
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 6 (May. - Jun. 2013), PP 30-34
www.iosrjournals.org

www.iosrjournals.org 30 | Page

Lexical and Parser tool for CBOOP program

Tanuj Tyagi
1
, Akhil Saxena

2
, Sunil Nishad

3
,Babita Tiwari

4

Computer Science and Engineering Department,

Jaypee University Of Engineering And Technology (JUET)

A.B. Road,P.B No. 1, Raghogarh,Dist-Guna-473226(M.P)

Abstract: This paper addresses an approach to build lexical and parser tool for Component Based Object

Oriented Program (CBOOP). In this Paper,Lexical analysis tool use for the scanning of CBOOP program.

Lexical tool reads the input characters of the source program and return the tokens. Parser will generate the
syntax tree of CBOOP program and check the syntax of program. The driver program, i.e., main program will

open the file containing CBOOP program according to input.

Keywords:CBOOP,Lexical Analyzer, Tokens, Parser, Driver program

I. Introduction
The latest programming paradigm in software engineering field is Component Based Object Oriented

Programming. This paradigm has advantage of reusability over previous paradigm like object oriented

programming. It also has advantage of high granularity and lower modular interdependence. It also ensures that

true inheritance does not violate encapsulation as it was in case of object oriented programming. The future of

software engineering lies in this programming paradigm [5].

To use any software for any novice user there is need of executable form of that software. For this

purpose there arises the need a compiler. Lexical analyzer and parser isfrontend of compiler. These stages of
compiler build syntactic structure of any software. These stages play important role in building executable form.

This paper aims at provide an approachto achieving these stages on Component Based Object Oriented

Program.

 It uses previous approaches of parsing and lexical analysis and applies and modifies it accordingly to

parse the Component Based Object Oriented program. It provides with an approach that allow parsing and

lexical analyzer of Component Based Object Oriented Programming.

Lexical Analyzer reads the source program character by character, breaking the source program into a

sequence of tokens. The various tokens are keywords,identifiers, operators, constants and punctuation symbols

such as comma and parenthesis. Each token is a collection of character with well-defined meaning of the source

program that is to be treated as a single unit. The Lexical analyzer analyses successive character in the source

program starting from the first character not yet grouped into a token. In order to determine the next token,
many characters may be searched beyond the next token. These tokens are sent to the parser for syntax analysis

[7].

Consider the following expression in C++:

result=(a+b)*2;

When this expression is input to the lexical analyzer, following tokens are generated:

Token Type of Token

Result Identifier

= Assignment Operator

(Punctuator

A Identifier

+ Addition Operator

B Identifier

) Punctuator

C Identifier

++ Increment Operator

5 Integer Literal

; Punctuator

Table 1

The parser uses the tokens from lexical analyzer and generates the syntax tree.In this paper, bottom-up parser is

used which works on context free grammar.Parser takes input line by line and checks syntax of that statement.It

takes input and compares it with context free grammar and check whether input is correct or not. Top-down

Lexical and Parser tool for CBOOP program

www.iosrjournals.org 31 | Page

parser is not used because it is less efficient than bottom-up parser. Bottom-up parser uses right-most derivation

in reverse order [2][4].

For the above expression, i.e., result=(a+b)*2; parser generates the following parse tree:

Fig. 1

cin>>a>>b;

Fig. 2 State diagram of input operation

Fig. 2 is the state diagram of input operation. It checks that input operation is syntactically correct or not. When

cin is applied on the initial state q0, state changes from q0to q1. Then, if extraction operator>>comes the state

changes to q2. Further, identifier changes the state to q3. The extraction operator changes the state back to q2,

this terminal at q3 state is used when more than one variable are to be declared. Finally, semi-colon (;) changes

the state to the final state qf.

II. Working OfCboop
First of all, the driver program opens component program on basis of input user enters. For example, if

user entersinput as 5!.Then the driver program opens factorial component. If user enters a quadratic equation it

opens quadratic component. The sole purpose of driver program is to open component program. The driver

program is like “My Computer” icon in our desktop. From “My Computer” icon various drives can be opened

that are present in the system. It doesn’t solely perform any function or stores any data. Similarly is the driver

program which just opens component program.Next, the driver program then performs lexical analysis on

opened component and then parser analysis on the opened component.Now, since Component Based Object

Oriented Program is collection of interdependent program. So, one component can depend on other component.

So if driver program opens component that is dependent on other component then driver program first of all

opens component that will be needed by input component. It then performs lexical analysis and parser on last in

first out manner. Lexical analysis is performed on each component only once. On other hand, the parser
performs syntax analyzer on component each time it is needed [6].

Fig. 3

Lexical and Parser tool for CBOOP program

www.iosrjournals.org 32 | Page

Fig. 3 shows Component Based Object Oriented Program for mathematical calculator.If driver program opens

exponential series component, then driver program checks which component will be needed by exponential

series component. It finds out that it will need factorial, summation and division components. The driver

program performs lexical analysis on each component, i.e., factorial, power, division,summation and

exponential series component. Then parser analyzer performs the parsing on each component program opened.

In Fig. 3, exponential series component is used to compute exponential series which is of the form:

𝑒𝑥 = 1+
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯ ,−∞ < 𝑥 < ∞

First of all driver program passes input 1 to factorial component, and then it passes 2 to factorial component and

so on. So parsing is performed on factorial component with input as 1, 2 and so on. Then driver program opens

power component and passes input as x and power to x. Then driver program opens division component passes

output of power component and factorial component as input. Then driver program opens summation series

component and passes output of division component. In this exponential series is evaluated [6].

III. Pseudo Code For Driver Program, Lexical And Parser
This section represents the pseudo code of driver program, lexical and parser.

In driver program, first of all it takes input from user. This input act as “key” which tells driver program which

component to open. The driver program scans input from left to right character by character. It compares

character read with cpgm which has list of all components. It then opens the desired component.

Next, the driver program performs lexical analyzer on this component by applying lexical analyzer pseudo code

on it. Then it performs parser on component opened by applying parser pseudo code on it. It then applies this

procedure in iterative manner.

Scan input Procedure driver_pgm(input,cpgm)
Begin

while(input)

{

from left to right character by character

Compare input with cpgm

then

Open component on input read

Perform lexical analyzer on component opened

Perform parsing on component open

Remove the character read from input

}

In lexical analyzer, component is read character by character. Next, lexical analyzer collects character into

logical groupings called lexemes. First of all, lexical analyzer checks first character of lexeme. If it is character

then it can be reserved word or identifiers. Then, lexical analyzer it with predefined reserved words then lexeme

is reserved words otherwise it is identifier. If first character of lexeme is digit then it can be either integer literal

or floating literal. If first character is neither digit nor character, it compares lexeme with predefined set of

operators. This procedure is applied on each character of component.

Procedure lexical_analyzer

{

Read a character

switch(char)
{

case LETTER:

stoken[i]:=char

Read a character

while(char==LETTER|| char==DIGIT)

{

stoken[i]:=char

Read a character

}

ifstoken is reserved word

then
return reserved word

Lexical and Parser tool for CBOOP program

www.iosrjournals.org 33 | Page

else

return identifier

break

case DIGIT:

stoken[i]:=char

Read a character

while(char==DIGIT)
{

stoken[i]:=char

Read a character

}

return literal

break

}

}

In parser, first of all define context free grammar that would be used for Component Based Object

Oriented Program. Then take output of lexical analyzer as input for the parser. In this input program, each line

of initial component is terminated by #. Now parser read input line by line and stores it in input array. Then

apply bottom up parsing approach to generate table-driven parser. In this program take an empty array stack.

Now the procedure compare this stack array with RHS of every production defined in context free grammar

decided earlier. If no productions match then push a symbol of input array into stack and define this operation as

“push”. If it matches RHS of any production then it pops those symbols from stack that matches RHS of

production and pushes LHS of that production. This procedure is iteratively applied until input array has “$”.

Now if input array and stack array has $ then that input is successfully parsed otherwise it is not successfully

parsed.

Procedure parser

{

do

{

Read a character

input[i]:=char

while(char!=#)

{

input[i]:=char

Read a character

}

stack[50]:=NULL
do

{

if stack not equal to RHS of productions of CFG

Then

push character of input into stack and print shift operation

else

pop all elements from stack and push LHS of that production into stack

print reduce operation

}

while(input!=NULL)

}
while(!eof())

}

IV. Result
First of all, on applying lexical analyzerpseudocode on component it will generate “symbol table”.

Symbol table is text file which list of all identifiers and integer literal and string literal used in component along

with line number and column number. The symbol table for the factorial component is :

Lexical and Parser tool for CBOOP program

www.iosrjournals.org 34 | Page

Then applying parser pseudocode on component, get table driven parser. This table has three columns: stack

symbol, input and operation. The operation column can take two values: push operation and pop operation.
Thistable shows how bottom up parser is applied on input and how it is reduced to start variable of context free

grammar. The input and stack column shows value of input and stack array on each iteration of parser pseudo

code.

V. Conclusion
This paper addresses the concept of compiler for component based object oriented program.It modifies

the traditional approach of lexical and parser design to be able to be used for component based object oriented

program. Italso discusses the approach to parse various components of component based object oriented

program and tells how component is opened from component based object oriented program.It also tells how

various interdependent components are successfully parsed. This paper designs front end of component based

object oriented program compiler.

References
[1] ArvinderKaur, Kulvinder Singh, Component Selection for Component based Software engineering, International Journal of

Computer, Applications,2(1),2010,0975-8887

[2] Miroslav D. C´ iric´ and Svetozar R. Rancˇic, Parsing in Different Languages,FACTA UNIVERSITATIS,18(1),2005,299-307

[3] João Costa Seco, Ricardo Silva and Margarida Piriquito, A Component-Based Programming Language with Dynamic

Reconfiguration,International Journal of Software and Information Systems Vol. 5,2008

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.Ullman, Compilers(Pearson,2007)

[5] AndyJuAn Wang, Kai Qian,Component-Oriented Programming(John Wiley & Sons, 2005)

[6] XIAOQING WU, BARRETT R. BRYANT, JEFF GRAY, MARJAN MERNIK, ALAN SPRAGUE, MURAT TANIK , Component-

Based Language Implementation with Object-Oriented Syntax and Aspect-Oriented Semantics,The University of Alabama at

Birmingham

[7] Luis Quesada, Fernando Berzal, and Francisco J.Cortijo,A Lexical Analysis Tool with Ambiguity Support,CITIC, University of

Granada

[8] TIM A. WAGNER and SUSAN L. GRAHAM, General Incremental Lexical Analysis, University of California, Berkeley

[9] Oh-Cheon Kwon, Seok-Jin Yoon and Gyu-Sang Shin, Computer & Software Technology Laboratory, ETRI(Electronics and

Telecommunications Research Institute)Taejon, Korea

[10] K. L. P. Mishra, N. CHANDRASEKARAN,Theory of Computer Science: Automata, Languages and Computation(Prentice-

Hall,2007)

[11] O.G. Kakde,Comiler Design(Laxmi Publications,2005)

[12] G. SudhaSadasivam, Component Based Technology(Wiley India,2008)

[13] Laura Rimell and Stephen Clark, Adapting a Lexicalized-Grammar Parser to Contrasting Domains,Oxford University Computing

LaboratoryWolfson Building, Parks RoadOxford, OX1 3QD, UK

