
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 2 (Mar. - Apr. 2013), PP 41-45
www.iosrjournals.org

www.iosrjournals.org 41 | Page

Searching and Analyzing Qualitative Data on Personal Computer

Mohit Bhansali
1
, Praveen Kumar

2

1, 2(Department of Computer Science & Engineering, Amity University, Noida, India)

 Abstract : The number of files stored on our personal computer (PC) is increasing very quickly and locating

information in this environment is difficult. In this paper we present a set building blocks for implementing a

system which is composed of four modules i.e. indexing mechanism, analyzing text, index storing and searching

mechanism. The implementation of these four modules are described in details and additionally, we provide

implementation of user interface, and how they interact with each other.

Keywords – Desktop Search, Information Retrieval, indexing, searching, personal computer (PC). 3

I. INTRODUCTION
With the development of computer technology, computer can complete many kinds of complicated

tasks. Therefore, the number of files stored in the PC is increasing very quickly. At the same time, the number

of various documents stored in the PC, such as digital photos, text files, video and audio files, increases in an

amazing rate. However, a new problem arises; computer users have to spend much time searching the useful
information in the ocean of the computer data, and sometimes, even ever seen or used files by users cannot be

found. Therefore, the current problem which the users face is not how to save the file, but how to find and locate

the file as quickly as possible. In other words, the traditional desktop information retrieval technology cannot

meet the current needs of the users. This will inevitably lead to development of new technologies of desktop

search engine. Desktop search engine is designed to help users find and locate the required information or

documents from the PC effectively. Today, desktop search engine technologies become more popular in field of

information retrieval.

The full-text search engine is the one that can search each word in documents. The full-text search

engine first indexes for each document, then search system will search the index database according to the

keywords which are inputted by users. The search results will return to users according to a certain sorting

algorithm. The characteristic of the search engine is huge amount of information. It segments the whole content
of the document and adds to the index database so that it has high recall ratio. The full-text search engine also

has the characteristics of short cycle, rapid development and cheap costs.

Today there are often massive of documents stored in our PC’s, we often spend much time on finding

documents which are needed. The desktop search systems index the large number of documents, so that they can

locate the needed documents immediately. The desktop search systems solve the problems of the difficulty of

finding the right document. With the number of open-source search engine tools, we can design our personal

desktop search engine conveniently and efficiently.

Lucene is an open-source full-text search engine tool which is excellent and popular. The following

will introduce the characteristics and the basic frameworks of Lucene.

Lucene is a full-text search engine. You can search a lot of documents including specified words. The

characteristics of Lucene is [8]: High performance of search; High scalability of target documents;

Morphological analyzer; Phrase search, regular expressions, attribute search, and similarity search;
Multilingualism with Unicode; Independent of the file format and repository; Intelligent web crawler; Simple

and powerful API.

II. RELATED WORK
Several search and retrieval systems make extensive use of the semantically relationships that can be

inferred on the desktop. Haystack [1] for example is a Java-based, open source system that aims to cater for

different users’ preferences and needs by giving them control and flexibility over storage and retrieval. It also

emphasizes the relationship between a particular person and her corpus. It creates RDF connections between

documents with similar content and then exploits this information for facilitating browsing and information
access. Some basic search facilities came with Magnet [2], additional Haystack component, yet relying on

database querying approaches, which are complementary to ours.

The Gnowsis system [3] is a Semantic desktop prototype which aims to integrate desktop applications

such that documents are linked across applications and the data managed on desktop computers using Semantic

Web technology. And users are able to use their PC as a small personal semantic web. A number of adapters

Searching and Analyzing Qualitative Data on Personal Computer

www.iosrjournals.org 42 | Page

read data from different sources and make this information available as RDF. Created metadata is stored in a

local RDF database and can be viewed through a browser.

Other algorithms focus more on the ranking scheme that on the semantically inferable connections on
the desktop. Meza et al. [4] develop a ranking technique for the possible semantic associations between the

entities of interest for a specific query. They define an ontology for describing the user’s interest and use this

information to computer weights for the links among the semantic entities. Some desktop search tools have been

proposed to retrieve all web pages and local files that were viewed in the past such as Yahoo! Desktop Search

(YDS) [15] and Copernic Desktop Search (CDS) [14].

III. THE IMPLEMENTATION OF OUR SEARCH SYSTEM
In this section we will introduce our search system with the toolkits of Lucene API in NetBeans

environment. The jar packages needed: lucene-core-3.0.1. JDK 1.7 version as the java runtime environment is
also needed.

The function of the desktop search system is to analyze and index all the data in the local computer and

also can provide full-text searching.

Lucene mainly includes two functions:

 Builds index database, and indexes the plain texts;

 According to user’s query, searches index database which already is established.

3.1 Indexing Mechanism

Lucene is a multi-purpose information retrieval library for adding indexing and search capabilities to

various applications. Its indexing process breaks down into three main operations: converting data to text,

analyzing and storing it into its index structures. As most full-text search engines, Lucene implements an
extended version of the vector space model, which supports fragmentation of the vector space into separate

namespaces (denoted as “fields” in the actual implementation). Thus, a term does not only represent indexed

words of the document’s body, but also states the context in which the word appears. Finally, Lucene provides

an efficient way to search for phrases which is not directly supported by the vector space model. Lucene

maintains a “positional index” which contains for each term the exact position in each document. It seems easy

to complete this operating process in which indexing a document may only call several methods of Lucene API.

However, it actually hides ingenious and complex indexing process behind the simple process. Indexing process

is shown in fig. 1.

We may see that indexing process is divided into three main stages from fig. 1, which are pretreatment,

analyzing text, index storing.

Figure 1: Lucene Indexing Mechanism

3.1.1 Pretreatment

Because Lucene can only index the plain text documents, before indexing data, the data for indexing

must be converted into the text character stream which is a format that Lucene can handle. The above process is

called pretreatment, namely the pretreatment is used to extract the text information from the non-text

documents. After that, the data extracted is used to create Lucene’s Document and corresponding Field.

3.1.2 Analyzing Text

After creating Field’s Document, Lucene should not directly carry out indexing operation, but analyze
data [9]. Analysis, in Lucene, is the process of converting field text into its most fundamental indexed

representation, terms. These terms are used to determine what documents match a query during searches. An

analyzer tokenizes text by performing any number of operations on it, which could include extracting words,

Searching and Analyzing Qualitative Data on Personal Computer

www.iosrjournals.org 43 | Page

discarding punctuation, removing accents from characters, lowercasing (also called as normalizing), removing

common words, reducing words to a root form (stemming), or changing words into the basic form

(lemmatization). This process is called tokenization, and the chunks of text pulled from a stream of text are
called tokens. Tokens, combined with their associated field name, and terms [5].

3.1.3 Index Storing

Indexing is the process of extracting text from data, tokenizing it and then creating an index structure

(inverted index) that can be used to quickly find which pages contain a particular word. The purpose of storing

an index is to optimize speed and performance in finding relevant documents for a search query. After

establishing terms, Lucene will call IndexWriter’s addDocument (Document) method, and store data to index

database with an inverted index data structure.

Example of indexing code is as follows:

public class SimpleIndexer {

 int index (File indexDir, File dataDir, String suffix) throws Exception {
 IndexWriter indexWriter = new IndexWriter (

 FSDirectory.open(indexDir),

 new SimpleAnalyzer (),

 true,

 indexWriter.MaxFieldLength.LIMITED);

 writer.setUseCompoundFile (false);

 indexDirectory (indexWriter, dataDir, suffix);

 indexWriter.optimize ();

 indexWriter.close();

 }

public void indexDirectory (IndexWriter indexWriter, File dataDir, String suffix) throws Exception {

 File[] files = dataDir.listFiles();
 for (int i = 0; i < files.lenght; i++) {

 File f = files[i];

 if (f.isDirectory()) {

 indexDirectory (indexWriter, f, suffix);

 }

 else {

 indexFileWriter (indexWriter, f, suffix);

 }

 }

}

private void indexFileWriter (IndexWriter indexWriter, File f, String suffix) throws IOException {
 Document doc = new Document ();

 doc.add(new Field(“contents”, new FileReader(f)));

 doc.add(new Field(“filename”, f.getName(), Field.Store.YES, Field.Index.ANALYZED));

 indexWriter.addDocument (doc);

}

}

3.2 Searching Mechanism

Once the indexing is done, the inverted files are saved. Searching involves searching through the

indexed content. With regard to search engine, the deepest experience for users is search, which directly decides

on user’s satisfaction degree. Searching process is show in fig. 2:

Figure 2: Lucene Searching Mechanism

Fig. 2 shows that Lucene searching process is divided into three steps: first, Lucene sends query to

searcher (Lucene.search). After that, searcher calls query analyzer for parsing the query. At the moment, Lucene

Searching and Analyzing Qualitative Data on Personal Computer

www.iosrjournals.org 44 | Page

need to determine what language analyzer will be used; second, according to this query parsed, searcher

searches index database built; three, Lucene returns searching hits (Lucene.hits) to users.

Example of searching code is as follows:
public class SimpleSearcher {

 File indexDir = new File (“E:/index/”);

 String quertStr = “pdf”;

 int maxHits = 100;

public void searchIndex () throws Exception {

 Directory directory = FSDirectory.open (indexDir);

 IndexSearcher searcher = new IndexSearcher(directory);

 MultiFieldQueryParser parser = new MultiFieldQueryParser (Version_30, new String

{“contents”, “filename”}, new SimpleAnalyzer());

 Query query = parser.parse (queryStr);

 TopDocs topDocs = searcher.search(query, maxHits);
 ScoreDoc[] hits = topDocs.scoreDocs;

 for (int i = 0; i < hits.length; i++) {

 int docId = hits[i].doc;

 Document d = searcher.doc(docId);

 System.out.println(d.get(“filename”));

 }

 System.out.println (“Found: ” +hits.length);

}

}

IV. WHY LUCENE?
As a full-text search engine, Lucene has the following outstanding advantages [7]:

 The index file format is independent of application platform. Lucene defines a set of 8-bit byte-based index

format. Making compatible system or the application of different platform to share index file created.

 Based on the traditional full-text search engine’s inverted index. Lucene implements the block index. With

the block index, Lucene can create the new small index file for the new files in order to improve the

indexing speed, then merged with the existing index to achieve the purpose of optimization.

 The excellent object-oriented system architecture reduces the difficulty of learning the expansion of

Lucene, and facilitates the expansion of new features.

 Lucene designs a text analysis interface which independent of language a document formats. The indexer
completed the creation of index files by receiving the token flow. The users only need to achieve the

interface of textual analysis to extend new language and file formats.

 Lucene default implements a powerful query engine. User can add powerful query capabilities to their

systems even do no need to write any code. Lucene also default implements Boolean operations, fuzzy

query, group query and so on.

As an excellent full-text search engine, the architecture of Lucene has strong object-oriented features

[6]. Firstly, Lucene defines a platform-independent index file format. Secondly, Lucene designs abstract classes

for the core of the system. The implementation of the part of the platform is designed as the implementation of

abstract classes, in addition, the relevant part of the specific platforms such as the file storage is also packaged

as classes, though the procedures of the object-oriented treatment, finally the search engine systems reached the

goal of low coupling and high efficiency, and easy to be secondary developed. There are a lot of search systems

based on Lucene such as Zilverline, Red-Piranaha, LIUS and so on.

V. USER INTERFACE OF OUR SYSTEM
The interface allows users to input specify query, displaying the result and configuration of the system.

Because system works from a local index, query results can be returned very quickly, allowing a highly

interactive and iterative query strategy. The user interface of the system is as follows:

Searching and Analyzing Qualitative Data on Personal Computer

www.iosrjournals.org 45 | Page

Figure 3: User Interface of our System

Figure 3 shows the user interface of our system after searching the query “PHP”. There are the input

box and search button on the top of user interface. On the left side, it is the display interface of different file

types, including documents, music, pictures, videos etc. The right side is the search result, which shows each

item in the list of search results in details, including filename, file path, extension, and file size.

VI. CONCLUSION
This paper presents the structure of desktop search engine system and its components include indexing,

analyzing, index storing and searching. We have designed, deployed and evaluated a desktop full-text search

system based on Lucene that provides unified access to information. After the implementation of the system, we

have tested the indexing and searching capabilities of the system. Lucene is not an integrated application

program of full-text information retrieval, but it is a high reliable and extensible toolkit. It can embedded into

many applications provide full-text information retrieval system.

REFERENCES
[1] Karger, David R., et al. "Haystack: A customizable general-purpose information management tool for end users of semistructured

data." Proc. of the Conference of Innovative Data Systems Research, 2005.

[2] Sinha, Vineet, and David R. Karger. "Magnet: Supporting navigation in semistructured data environments." Proceedings of the 2005

ACM SIGMOD international conference on Management of data. ACM, 2005.

[3] Sauermann, Leo, and Sven Schwarz. "Gnowsis adapter framework: Treating structured data sources as virtual rdf graphs." The

Semantic Web–ISWC 2005(2005): 1016-1028.

[4] Aleman-Meza, Boanerges, et al. "Context-aware semantic association ranking." Proceedings of Semantic Web and Database

Workshop. Vol. 3. 2003.

[5] Otis Gospodnetic,Erik Hatcher. Lucene in Action. Manning Publications, 2006.

[6] Li, Shengdong, et al. "Study on efficiency of full-text retrieval based on lucene."Information Engineering and Computer Science,

2009. ICIECS 2009. International Conference on. IEEE 2009.

[7] Tian, Wen, Zhou Ya, and Huang Guimin. "Research and implementation of a desktop full-text search system based on Hyper

Estraier." Intelligent Computing and Integrated Systems (ICISS), 2010 International Conference on. IEEE, 2010.

[8] Lucene: http://lucene.apache.org/.

[9] Gospodnetic, Otis. "Parsing, indexing, and searching XML with Digester and Lucene." Journal of IBM Developer Works (2003).

[10] Wei Zhao, "The design and research of Literary retrieval system based on Lucene," Electronic and Mechanical Engineering and

Information Technology (EMEIT), 2011 International Conference on , vol.8, no., pp.4146,4148, 12-14 Aug. 2011.

[11] Hristidis, Vagelis, Heasoo Hwang, and Yannis Papakonstantinou. "Authority-based keyword search in databases." ACM Transactions

on Database Systems (TODS) 33.1 (2008): 1.

[12] Yan Hongyin; Qi Xuelei, "Design and implementation of intranet search engine system," Mechatronic Science, Electric Engineering

and Computer (MEC), 2011 International Conference on , vol., no., pp.302,304, 19-22 Aug. 2011.

[13] Yong Zhang; Jian-lin Li, "Research and Improvement of Search Engine Based on Lucene," Intelligent Human-Machine Systems and

Cybernetics, 2009. IHMSC '09. International Conference on , vol.2, no., pp.270,273, 26-27 Aug. 2009.

[14] Copernic Desktop Search – The search engine for your PC. Available online: http://www.copernic.com/en/products/desktop-search/

[15] Yahoo! Desktop Search. Available online: http://desktop.yahoo.com/

http://lucene.apache.org/
http://www.copernic.com/en/products/desktop-search/

