector in India has undergone radical reforms, particularly in the stock market 

segment, since early 1990s. Testing duration in stock markets concerns the ability to predict the turning points 

of bull and bear cycles. This article study some point process models to fit the data from Indian stock market 

cycles. We have considered the BSE 30 (SENSEX) data from January, 1991 to August, 2012 for bull and bear 

markets. The duration dependence of stock market cycles can help to pinpoint the peaks and troughs in these 

cycles. Upon carrying out various statistical procedures and goodness of fit tests, we found that the 

Nonhomogeneous Poisson Process models like Power Law Process, Modulated Power Law Process, Log-linear 

process and other models are some of the possible alternative models to describe the data. We provide 

estimates, confidence interval estimates and tests of hypothesis for the parameters involved in a particular 

model.  
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I. Introduction 
The study of stock market data efficiency has been the objective of many researches since the last few 

decades. The financial integration has been expected to stimulate financial efficiency and economic growth, and 

reduce the negative effects of shocks through more diversification and capital mobility. The Indian capital 

market is no longer isolated from the global economic environment.Recently India has witnessed greater 

volatility in its stock market. Some of which had their origin in global events like US sub-prime crisis. Inflation 
rates, global energy prices, exchange rate fluctuations, etc. are witnessing constant changes in the recent years. 

These are affecting the volatility and thus, the efficiency of the capital market. In this regard, the study of capital 

market efficiency in India is very significant and meaningful. 

 Mishra, Das and Pradhan [1] studied empirically the efficiency of Indian stock market in the context of 

recent global financial crisis, assuming the stock prices follow a Random Walk. Mishra [2] examined the 

efficiency of Indian stock market, particularly that of Stock Exchange, Mumbai (BSE) over a period of 18 years 

spanning from Jan, 1991 to Jan, 2009 using Random Walk (RW) and Generalised Autoregressive Conditional 

Heteroscedasticity (GARCH) models. Both these studies provided the evidence of weak form market 

inefficiency in India.  

 Capital market volatility is often described as the rate and magnitude of changes in prices and in 

finance often referred to as risk.To a certain extent, market volatility is unavoidable, even desirable, as the stock 

price fluctuation indicates changing values across economic activities and it facilitates better resource 
allocation.But frequent and wide capital market variations cause uncertainty about the value of an asset and 

affect the confidence of the investor.The stock exchange prices play an important role as indicators, reflecting 

the performance of the country's economic state of health. It is exposed to a high degree of volatility; prices 

fluctuate within minutes and are determined by the demand and supply of stocks at a given time. Testing 

duration in stock markets concerns the ability to predict the turning points of bull and bear cycles.The Power 

Law process has been used in previous studies to analyze duration dependence in economic and financial 

cycles.Zhou and Rigdon ([3], [4]) analyzed duration dependence in U. S. business cycles analysis using the 

modulated power law process. 

 There are very few studies which address the issues of modelling the stock prices either parametrically 

or non-parametrically. We fill this gap by treating the time to occurrence of trough and peak of stock prices 

through a stochastic point process models.  
We have considered the BSE 30 (SENSEX) data from January, 1991 to August, 2012 (more than 21 

years span) for bull (peaks) and bear (troughs) markets.The duration dependence of stock market cycles can help 

to pinpoint the peaks and troughs in these cycles. 

 We study some point process models to fit the data from Indian stock market cycles. Upon carrying out 

various goodness of fit tests, we found that  the Nonhomogeneous Poisson Process (NHPP) models like Power 

Law Process (PLP), MPLP (Modulated Power Law Process), Log-linear process (LLP) and other models are 

some of the possible alternative models to describe the data.  
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In section 2, some point process models have been discussed. For PLP and LLP, the likelihood equation and the 

point estimators are suggested. Section 3 discusses about the estimation of reliability indices for PLP and LLP. 
In section 4, we discuss some graphical and analytical procedures to test the presence of trend and the suitability 

of the point process model to the given set of data. In section 5, we provide point estimates, confidence interval 

estimates, several other reliability indices and also carry out tests of hypothesis for testing the suitability of 

particular model.  

 

II. Nonhomogeneous poisson process models 
A non-repairable system is the one which is discarded the first time that it fails to perform 

satisfactorily. For such a system, the times between failures are independent and identically distributed. A 

repairable system is the one which, after failure to perform at least one of its required functions, can be restored 
to performing all of its required functions by any method, other than replacement of the entire system (Asher 

and Feingold [5], Calabria and Pulcini [6], Lawless [7]). The most commonly used point process models which 

have been applied to repairable systems are the Homogeneous Poisson Process (HPP), the Nonhomogeneous 

Poisson Process (NHPP), the Branching Poisson Process (BPP), the Renewal Process (RP) and the 

Superimposed Renewal Process (SRP) (Muralidharan [8]). 

 The HPP can be simply defined as a sequence of independent and identically exponentially distributed 

random variables Xi’s.For the Renewal process, the probability of an event in a small interval depends only on 

the time since the previous event and not on the previous pattern of failures or the time since the process initially 

began. Thus, this model assumes that after the occurrence of an event, the system is always in exactly the same 

condition, precluding the possibility of a long term change in the system (Lawless and Thiagarajah[9]). Through 

goodness-of-fit tests, it can be verified whether the data fits the Renewal process model. 
 The Nonhomogeneous Poisson Process (NHPP) is another model that has been used to model the 

occurrence of events in time. For NHPP, the probability of an event in a small interval is some function of time 

since the initial start-up of the system, therefore, an event and the subsequent restarting of the system has no 

effect on the system performance. If the probability of an event occurring in a small interval is constant across 

time, then the process is a homogeneous Poisson process where the times between events are independent and 

identically distributed exponential random variables. Thus, a renewal process can be described as a good-as-new 

or same-as-new model, whereas the NHPP is described as a bad-as-old or same-as-old model. Therefore, a 

renewal process can model duration dependence but not any long term effects, such as the tendency of intervals 

to get longer or shorter, whereas the NHPP can model long term effects, but not duration dependence (Cox [10], 

[11]). An NHPP is often used to model the failures of repairable systems if they undergo minimal repairs and if 

there is a trend in the TBF. If the TBF are monotonically increasing (decreasing), then this indicates that failures 

are becoming less (more) frequent and that the system is improving (deteriorating) as the operating time 
increases (Cox and Lewis [12]). 

 In our paper, the discussions and the results are based on the analysis of the times between successive 

events of the SENSEX, where event is peak or trough, which we denote as time between successive failures 

(TBFs).  When a trend is noticed in the data set, we describe the trend using the NHPP models like, Power Law 

process and Log-linear process, which assumes that the TBFs vary as a function of time. We provide estimates, 

confidence interval estimates and tests of hypothesis for the parameters involved in a particular model.  

 

2.1 The Power Law Process 

The PLP has proved to be a useful model for analyzing systems which are deteriorating or improving 

with time (Rigdon and Basu[13]). For PLP, the probability of an event in a small interval depends only on the 

time since the previous event and not on the previous pattern of failures or the time since the process initially 
began.Thus, this model assumes that after the occurrence of an event, the system is always in exactly the same 

condition.  

The intensity function of PLP is given by:

 
                                                             𝑢 𝑡 =  

𝛽

𝜃
 
𝑡

𝜃
 
𝛽−1

                                                                          (1) 

where parameters  and  are scale and shape parameters, respectively. If 1 <𝛽< 2, the intensity function is 

concave and increases more slowly with operating time, and if 𝛽> 2, the intensity function is convex. Crow 

([14], [15]) obtained maximum likelihood estimates of the parameter 𝜃 and and discussed methods of 
performing hypothesis tests and constructing confidence limits for these parameters. Baker [16] suggested some 

tests for checking whether the process is PLP.Rigdon and Basu[17] discussed the procedure of estimating the 

intensity function of PLP at current time. 

 

Let 0 <t1<t2< … <tn denote the first n ordered system failure times from a time-truncated  power law process 
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with the intensity function as given above. The joint density or the likelihood function of  t1 ,t2 , … , tn , for an 

NHPP is given by: 

𝐿 𝑡1 , 𝑡2 , … , 𝑡𝑛  =   𝑢 𝑡𝑖  𝑒𝑥𝑝 −Λ 𝑡𝑛   
𝑛
𝑖=1 ,                                             (2) 

Where the cumulative intensity function is: 

                                                       Λ 𝑡 =   𝑢 𝑥  𝑑𝑥
𝑡

0
(3) 

andt0 = 0. 

 

Thus, for the PLP,  the likelihood function of  t1 ,t2 , … , tn will be: 

                                        𝐿 =   𝛽 𝜃  𝑛 exp − 𝑡𝑛 𝜃  𝛽    𝑡𝑖 𝜃  𝛽−1𝑛
𝑖=1                                          (4)       

The log likelihood function will be : 

                                   ln 𝐿 =  ℓ = 𝑛 ln 𝛽 𝜃  −  𝑡𝑛 𝜃  𝛽 +   𝛽 − 1  ln 𝑡𝑖 𝜃                          (5)

𝑛

𝑖=1

 

This gives the ML estimates of θ and β as:    

𝜃 =  
𝑡𝑛

𝑛1 𝛽  
                                                                (6) 

and 

𝛽 =  
𝑛

 ln 𝑡𝑛 𝑡𝑖  𝑛−1
𝑖=1

                                                              (7) 

 

(7)can be solved first analytically to obtain the estimate of and then using this estimate in (6), the estimate 

of   can be obtained. 

 
2.2 The Log-Linear Process (Cox Process) 

If the power law model is rejected by a goodness-of-fit test, other NHPP models can be fitted and 
tested for goodness-of-fit. One such model was proposed by Cox and Lewis [12] with intensity function: 

                                                   𝑢 𝑡 = exp 𝑎 + 𝑏𝑡 , −∞ < 𝑎, 𝑏 < ∞                                                 (8) 

wherea  is the scale parameter and b is the shape parameter. 

Note that𝑢 𝑡  is strictly decreasing forb< 0, a constant for b = 0, and strictly increasing for b> 0. Thus this 

model has a monotonic trend in the failure data indicating system reliability improvement when b< 0 and 

deterioration when b> 0. The LLP reduces to HPP when b = 0. The most important characteristic of the LLP 

model is that its failure intensity function is greater than 0 at t = 0 and is convex for any value of b. This 

characteristic makes the LLP model suitable to describe failure process of repairable system with extremely fast 

increasing failure rate. 

The likelihood function for LLP is given by: 

                            𝐿 = exp 𝑎 𝑛  𝑒𝑥𝑝   𝑏  𝑡𝑖
𝑛

𝑖=1
 − 

exp⁡(𝑎)

𝑏
 𝑒𝑥𝑝 𝑏 𝑡𝑛 −  1                            (9) 

And the log likelihood of the process is given by: 

 log 𝐿 = ℓ = 𝑛 𝑎 + 𝑏 𝑡𝑖
𝑛

𝑖=1
− 

exp⁡(𝑎)

𝑏
 exp 𝑏 𝑡𝑛 −  1                                   (10)  

Differentiating the log likelihood function with respect to parameters a andb gives the following likelihood 

equations:  
1

𝑏 
=  

𝑡𝑛exp⁡(𝑏𝑡𝑛 ) 

 exp 𝑏𝑡𝑛  −  1 
− 

 𝑡𝑖
𝑛
𝑖=1

𝑛
                                                     (11) 

𝑎 = ln  
𝑛 𝑏 

exp⁡ 𝑏 𝑡𝑛 −  1 
                                                                 (12) 

Solve (11) for b using an iterative method and substitute this estimate in (12) to obtain the estimate of a.Wang 

and Xu[18]discussed the procedures of obtaining point and interval estimates of parameters and other reliability 

indices for log-linear process model for NC machine tools. Muralidharan and Shah [19] derived the conditional 

test for trend in process. 

 

III. Estimation procedure 
Using the log likelihood function for PLP and LLP, the second order derivatives and partial derivatives 

of parameters can be obtained as, respectively: 

∆11 =  − 
𝜕2ℓ

𝜕𝜃2
,  ∆12 =  ∆21  =   − 

𝜕2ℓ

𝜕𝜃𝜕𝛽 
, ∆22 =  − 

𝜕2ℓ

𝜕𝛽2
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∆11 =  − 
𝜕2ℓ

𝜕𝑎2
,  ∆12 =  ∆21  =   − 

𝜕2ℓ

𝜕𝑎𝜕𝑏 
, ∆22 =  − 

𝜕2ℓ

𝜕𝑏2
 

Since the pivotal quantities of the parameters are not available, a common approach for obtaining 

asymptotic confidence regions for model parameters is to use the asymptotic theory of maximum likelihood 

estimation. In a general framework, let 𝜸  be the model parameter and 𝛾 be its maximum likelihood 

estimator.When observed data are independent and identically distributed, it is well known that the asymptotic 

distribution of  𝛾 is given by: 

𝐼𝑛
1/2 𝛾 − 𝜸 

𝑑
  𝑁(0, 𝐼) 

where𝐼𝑛  is the local Fisher’s Information matrix. This information matrix can be used to propose approximate 

Confidence Interval for the parameters. The inverse of the local Fisher Information matrix obtained as follows, 

gives the estimate of the covariance matrix of MLE, for PLP and LLP respectively, as: 

𝐼𝑛
−1 =   

𝑣𝑎𝑟(𝜃 ) 𝑐𝑜𝑣(𝜃 , 𝛽 )

𝑐𝑜𝑣(𝜃 , 𝛽 ) 𝑣𝑎𝑟(𝛽 )
 =   

∆11  ∆12

 ∆21 ∆22
 
𝜃=𝜃 ,𝛽=𝛽 

−1

                           (13) 

and 

𝐼𝑛
−1 =   

𝑣𝑎𝑟(𝑎 ) 𝑐𝑜𝑣(𝑎 , 𝑏 )

𝑐𝑜𝑣(𝑎 , 𝑏 ) 𝑣𝑎𝑟(𝑏 )
 =   

∆11  ∆12

 ∆21 ∆22
 
𝑎=𝑎 ,𝑏=𝑏 

−1

                               (14) 

As the MLEs are asymptotically normally distributed, we can use the asymptotic lognormal distribution for the 

MLEs and obtain the approximate 100 (1-α) % confidence interval for parameter of interest, say γ, as 

    𝐶. 𝐼. 𝑓𝑜𝑟 𝛾 =  𝛾  𝑒𝑥𝑝 ± 𝑧𝛼 2  𝑣𝑎𝑟(𝛾 )/𝛾                                                   (15) 

where𝛾  is the estimated parameter of PLP or LLP, and 𝑧𝛼 2  is the upper 𝛼 2  percentile point of a standard 

normal distribution.The other reliability indices of interest for both PLP and LLP are: the estimate of failure 

intensity function  ( 𝑢  𝑡 ) , the estimate of mean time between failures (𝑚  𝑡 =  1 𝑢 (𝑡)) , the estimate of 

cumulative failure intensity function  (𝑢 𝑐 𝑡 =  Λ  𝑡 𝑡 =  𝐸  𝑁 𝑡  𝑡) , the estimate of cumulative MTBF  

(𝑚 𝑐 𝑡 =  t Λ  𝑡  =  𝑡 𝐸  𝑁 𝑡  ) , the estimate of  reliability at a given time ‘𝑡’  (𝑅  𝑡 =  𝑒−Λ  𝑡 ), the estimate 

of warranty time for a given reliability   (𝑡  𝑅 ), which can be obtained from equation of 𝑅 𝑡  and the estimate 

of number of failures up to given time ‘𝑡’  𝑁  𝑡 =  Λ  (𝑡). 

 

To find the confidence interval with confidence coefficient (1-α), the following procedure may be used: 

 

Let 𝑔 𝑡  be the reliability index whose confidence bounds are to be computed and suppose the NHPP under 

consideration has two model parameters, say, 𝛾 and 𝛿 . Then compute: 

𝑣𝑎𝑟 𝑔  𝑡  =   
𝜕𝑔  𝑡 

𝜕𝛾
 

2

 𝑣𝑎𝑟 𝛾  +  2  
𝜕𝑔  𝑡 

𝜕𝛾
  

𝜕𝑔  𝑡 

𝜕𝛿
  𝑐𝑜𝑣 𝛾 , 𝛿  +   

𝜕𝑔  𝑡 

𝜕𝛿
 

2

 𝑣𝑎𝑟 𝛿     (16) 

Then the approximate 100 (1-α) % confidence interval for 𝑔(𝑡) is given by: 

                 𝐶. 𝐼. 𝑓𝑜𝑟 𝑔 𝑡 =  𝑔  𝑡 𝑒𝑥𝑝

 

 ± 𝑧𝛼 2 

 𝑣𝑎𝑟 𝑔  𝑡  

𝑔  𝑡 

 

                                          (17) 

Also the two information criteria can be used to choose the best model, namely, Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) defined by: 

                                     𝐴𝐼𝐶 =  −2 max ℓ + 2𝑚,   𝐵𝐼𝐶 =  −2 maxℓ + 𝑚 ln 𝑛                                (18) 

Where, m is the number of estimated parameters, n is the number of observations and maxℓ is the maximized 

log-likelihood. 
 

IV. Trend testing 
It is essential to check the existence of trend or time dependency in the Times between failures (TBFs) 

before selecting the suitable model for the failure intensity function. Graphical methods and analytical methods 

are two widely used methods of testing time-trend for the system. When a trend is noticed in the data set, one 

possibility to describe the trend is to use the NHPP models like PLP, LLP etc., which assumes that the TBFs 

vary as a function of time. 

 

4.1 Graphical Procedures for Analysis of Trend  
Analysis of reliability of available data is usually based on the assumption that the times between 

events (failures) are independent and identically distributed in the time domain. So we can consider tests for 

trends to check whether the assumption of i.i.d. for the failure times is satisfied or not. For which, cumulative 
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number of failures can be plotted against cumulative time between successive failures. The convexity of the 

curve can be interpreted as the presence of trend in the dataNelson [20]. 

 Specifically, if we are interested in checking the trend in the process, we can use the Duane plot, which 
is the test for checking whether the process is PLP (Duane [21]). Duane Plot can be based on the plot of ln(t) 

against ln(N(t)), where N(t) is the number of failures up to time t. The linearity of the plot indicates that the PLP 

can be a suitable model to describe the failure times. 

 

The other alternative of Duane plot is the total time on test (TTT) plot (Klefjoand Kumar [22]). Suppose n units 

are put on test and 0 <x(1)< x(2)< ... < x(n)<∞be the failure times of these units. If x0 =0, then the total time on 

test at time t is defined as: 

                            𝑋 𝑡 =    𝑛 − 𝑗 + 1  𝑥(𝑗 ) − 𝑥(𝑗−1) +   𝑛 − 𝑖 + 1  𝑡 − 𝑥(𝑖) 

𝑖−1

𝑗 =1

                     (19) 

Let 𝑇𝑖 = 𝑋 𝑡𝑖  , 𝑖 = 1, 2, … , 𝑛 be the values of 𝑋 𝑡  at the failure times and 𝑉𝑖 =  𝑇𝑖 𝑇𝑛 , then the graph of (i / n)  

versus 𝑉𝑖 , 𝑖 = 1, 2, … , 𝑛 is called the TTT plot. TTT plot can be used to study the presence of trend. 

 

4.2 Analytical Methods (Goodness of Fit Tests) 

 
4.2.1The times between failures can be analyzed for the presence of trend by using the test suggested in MIL-

HDBK-189[23] by calculating the test statistic: 

                                                         𝑈 = 2  𝑙𝑛 𝑡𝑛 𝑡𝑖  

𝑛−1

𝑖=1

                                                                        (20) 

when the data is failure-truncated at the nth failure at time 𝑡𝑛 . Under the null hypothesis of a HPP, the test 
statistic U is chi-squared distributed with 2(n-1) d.f. The null hypothesis is rejected if the value of test statistic   

U< the critical value, and thereby it can be concluded that the process is NHPP. 

 

4.2.2 The Cramer-von-Mises (CVM) test statistic suggested by Crow [14] to test the null hypothesis that the 

failure times follow PLP versus the alternative that the failure times do not follow PLP is given as 

𝐶𝑀
2 =  

1

12𝑀
+   𝑍𝑗

𝛽 
− (2𝑗 − 1)/2𝑀 

2
𝑀

𝑗 =1

                                         (21) 

Where M = n-1and𝑍𝑗 =  
𝑡𝑗

𝑡
, where tis a pre-assigned time upto which the system is observed. 

If the test statistic is greater than the selected critical value, then the hypothesis that the failure times follow a 

PLP is rejected at the selected level of significance. 
 

4.2.3Let𝑡𝑖  be the cumulative failure times. Then the Laplace Test Statistics for testing H0: The process is HPP 

vs. H1: The process is NHPP is defined as 

                                                     U =  

 𝑡𝑖
n−1
i=1

n−1
− 

tn

2

tn 
1

12(n−1)

  ∼ N 0, 1                                                          (22) 

If the value of the test statistic U> the critical value, the null hypothesis is rejected. 

 

4.2.4Let 𝑥𝑖 =  𝑡𝑖 − 𝑡𝑖−1 , 𝑖 = 1, 2, … , 𝑛 be the inter arrival times. Then the Lewis-Robinson test Statistics for 

testing H0: The process is renewal process Vs. H1: The process hasmonotonic trends is defined as 

𝑈𝐿𝑅 =  
𝑈

𝑐. 𝑣. (𝑥)
 ∼ 𝑁 0, 1                                                          (23) 

Where U = Laplace test statistic, 𝑐. 𝑣.  𝑥 =  estimated coefficient of variation of 𝑥𝑖 . If the value of test statistic 

> critical value, H0 is rejected. 

 

4.2.5A test based on quadratic form proposed by Janiet. al. [24] for testing H0: The process is HPP vs. H1: The 

process is NHPP has the form 

                                      𝑄 = 2 𝑛  𝑛 + 1  
𝑡𝑖
𝑡𝑛

𝑛−1

𝑖=1

 
𝑡𝑖
𝑡𝑛

− 
𝑡𝑖+1

𝑡𝑛
 +   𝑛2 −  1                                        (24) 

Under H0, the mean and variance of 𝑄 are 𝐸 𝑄 =  𝑛 − 1and  𝑄 =  
4 𝑛2(𝑛−1)

 𝑛+2 (𝑛+3)
 . If the standardized value of 

𝑄>critical value suggested by the authors in their article, then H0 is rejected. 
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V. Data analysis 
We consider the BSE 30 (SENSEX) data from January, 1991 to August, 2012 (more than 21 years 

span) for bull (peaks) and bear (troughs) markets. We are considering the monthly high for each month as the 

point of our interest and we consider the failure times as the time intervals (in months) after which the peak or 

trough occurs. Moreover, these time points are observed according to the change (up or down) of 500 points, 

1000 points and 1500 points. Thus, we have considered 6 datasets, namely, 500 points up, 500 points down, 

1000 points up, 1000 points down, 1500 points up and 1500 points down and for each of these datasets we get 

respectively, 58, 37, 31, 19, 21 and 10 observations. In each dataset, we have noted down cumulative number of 

months, starting from January 1991 to August, 2012 after which there was increase or decrease of 500 points, 

1000 points and 1500 points in sensex, which are considered here as event times.  

 

A: 500 points UP data (n=58) 

Cumulative number of months: 

6, 12, 13, 14, 20, 32, 34, 36, 41, 61, 63, 72, 78, 87, 96, 100, 102, 108, 109, 133, 150, 152, 153, 155, 165, 167, 

173, 174, 176, 179, 180, 181, 182, 183, 184, 187, 188, 189, 190, 192, 195, 198, 200, 201, 204, 219, 220, 221, 

224, 228, 230, 234, 236, 237, 242, 249, 253, 259. 

 
Convexity of the curve in Fig. 1 means presence of trend in the data. The TTT plot in Fig. 2 indicates that the 

data initially shows increasing failure rate, then there is an improvement in the system and then after again the 

failure rate is increasing. That means the trend is present in the data. Linearity of Duane plot indicates that the 

data follows PLP, so here from Fig. 3, we can say that the process is PLP.  

 
Table 1 shows the results of goodness of fit tests discussed is section 4.2, from which it can be concluded that 

the data can be modelled using an NHPP. Table 2 and 3 consists of point and interval estimates of model 

parameters and reliability indices for PLP and LLP respectively. In Table 4, the values of AIC and BIC 

computed using (18) are shown for the purpose of deciding the suitability of PLP or LLP model for the data, 

which shows that LLP is a more suitable model for describing the 500 points up data. 

 

Table 1 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 90.91565 139.9208 Process is NHPP 

CVM Test 0.2115203 0.22 Process is PLP 

Laplace Test 1.995651 1.96 Process is NHPP 

Lewis-Robinson Trend Test 1.844132 1.96 Process is NHPP 

Standardized Q 0.8354 -1.3368 Process is NHPP 
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Table 2 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 10.74492 (4.622508, 24.97633) 

β 1.275908 (0.9863908, 1.650402) 

u(t) 0.2857245 (0.09815244, 0.8317523) 

m(t) 3.499874 (1.202281, 10.18823) 

uc(t) 0.2239382 (0.1731243, 0.2896667) 

mc(t) 4.465517 (3.452244, 5.776198) 

N(t) 58 (44.83918, 75.02367) 

R(t=259) 6.470235x10
-26

 (2.129331 x 10
-32

, 1.966061 x 10
-19

) 

t(R=0.9) 0.015952 (0.01051144, 0.0242085) 

 

Table 3 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -2.004379 ( -2.789089, -1.440446) 

b 0.0039377 (0.001479899, 0.01048963) 

u(t) 0.3738433 (0.2344715, 0.5960588) 

m(t) 2.674918 (1.677687, 4.264911) 

uc(t) 0.2343054 (0.1808834, 0.303505) 

mc(t) 4.267934 (3.294839, 5.528423) 

N(t) 60.6851 (46.8488, 78.6078) 

R(t=259) 4.413642 x 10
-27 

(6.680199 x 10
-34

, 2.916116 x 10
-20

) 

t(R=0.9) 0.780729 (0.402482, 1.514447) 

 

Table 4 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 290.4007 294.5216  LLP is better than PLP for 

this data. LLP 288.7942  292.9150 

 

 

B: 500 points DOWN data (n=37) 

Cumulative number of months: 

16, 17, 22, 27, 47, 49, 67, 71, 80, 85, 89, 91,111, 112, 115, 117, 123, 129, 139, 160, 161, 194, 209, 210, 212, 

213, 214, 215, 217, 229, 232, 241, 245, 247, 248, 251, 256. 
 

Convexity of the curve in Fig. 4 means presence of trend in the data. The TTT plot in Fig. 5 indicates that the 

data initially shows increasing failure rate, then there is an improvement in the system and then after again the 

failure rate is increasing. That means the trend is present in the data. Linearity of Duane plot in Fig. 6 indicates 

that the process is PLP.  

 
 

From Table 5, it can be concluded that the data can be modelled using an NHPP. Table 6 and 7 consists of point 

and interval estimates of model parameters and reliability indices for PLP and LLP respectively. FromTable 8, 
we can conclude that LLP is a more suitable model for describing the 500 points down data. 
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Table 5 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 57.39107 92.80827 Process is NHPP 

CVM Test 0.1099907 0.2184 Process is PLP 

Laplace Test 1.346399 1.96 Process is HPP 

Lewis-Robinson Trend Test 1.251894 1.96 Process is NHPP 

Standardized Q 0.707539 -1.30 Process is NHPP 

 

Table 6 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 15.56013 (6.100533, 39.68797) 

β 1.289399 (0.9342179, 1.779617) 

u(t) 0.1863585 (0.04168006, 0.8332398) 

m(t) 5.366002 (1.200135, 23.99229) 

uc(t) 0.1445313 (0.1047183, 0.1994808) 

mc(t) 6.918919 (5.013015, 9.54943) 

N(t) 37 (26.80788, 51.06707) 

R(t=256) 8.533048e-17 (5.666986e-22, 1.284861e-11) 

t(R=0.9) 0.01122069 (0.007358066, 0.01711101) 

 

Table 7 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -2.435954   ( -3.168135, -1.703773) 

b 0.003639 (0.001069913, 0.012377) 

u(t) 0.2221572 (0.1243175, 0.3969982) 

m(t) 4.501316 (2.518903, 8.043917) 

uc(t) 0.1445313 (0.1047183, 0.1994808) 

mc(t) 6.918919 (5.013015, 9.54943) 

N(t) 37 (26.80788, 51.06708) 

R(t=256) 8.53303 x 10
-17 

(5.666971 x 10
-22

, 1.284859 x 10
-11

) 

t(R=0.9) 1.201295 (0.5771906, 2.50023) 

 

Table 8 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 253.6080 256.8298  LLP is better than PLP for 

this data. LLP 218.5154  221.7373 

 

C: 1000 points UP (n = 31) 

Cumulative number of months: 

12, 14, 35, 100, 105, 109, 151, 155, 166, 173, 176, 180, 182, 184, 188, 190, 193, 195, 198, 

200, 201, 204, 219, 220, 223, 224, 231, 236, 238, 243, 253. 

 

 Convexity of the curve in Fig. 7 means presence of trend in the data. The TTT plot in Fig. 8 indicates 

that the data initially shows increasing failure rate, then there is an improvement in the system and then after 

again the failure rate is increasing. That means the trend is present in the data. Duane plot in Fig. 9 exhibits 

nonlinearity, which indicates that the process is not PLP.  
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From Table 9, it can be concluded that the data can be modelled using an NHPP. Table 10 and 11 consists of 

point and interval estimates of model parameters and reliability indices for PLP and LLP respectively. Table 12 

shows that LLP is a more suitable model for describing the 1000 points up data. 
 

 
 

 
 

Table 9 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 33.12653 79.08194 Process is NHPP 

CVM Test 0.2283568 0.218 Process is not PLP 

Laplace Test 3.374763 1.96 Process is NHPP 

Lewis-Robinson Trend Test 2.112769 1.96 Process is HPP 

Standardized Q 5.0942093 -1.2723 Process is NHPP 

 

Table 10 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 40.39129 (20.61247, 79.14903) 

β 1.871612 (1.316233, 2.661331) 

u(t) 0.2293279 (0.01379271, 3.812979) 

m(t) 4.360568 (0.2622621, 72.50208) 

uc(t) 0.1225296 (0.08617039, 0.1742305) 

mc(t) 8.16129 (5.739522, 11.60491) 

N(t) 31 (21.80111, 44.08033) 

R(t=253) 3.442477e-14 (6.273275e-19, 1.889069e-09) 

t(R=0.9) 0.007439268 (0.005558514, 0.009956385) 

 

Table 11 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -3.584452   ( -4.775969, -2.690196) 

b 0.00979 (0.005567898, 0.01727274) 

u(t) 0.3317619 (0.189162, 0.5818607) 

m(t) 3.01421 (1.718624, 5.286473) 

uc(t) 0.1225296 (0.08617039, 0.1742305) 

mc(t) 8.16129 (5.739522, 11.60491) 

N(t) 31 (21.80111, 44.08033) 

R(t=253) 3.442477 x 10
-14

 (6.273257 x 10
-19

, 1.889069 x 10
-9

) 

t(R=0.9) 3.72755 (1.344483, 10.33455) 
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Table 12 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 186.1748 189.0428  LLP is better than PLP for 

this data. LLP 182.3621 185.23 

 

D: 1000 points DOWN (n = 19) 

Cumulative number of months: 

27, 49, 71, 85, 91, 112, 127, 161, 185, 205, 206, 209, 210, 213, 214, 229, 241, 248, 251. 

 

Convexity of the curve in Fig. 10 means presence of trend in the data. The TTT plot in Fig. 11 indicates that the 
data initially shows increasing failure rate, then there is an improvement in the system and then after again the 

failure rate is increasing. That means the trend is present in the data. Linearity of Duane plot in Fig. 12 indicates 

that the process is PLP. 

 

 
 

From Table 13, it can be concluded that the data can be modelled using an NHPP. Table 14 and 15 consists of 

point and interval estimates of model parameters and reliability indices for PLP and LLP respectively. Table 16 

shows that PLP is a more suitable model for describing the 1000 points down data. 

 

Table 13 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 21.38063 50.99846 Process is NHPP 

CVM Test 0.09271252 0.217 Process is PLP 

Laplace Test 2.029856 1.96 Process is NHPP 

Lewis-Robinson Trend Test 2.710841 1.96 Process is HPP 

Standardized Q -0.90474967 -1.223 Process is NHPP 

 

Table 14 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 47.88344 (21.80293, 105.1613) 

β 1.777310 (1.133654, 2.786414) 

u(t) 0.1345374 (0.003788341, 4.777899) 

m(t) 7.432878 (0.2092970, 263.9678) 

uc(t) 0.07569721 (0.04828334, 0.1186759) 

mc(t) 13.21053 (8.426311, 20.71108) 

N(t) 19 (12.11912, 29.78765) 

R(t=251) 5.602796e-09 (1.091529e-12, 2.875905e-05) 

t(R=0.9) 0.005887435 (0.004326917, 0.00801076) 
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Table 15 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -4.052577   ( -4.868371, -3.373485) 

b 0.0079844 (0.004332011, 0.01471618) 

u(t) 0.1289291 (0.05928362, 0.2803932) 

m(t) 7.756198 (3.566421, 16.86807) 

uc(t) 0.05566213 (0.03384319, 0.0915479) 

mc(t) 17.96554 (10.92324, 29.54805) 

N(t) 13.97119 (8.49464, 22.97852) 

R(t=251) 8.5583 x 10
-7

 (8.191668 x 10
-10

, 0.0008941341) 

t(R=0.9) 5.920844 (2.832404, 12.37691) 

 

Table 16 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 134.8441 136.7329 PLP is better than LLP for 

this data. LLP 135.8941 137.783 

 

E: 1500 points UP (n = 21): 

Cumulative number of months: 

13, 15, 36, 102, 109, 152, 156, 167, 176, 182, 184, 188, 191, 198, 200, 201, 219, 220, 224, 

231, 236. 

 
Convexity of the curve in Fig. 13 means presence of trend in the data. The TTT plot in Fig. 14 indicates that the 

data initially shows increasing failure rate, then there is an improvement in the system and then after again the 

failure rate is increasing. That means the trend is present in the data.  Nonlinearity of Duane plot in Fig. 15 

indicates that the process is not PLP.  

From Table 17, it can be concluded that the data can be modelled using an NHPP. Table 18 and 19 consists of 

point and interval estimates of model parameters and reliability indices for PLP and LLP respectively. Table 20 

shows that LLP is a more suitable model for describing the 1500 points up data. 
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Table 17 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 24.61454 55.75848 Process is NHPP 

CVM Test 0.2232724 0.217 Process is not PLP 

Laplace Test 2.63888 1.96 Process is NHPP 

Lewis-Robinson Trend Test 1.928144 1.96 Process is NHPP 

Standardized Q 2.652819 -1.23 Process is NHPP 

 

Table 18 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 39.62884 (17.74845, 88.48349) 

β 1.706308 (1.112517, 2.617028) 

u(t) 0.1518325 (0.006556687, 3.515969) 

m(t) 6.586205 (0.2844166, 152.5160) 

uc(t) 0.08898305 (0.05801716, 0.1364766) 

mc(t) 11.23810 (7.327265, 17.23628) 

N(t) 21 (13.69205, 32.20847) 

R(t=236) 7.58256e-10 (9.52903e-14, 6.033691e-06) 

t(R=0.9) 0.006748677 (0.004900099, 0.009294637) 

 

Table 19 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -3.790502   (-6.858874, -2.094791) 

b 0.01036189 (0.003111149, 0.03451097) 

u(t) 0.2605148 (0.111276, 0.6099061) 

m(t) 3.838554 (1.639597, 8.98666) 

uc(t) 0.09729692 (0.06096711, 0.1552754) 

mc(t) 10.27782 (6.440171, 16.40229) 

N(t) 22.96207 (14.38824, 36.64499) 

R(t=236) 1.065854 x 10
-10 

(2.324428 x 10
-15

, 4.88741 x 10
-6

) 

t(R=0.9) 4.555965 (0.4932605, 42.08084) 

 

Table 20 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 142.5545 144.6435  LLP is better than PLP for 

this data. LLP 138.6644 140.7534 

 

F: 1500 points DOWN (n = 10): 

Cumulative number of months: 

18, 115, 185, 205, 206, 210, 213, 214, 217, 248. 
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Convexity of the curve in Fig. 16 means presence of trend in the data. The TTT plot in Fig. 17 indicates that the 

data initially shows increasing failure rate, then there is an improvement in the system which means the trend is 

present in the data. Linearity of Duane plot indicates PLP, so here from Fig. 18, we can say that the process is 
not PLP.  

From Table 21, it can be concluded that the data can be modelled using an NHPP. Table 22 and 23 consists of 

point and interval estimates of model parameters and reliability indices for PLP and LLP respectively. Table 24 

shows that LLP is a more suitable model for describing the 1500 points up data. 

 

Table 21 Goodness of fit Tests 
 Test statistic value Critical Value Conclusion 

MIL-HDBK-189 Test 9.32008 28.8693 Process is NHPP 

CVM Test 0.2395520 0.212 Process is not PLP 

Laplace Test 2.174376 1.96 Process is NHPP 

Lewis-Robinson Trend Test 1.715602 1.96 Process is NHPP 

Standardized Q 1.8047378 -1.1664 Process is NHPP 

 

Table 22 Point and Interval estimates of reliability indices using PLP 
 Point Estimate Interval Estimate 

θ 84.81012 (41.07265, 175.1228) 

β 2.145904 (1.154601, 3.98831) 

u(t) 0.0865284 (0.0001231127, 60.81553) 

m(t) 11.55690 (0.01644317, 8122.638) 

uc(t) 0.04032258 (0.02169551, 0.07494227) 

mc(t) 24.8 (13.34360, 46.09249) 

N(t) 10 (5.380486, 18.58568) 

R(t=248) 4.539993e-05 (9.231454e-08, 0.02232751) 

t(R=0.9) 0.004131581 (0.003093906, 0.005517286) 

 

Table 23 Point and Interval estimates of reliability indices using LLP 
 Point Estimate Interval Estimate 

a -4.662222   ( -10.75455, -2.021127) 

b 0.01354306 (0.001455788, 0.073753) 

u(t) 0.1233816 (0.03207657, 0.4745839) 

m(t) 8.104935 (2.107109, 31.1754) 

uc(t) 0.04433748 (0.02177636, 0.09027276) 

mc(t) 22.55428 (11.07754, 45.92137) 

N(t) 10.99569 (5.400536, 22.38764) 

R(t=248) 1.677378 x 10
-5

 (6.750209 x 10
-9

, 0.04168161) 

t(R=0.9) 10.55572 (0.2376687, 468.817) 

 

Table 24 Comparison on the basis of AIC and BIC 
 AIC BIC Conclusion 

PLP 83.62557 84.23074  LLP is better than PLP for 

this data. LLP 81.29058 81.89575 

 

VI. Conclusions 
From the trend analysis, it is clear that the assumption of i.i.d. is, in general, not valid for the TBFs of 

the stock prices. The assumption that the NHPP adequately describes TBFs of stock prices is validated both 

graphically and analytically. The values of shape parameter 𝛽 of PLP is greater than 1 for all datasets, which 

clearly indicates that the failure intensities are increasing, and their maintenance policies should be changed or 

further reinforcement should be made. In this study, using both models, PLP and LLP, the point MLE and 

interval estimates for the parameters and the reliability indices are computed based on asymptotic results. It can 

be seen that for the sensex data regarding 500 points up, 500 points down, 1000 points up, 1500 points up and 
1500 points down, LLP may be a suitable model; whereas for the sensex data regarding 1000 points down, PLP 

may be a suitable model. 
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