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Abstract: Stock market price changes are negatively correlated with changes in volatility. A drop in the value of a 

stock (negative return) increases the financial leverage; this makes the stock riskier and thus increases its volatility.  

This effect is known as leverage effect. The volatility of asset returns can be seen as measurement of the risk for 

investment and provides essential information for the investors to make the correct decisions. The study focuses on 

developing a GARCH model for the daily closing price of S & P 500 stock price. The Akaike and Bayesian 

Information Criteria (AIC & BIC) techniques are used to estimate the p and q values of GARCH (p. q) model. The 

results show that GRCH (1, 1) is an appropriate model for the time series.  
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I. Introduction 
In finance, volatility is a measure for variation of price of a security over time. Volatility is computed as the 

standard deviation of stock returns. Modeling volatility in financial market is imperative because it is often perceived 

as significant element for the evaluation of assets, the measurement of risk, the investment decision making, the 

valuation of stock and the monetary policy making. The stock market volatility is virtually time-varying. It is widely 

accepted that volatility changes in financial market are predictable.  

The various models have been applied by extensive empirical studies for future volatility forecasting and 

measuring the predictability of volatility forecasts. However, there is little consensus in terms of which model or 

family of models is the best for describing assets returns. The two most popular approaches for future volatility 

forecasting are considered to be the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model 

and the Risk Metrics approachintroduced by Robert Engle (1982) and J. P. Morgan (1992), respectively till date. The 

forecasts of these two approaches are derived on the basis of historical data. The GARCH model is the natural 

extension of autoregressive conditional hetroskedasticity (ARCH) model which was thought to be the good 

description of stock returns and an efficient technique for estimating and analyzing time-varying volatility in stock 

returns. 

 

II. Review of literature 
Arowolo W B (1) in the study on the daily stocks prices of Zenith bank Plc in Nigeria Stock Exchange 

arrived at the result that GARCH (1, 2) is the model that best fits the series.The researcher has made an attempt to 

forecast properties of the series. They have reported leptokurtosis and considerable volatility in the series. The report 

concludes that the optimal value of p and q in GARCH (p. q) model depends on location, type of data and model 

order selected techniques used. 

H Goudarzi et al (2) in an attempt to examine the volatility of in Indian market arrives at the conclusion that 

GARCH (1, 1) model fits well into a time series of returns of BSE 500. They have established the adequacy of the 

model by using ARCH LM test and LB Statistic.A Goyal (3) reported in the study on Exchange Rate Volatility using 

GARCH models found that quantitative credit restriction, higher interest differentials and policy lending rates 

depreciate the exchange rates probably due to reduced capital inflow.  

A Goyal (4) in an attempt to predict stock return volatility for GARCH models, performed various GARCH 

models to deliver the volatility forecasts from stock returns data.  Volatility is obtained from a variety of mean and 

variance specifications in GARCH models, they are compared to the proxy of actual volatility calculated. n-sample 

tests suggest that a regression of volatility estimates on actual volatility produces R2 of less than 8%. An interesting 

by-product is evidence of significantly negative relation between unexpected volatility and stock returns. Finally, 

out-of-sample tests indicate that a simpler ARMA specification performs better than a GARCH-M model. 

 In an attempt to develop a nonparametric approach to GARCH models to the volatility of ISE 100 market 

data, Sebnem (5), found that this approach is less sensitive to model misspecification. They have compared the 

estimation capability of nonparametric and parametric GARCH models on volatility. They suggest that the findings 

by parametric methods might be misleading if the series has heavy tails and leptokurtosis. They have taken the non-

parametric approach due to the two aspects, returns have heavy tails and leptokurtosis and changes in volatility over 

time. The study suggests value – at – risk approach is one of the most preferred non-parametric estimation method to 

measure market risk 
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Corradi et al (6) has examined the relative out of sample predictability of different GARCH models with particular 

emphasis on the predictive content of the asymmetric component. They have used squared returns as a proxy for the 

unobservable volatility process. A pairwise comparison of various models against GARC (1, 1) model is carried out 

and this model is beaten by asymmetric GARCH models. The same findings remains true for longer forecast 

horizons also.  

 

III. Methodology 
Many relationships in finance are intrinsically non- linear. Most of the linear structural models fail to 

explain a number of important features like leptokurtosis, volatility clustering and leverage effects. Among the 

multitude of non- linear models, the most popular models are Autoregressive Conditionally Hetroskedastic (ARCH) 

model and Generalized Autoregressive Conditionally Hetroskedastic (GARCH) models. They are expedient in 

modelling and forecasting volatility. The assumption of CRLM is that the variance of the errors is constant, which is 

termed homoscedasticity.  ARCH models do not assume that variance is constant. ARCH models are preferred to 

CLRMs since it is unlikely to financial time series to have constant variance for the errors over time. Another 

important feature that motivates the use of ARCH/ GARCH models is volatility clustering or volatility pooling. 

Volatility clustering describes the tendency of large changes in assets prices to follow large changes and small 

changes to follow small changes. Knowledge of volatility is important to make effective financial planning.  

Most of the time series are random walk at level form, ie, non- stationary, but they are generally stationary 

in the first difference form. Therefore we model first difference instead of the time series. The squared returns are a 

very noisy measure but rt = ln St – lnSt-1, where St is the stock price, the continuously compounded return of the 

underlying asset can be used.(8) But if the first difference has varying variance instead if a constant, it is termed 

Autoregressive Hetroskedasticity (ARCH).  ARCH models are capable of modeling and capturing volatility 

clustering. (6) An ARCH(q) model is usually represented as 

Yt = β1 + β2x2t + β3x3t + … + ut;   ut     N(0, ht) where  

ht = α0 + α1ut - 1+ α2ut – 2 + α3ut – 3 + … + αqut -q 

Generalized Autoregressive Conditional Hetroskedasticity (GARCH) model is one of the most popular ARCH 

model. It allows the conditional variance to be dependent upon previous own lags, so that the conditional variance 

equation can be represented as  

σ
2
t = α0 + α1u

2
t – 1 + βσ 

2
t-1 which is the GARCH (1, 1) model. GARCH (p, q) model may be represented as follows: 

σ
2
t = α0 + α1ut - 1+ α2ut – 2 + α3ut – 3 + … + αqut –q + β1σ 

2
t-1 + β2σ 

2
t-2 +… +βpσ

2
t-p 

Test for ARCH effect 

Before estimating a GARCH type model, first we have to make sure that this model is appropriate. The most widely 

used test for non- linearity is BDS test. This test is also a model diagnostic. (7) It has a null hypothesis that the data 

are pure noises. If a proposed linear model is adequate, then the standardized residuals should be white noises, while 

if the postulates model in insufficient to capture all the relevant features of the data, BDS statistic for the 

standardized residuals will be statistically significant. Once ARCH effect is found then we are required to find the 

specification of the model using Akaike Information Criterion (AIC) and Schwartz Bayesian Information Criterion 

(SBIC).  

 

IV. Results and Findings 
The present study is on 2745 daily closing observations for S & P 500 index during the time period Jan 

2002 to Dec 2012.  E-views version 7 is used for the analysis of the series. The descriptive statistics and histogram 

of the series is given below.  

 

 
Figure 1: Daily closing observations of S & P 500 index 
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The series has an average closing price of 2869.9 with a standard deviation of 1390.28. The skewness coefficient of -

0.18 indicates negative skewness. The kurtosis coefficient 1.63 indicates fatter tails of the distribution which is 

called leptokurtosis.  The Jarque- Bera statistic value is 229.46 with p value 0.00 which rejects the hypothesis of 

normal probability distribution of the series. 

The distribution of the series of returns rt = log (p t/ p t – 1) of closing price is given below  

 
Figure 2: The returns of the S&P 500 index series. 

The average returns is 0.000698. The volatility measured in terms of standard deviation is 0.01565. The returns 

series also indicates negative skewness (coefficient = -0.4968) with leptokurtosis (kurtosis 8.9112 > 3). The 

normality assumption is rejected (Jarque Bera = 229.4663, p value 0.00 < 0.05) significantly due to negative 

skewness and high kurtosis. 

The inspection of the returns series reveals that the returns fluctuates around the mean value that is close to zero. The 

important feature exhibited in the figure is that volatility occurs in bursts. There appears to have a period of relative 

tranquility which indicated relatively small positive and negative returns in the beginning quarter and also at the last 

quarter of the time period.  The inter-quartile time period depicts far more volatility where large positive and large 

negative returns can be observed. This motivates us to develop a non- linear model for analyzing the situation and to 

forecast. 

ADF test is carried out and the result is in Table 1. The results shows that the returns series does not have unit root 

and is not stationary. These properties are in consistency with other financial time series.  

Table 1.   Unit Root Results 

* Significant at 1% level. 

The statistics of the test results shows that the series is non- stationary at level, but attains stationarity at first 

difference. Non stationarity implies instability in the series and makes the series unpredictable. Emphasis on 

stationarity is because some kind of stability over time in a variable is essential to analyze the series.  

The result of ARCH-LM test is given in table 2. At 5 lags, the p value indicates the presence of ARCH effect in the 

residuals of mean equation.  

 

Table 2. ARCH LM test at 5 lags 
 Value p value 

F Statistics 88.5952 0.0000* 

R- squared 382.0272 0.0000* 

Significant at 1% level. 

 The ARCH effect tested shows that ARCH (1) is appropriate than the other models. The results of this model is 

given in table 3. ML - ARCH (Marquardt) assuming Normal distribution is the method adopted to estimate the 

parameters.  
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Table 1. ADF, PP and KPSS test results for returns 

 Augmented Dickey Fuller Test Philip Perrons Test 
 

KPSS test 

t statistic p value t statistic p value LM Statistic value 1% critical value 

At level 
 

-1.1613 0.6932 -1.1550 0.6968 5.6329. 0.7390 

First difference -46.9282 0.0001* -46.8694 0.0001* 0.0511 0.7360 
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Table 3. ARCH(1) model 
Variable Coefficient Standard error Z – statistic Probability 

C 2843.067 43.8115 64.8932 0.0000* 

AR(1) 0.8878 0.0041 216.837 0.0000* 

Variance equation 

C 1269045. 28649.00 44.29629 0.0000* 

RESID(-1)^2 -5.913718 0.448941 -13.17260 0.0000 

Significant at 1% level 

Thus the model can be written as yt = 2843.067 + 0.8878 β(t – 1) +Ɛt 

The GARCH model: Using AIC and SBC criterion the value of p and q in GARCH (p, q) model is obtained. The 

most appropriate model turns out to be GARCH (1, 1) by comparing the value of AIC for various other combinations 

of p and q. The estimates of the parameters of GARCH (1, 1) model is represented in table 4 

 

Table 4. GARCH (1, 1) model 
Variable Coefficient Standard error Z – statistic Probability 

C 2883.454 353.2378 8.162926 0.0000* 

AR(1) 1.046008 0.010471 99.89948 0.0000* 

Variance equation 

C 1255252. 48843.44 25.69951 0.0000* 

ARCH (1) -2.241762 0.260895 -8.592599 0.0000* 

GARCH(1) -0.991778 0.001772 -559.6004 0.0000* 

Significant at 1% level 

 The representation of the model developed  is given below: 

yt = 2883.454 +1.046 y(t – 1) + Ɛt 

σt= 1255252  + -2.241762 α
2

(t – 1) + -0.991778 σ
2
t – 1 + Ɛt 

This model seems to be an appropriate fit for the data on closing observations for S & P 500 index.  

 

V. Conclusion 
ARCH and GARCH models are invariably applied in financial time series. It helps in making financial 

decisions which are generally influenced by the trade off between risk and return; hence the econometric analysis of 

risk plays an integral role. The present study has presented  a GARCH model to the time series data on S & P 500 

stock returns daily data of 10 years. The log returns of the closing price of the stock is used to develop the model. 

The returns exhibit leptokurtosis and volatility clustering. The most appropriate model found was GARCH(1, 1). 

This result is in agreement with the many literature available that for closing price of stock prices GARCH (1, 1) 

appear to be a good fit. This non-linear model allows us to capture volatility and serial correlation in the series. 
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