
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 3 (Jul. - Aug. 2013), PP 05-12 
www.iosrjournals.org 

www.iosrjournals.org                                                             5 | Page 

 

Efficient Doubletree: An Algorithm for Large-Scale Topology 

Discovery 
 

Ranjit Kumar Nukathati 

(Department of Computer Science, JNTU College of Engineering, Anantapur, India)                                                                               

   

Abstract: Monitoring Internet topology was a tractable problem. Topology discovery systems are starting to be 

introduced in the form of easily and widely deployed software. Unfortunately, they have a problem of how to 

perform such measurements efficiently and in a network-friendly manner. When scaled up, such methods will 

generate so much traffic that they will begin to resemble distributed denial-of-service attacks. 

             The existing Doubletree algorithm faces the problem of redundancy. To solve this, the Efficient 

Doubletree algorithm is proposed which reduces redundancy while maintaining nearly the same level of nodes 

and link coverage. Algorithm quantifies the amount of redundancy in classic Internet topology discovery 

approaches by taking into account the perspective of a single monitor (intramonitor) and that of an entire 
system (intermonitor). Efficient Doubletree simultaneously meets the conflicting demands of reducing 

intramonitor and intermonitor redundancy. In both the above cases a hop in the middle that is between monitor 

and destination will be selected by Hop Selection to increase efficiency. 

Keywords: Distributed denial-of-service(DDoS) attack,  Efficient Doubletree,  forward probing, backward 

probing, stopping rule. 

 

I. Introduction 
Systems for active measurements in the Internet are undergoing a dramatic change. Whereas the 

present generation of systems operates on largely dedicated hosts, that numbering between 20 to 200, a new 
generation of easily downloadable measurement software means that infrastructures based on thousands of hosts 

could spring up overnight. Unless we carefully controlled these new systems have the potential to impose a 

heavy load on parts of the network that are being measured. They also have the capable to raise alarms as their 

traffic can easily resemble a distributed denial-of-service (DDoS) attack. This paper examines the problem and 

proposes and evaluates, through simulations and prototype deployment, an algorithm for Controlling one of the 

most common forms of active measurement: traceroute. 

There are a number of systems active today that aim to elicit the Internet topology at the Internet 

protocol (IP) interface level. The most extensive tracing system is CAIDA’s skitter. It uses 24 monitors, each 

monitor targeting on the order of one million destinations. In the fashion of skitter, scamper  uses several 

monitors to traceroute IPv6 addresses. Some other well-known systems such as the RIPE NCC’s TTM service  

and the NLANR AMP have larger numbers of monitors (between 100 and 200) and conduct traces in a full mesh 

but avoid tracing to outside destinations. Scriptroute is a system that allows an ordinary Internet user to perform 
network measurements from several distributed points. It proposes remote measurement execution on nodes of 

PlanetLab, through a daemon that implements ping, traceroute, hop-by-hop bandwidth measurement, and other 

number of utilities.Removing spatial bias is not the only reason to employ measurement systems that use a 

larger number of monitors. Using with more monitors to probe the same space, each one can take a small 

portion and probe it more frequently. In network dynamics, that might be missed by smaller systems and can 

more readily be captured by the larger ones, while keeping constant as the workload per monitor. The idea of 

releasing easily deployable measurement software is not new. To the best of our knowledge, the idea of 

incorporating a traceroute monitor into a screen saver was first discussed in a paper by Cheswick in 2000. Since 

that time, a number of measurement tools have been released to the public in the form of screen savers or 

daemons, such as Grenouille  or NETI@home. In the summer of 2004, the first tracerouting tool of this type was 

made available: DIMES  conducts traceroutes and pings from, at the time of writing this paper, 8700 agents 
distributed over five continents. Given that large-scale network mapping is emerging, contemplating such a 

measurement system demands attention to effi-ciency, in order to avoid generating undesirable network 

load.Save for our work, described here, and first presented at ACM SIGMETRICS 2005, this issue has not been 

systematically tackled by the research community. 

Our first contribution is to measure the extent to which classic topology discovery systems involve 

duplicated effort. By classic topology discovery, such as skitter, tracing from a small number of monitors to a 

large set of common destinations. We define two metrics to estimate duplicated effort in such systems: the 

quantity of measurements made by an individual monitor that replicate its own work (intramonitor redunancy) 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             6 | Page 

and, the quantity of measurements made by multiple monitors that replicate each other’s work (intermonitor 

redundancy). 

Using skitter data from August 2004, we quantify both kinds of redundancy. We show that 

intramonitor redundancy is high close to each monitor. This fact is not surprising given the treelike structure of 

routes emanating from a single monitor. Further, with respect to intermonitor redundancy, we find that most 

interfaces are visited by all monitors, especially when those interfaces are close to destinations. This latter form 

of redundancy is also potentially quite large, since it would be expected to grow linearly with the number of 
monitors in future large-scale measurement systems. Our analysis of the nature of redundant probing suggests 

more efficient algorithms for topology discovery. In particular, our second contribution is to propose and 

evaluate an algorithm called Efficient Doubletree. Efficient Doubletree takes advantage of the tree-like structure 

of routes, either emanating from a single source towards multiple destinations or converging from multiple 

sources towards a single destination, to avoid duplication of the effort. Unfortunately, the general strategies for 

reducing these two kinds of redundancy are in conflict. On the one hand, intramonitor redundancy is reduced by 

starting probing far from the monitor, and working backwards along the tree-like structure that is rooted at that 

monitor. Once an interface is encountered and that has already been discovered by the monitor, then probing 

stops. On the other hand, intermonitor redundancy is reduced by probing forwards towards a destination until 

encountering a previously seen interface. The intermonitor redundancy reduction implies that monitors share 

information about what they have already discovered. We show, balancing these conflicting strategies in 
Efficient Doubletree. In Efficient Doubletree, probing starts at a distance that is intermediate between monitor 

and destination. We demonstrate methods for choosing this distance, and we then evaluate the resulting 

performance of Efficient Doubletree. Despite the challenge inherent in reducing both forms of redundancy 

simultaneously we show in simulations that probing via Efficient Doubletree can reduce measurement load by 

approximately 76%, while maintaining interface and link coverage above 90%. 

 

II.      Metrics To Evaluate Topology Discovery Tools 
This section introduces two metrics that allow one to evaluate a distributed tracerouting system. We 

evaluate such a system by considering the redundancy (i.e., the duplication of effort) at two levels. One is the 
individual level of a single monitor, considered in isolation from Fig. 2. Skitter intramonitor redundancy for the 

champagne monitor. This intramonitor redundancy is measured by the number 

 
                                                                            Fig 1. Quantiles Key 

of times the same monitor visits an interface. This intermonitor redundancy is measured by the number of 

monitors that visit a given interface  counting   only   once        

   
Fig 2. Skitter intramonitor redundancy for the                                                Fig 3. Skitter intermonitor redundancy 

champagne monitor 
           



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             7 | Page 

each that has nonzero intramonitor redundancy for that interface. By separating the two levels, we separate the 

problem of redundancy into two problems that can be treated somewhat separately. Each monitor can act on its 

own to reduce its intramonitor redundancy, but cooperation between monitors is required to reduce intermonitor 

redundancy. Fig. 1 provides a key to reading the quantile plots found in Figs. 2 and 3 and figures found later in 

this paper. A dot marks the median (the 2nd quartile or 50th percentile). The vertical line below the dot 

delineates the range from the minimum to the 1st quartile, and leaves a space from the 1st to the 2nd quartile. 

The space above the dot runs from the 2nd to the 3rd quartile, and the line above that extends from the 3rd 
quartile to the maximum. Small tick bars to either side of the lines mark some additional percentiles: bars to the 

left for the 10th and 90th, and bars to the right for the 5th and 95th. 

In the figures, each quantile plot sits directly above an accompanying bar chart that indicates the 

quantity of data upon which the quantiles were based. And for each hop count, the bar chart displays the number 

of interfaces at that distance. For these bar Fig. 3. Skitter intermonitor redundancy. charts, a log scale is used on 

the vertical axis. This allows us to identify quantiles that are based upon very few interfaces (fewer than 20, for 

instance), and so for which the values risk being somewhat arbitrary. In addition, each plot has a separate bar to 

the right, labeled “all,” that shows the quantiles for all interfaces taken together (upper part of the plot) and the 

number of discovered interfaces (lower part of the plot). 
 

A. Intramonitor Redundacy 

Intramonitor redundancy occurs in the context of the tree-like graph that is generated when all 

traceroutes originate at a single point. Since there are fewer number of interfaces closer to the monitor and those 

interfaces will tend to be visited more frequently. In extreme cases, if there is a single gateway router between 
the monitor and the rest of the Internet, the single IP address of the outgoing interface belonging to that router 

should show up in every one of the traceroutes. We measure intramonitor redundancy by considering all 

traceroutes from the monitor to the shared destinations, whether there may be problems with a traceroute such as 

illegal addresses, or not. Having calculated the intramonitor redundancy for each interface, we organizes results 

by the distance of the interfaces from the monitor. We measure distance exactly by hop count. Since the same 

interface can appear at a number of different hop counts from a monitor, for instance, if routes change between 

the traceroutes, we arbitrarily attribute to each interface the hop count at which it was first visited. This process 

yields, for each hop count, a set of interfaces that we sort by number of visits. The we plot, hop-by-hop, the 

redundancy distribution for interfaces at each hop count. Fig. 2 shows the intramonitor redundancy metric 

applied to the champagne monitor. 
 

B. Intermonitor Redundancy 

Intermonitor redundancy occurs when multiple monitors visit the same interface. The degree of such 

redundancy is of keen interest to us when we envisage increasing the number of monitors by several orders of 
magnitude. We calculate the intermonitor redundancy for each interface by counting the number of monitors 

that have visited it. And a monitor can be counted at most once towards an interface’s intermonitor redundancy, 

even if it has visited that interface multiple number of times. For a given interface, the redundancy is calculated 

just once with respect to the entirety of the monitors: it does not vary from monitor to monitor as does 

intramonitor redundancy. However, what does vary depending upon the monitor is whether the particular 

interface is seen, and at what distance.In order to attribute a single distance to an interface, a distance that does 

not depend upon the perspective of a single monitor but that nonetheless has meaning when examining the 

effects of distance on redundancy, we attribute the minimum distance at which an interface has been seen 

among all the monitors.  Fig. 3 shows the intermonitor redundancy metric applied to the 24 skitter monitors. 

 
III.       Discovering Process Using Efficient Doubletree 

The Efficient Doubletree algorithm, which is part of the Traceroute project, is the first attempt to 

efficiently perform large-scale topology discovery in a network-friendly manner through co-operation between 

monitors. A tree can be used by a probing algorithm to keep track of its discovery progress. The rule is that 

probing is carried out from the leaves to the root, i.e. decreasing probe packet TTLs, as long as it is probing a 

previously unknown part of the tree. It then stops when a previously discovered node is encountered. The 
assumption is made that the remaining path to the root is known, leading to potential coverage loss. Note that, in 

the context of Internet topology, discovering a new node would correspond to a router’s interface responding to 

a probe packet within the constraints. Efficient Doubletree tackles both types of redundancy (i.e. Intra-monitor 

redundancy and inter-monitor redundancy) and is based on the treelike structure of routes emanating from a 

single source or converging on a same destination. For this reason, Doubletree uses two trees, one monitor-

rooted and one destination-rooted trees as illustrated by Figure 3.1(a) and 3.1(b)  The monitor-rooted tree is 

composed of outgoing routes from a single monitor to multiple destinations. The destination-rooted tree is 

composed of routes from multiple monitors converging to a common destination. The stopping rule based on the 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             8 | Page 

former aims at reducing intra-monitor redundancy, and the latter which requires inter-monitor communication in 

order to reduce their shared redundancy. 
 

3.1 Two-Phase Probing 
 

 Efficient Doubletree acts in two phases: 

1. Forward probing proceeds from an initial hop count h to h+1, h+2, and so forth, applying a stopping rule 
based on the destination-rooted tree. 

2. Backward  probing  then  follows  by  taking  the  hop  count  back  to  h-1,  h-2,  etc., applying   a stopping 

rule based on the monitor-rooted tree. 

 
Fig. 3.1(a): Monitor-rooted tree 

During the backward probing phase, once the root or stopping rule is reached, the algorithm moves on to the 

next destination and restarts probing at initial distance h. In the special case where there is no response at a 

certain distance, this distance is halved, and halved again until there is a reply. Probing then continues forward 

and backward from  that point. 

 
Fig. 3.1(b): Destinated-rooted tree 

 

3.2 Stop Sets and Simple Stopping Rule 
 

Rather than maintaining information about the tree structure, it is sufficient for the stopping rules to 

store sets of (interface, root) pairs, the root being the root of the tree in question, i.e. the monitor- or destination-

based tree. These sets are called stop sets. A single monitor uses two distinct stop sets: 

 The first stop set is used when probing forwards and is called the global stop set. 
 

 The second stop set is used when probing backwards and is called the local stop set. This set can be reduced 

to a list of interfaces since the root item never changes as it is the monitor itself. 
 

The stopping rule for each phase is simple: it is to stop when the encountered pair is already a member of the 

relevant set, otherwise it is added. 

 

Algorithm: Efficient Doubletree 
Algorithm 1 is the formal definition of Efficient Doubletree and assumes the existence of two functions: 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             9 | Page 

 response() returns true if an interface replies to at least one probe sent to it. 

 halt() returns true if probing must be stopped for various reasons. These reasons include the detection of a 

loop or the observation of a gap in the case of a non-responding interface. 

Algorithm: 

1. Procedure Doubletree(h,D) 

2.      B ← φ 
3.   for all d є D do 

4.          h ← AdapthValue (h) 

5.          TraceForward (h,d) 

6.          TraceBackwards (h-1,d) 

7.    end for 

8. end Procedure 

9. Procedure AdapthValue(h) 

10.        while ¬ response(vh) ^ h ≠ 1 do 

11.              h ← h/2 

12.         end while 

13.          return h 

14. end procedure 
15. Procedure TraceForward(i,d) 

16.  while vi ≠ d ^ (vi,d) ¢ F ^ ¬halt() do 

17.           F ← F U (vi,d) 

18.           i ++ 

19.         end while 

20. end procedure 

21. Procedure TraceBackwards(i,d) 

22.         while i ≥ 1 vi ¢ B ^ ¬ halt() do 

23.             B ← B U vi 

24.             F ← F U (vi,d) 

25.             i – 
26.          end while 

27. end procedure 

 

3.3 Choice of Initial Distance 
 

In order for a monitor to avoid excess intra-monitor redundancy by probing too close and excess inter-

monitor redundancy by probing too far, Efficient Doubletree starts off at what is hoped to be an intermediate 

point h between the monitor and the given destination. Each monitor having a different location in the network, 

a reasonable value for h is to be determined for each one. 

A choice for h is typically based on the distribution of path lengths as seen individually from the 

perspective of each monitor. One easily estimated parameter by a monitor is its probability p of hitting a 

responding destination on the first probe. By fixing p, the individually obtained values of h correspond to a 
similar level of incursion of each monitor in the network. 

 

IV.    Result Analysis 

This section describes the simulated version of Efficient Doubletree. The Java code for this prototype is freely 

available online. This section also describes the results of initial runs of Efficient Doubletree in a real 

environment. 
   

 

 

 

 

 

 

 

 

 

 

 

 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             10 | Page 

4.1. Instance of Adhoc Network 

 
                                                       Fig. 4.1. Adhoc Network 
As an Adhoc network is dynamic and changes time to time, one instance of Adhoc network is given, in the 

above figure 4.1. 

 

4.2 Path Tracing Information 

(a) Forward Probing:: Global StopSet: Towards the Destination1 
 

 
Fig. 4.2 Forward Probing from Monitor1 towards the Destination1 

 

Monitor1 begins probing from the hop11 and the next hop traced is 16 towards the Destination1. Lines 

connecting all these nodes can be seen in the network shown in figure 4.1. 
 

 
Fig. 4.3 Forward Probing from Monitor2 towards the Destination1 

 

Monitor2 begins probing from the hop14 and the next hop traced is 18 towards the Destination1.  Lines 

connecting all these nodes can be seen in the network shown in figure 4.1.  

 
Fig. 4.4 Forward Probing from Monitor3 towards the Destination1 

 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             11 | Page 

Monitor3 begins probing from the hop9 and the next hops traced in sequence are 0,13 and 4 towards the 

Destination1.  Lines connecting all these nodes can be seen in the network shown in figure 4.1.  

 
Fig. 4.5 Forward Probing from Monitor4 towards the Destination1 

 

Monitor4 begins probing from the hop10 and the next hops traced in sequence are 2,7 and 15 towards the 

Destination1.  Lines connecting all these nodes can be seen in the network shown in figure 4.1. 

(b)Backward Probing:: Local StopSet: Towards the respective Monitors 
 

 
 

Fig. 4.6 Backward Probing towards Monitor1 and Monitor2 at Two HOP Distance 

 
Backward probing for Monitor1 begins at two-hop distance that is from hop11 towards hop6 and Monitor1 in 

sequence. Similarly backward probing for Monitor2 begins at two-hop distance that is from hop14 towards 

hop19 and Monitor2 in sequence. 

 
 

Fig. 4.7 Backward Probing towards Monitor3 and Monitor4 at Two HOP Distance 

 

Backward probing for Monitor3 begins at two-hop distance that is from hop9 towards hop8 and Monitor3 in 

sequence. Similarly backward probing for Monitor4 begins at two-hop distance that is from hop10 towards 

hop18 and Monitor4 in sequence. 
 

 

V.    Conclusion 
In this paper, we quantify the amount of redundancy in classic Internet topology discovery approaches 

by taking into account the perspective of a single monitor (intramonitor) and that of an entire system 
(intermonitor). In the intramonitor case, we find that interfaces close to the monitor suffer from a high number 

of repeat visits. Concerning intermonitor redundancy, we see that a large portion of interfaces are visited by all 

monitors. In order to scale up classic approaches such as skitter, we have proposed Efficient Doubletree, an 

algorithm that significantly reduces the duplication of effort, while discovering nearly the same set of nodes and 

links. Efficient Doubletree simultaneously meets the conflicting demands of reducing intramonitor and 

intermonitor redundancy. We describe how to tune a single parameter for Efficient Doubletree in order to obtain 

an a tradeoff between redundancy and coverage, and we find operating points at which it is possible to strongly 

reduce one while maintaining the other. For a range of values, Efficient Doubletree is able to reduce 

measurement load by approximately 76%, while maintaining interface and link coverage above 90%. We also 



Efficient Doubletree: An Algorithm For Large-Scale Topology Discovery 

www.iosrjournals.org                                                             12 | Page 

describe a prototype Efficient Doubletree implementation and present preliminary in simulation. These initial 

results are  consistent with the performance expectations formed by the simulation results. Further experiments 

are necessary, though difficult to carry out. This paper represents the first step towards a highly distributed 

tracerouting system. Elsewhere, we have proposed extensions to this work: reducing the communication cost of 

sharing the global stop set through the use of Bloom filters, and reducing the load on destinations via techniques 

we call capping and clustering. In other work, we evaluate and address prefix based stopping rule.We show in 

this paper that Efficient Doubletree can save time by avoiding duplication of effort between monitors. 
Therefore, Efficient Doubletree should be able to probe the network more frequently. We believe that this could 

make it possible to better capture the network dynamics that result from routing changes and load balancing. 

Future work might reveal the extent to which Efficient Doubletree is helpful in capturing such network changes. 

We are also working on a BGP-guided topology discovery tool. We think that a topology discovery algorithm at 

the IP level may fruitfully make use of information from higher levels, such as the AS-level. 

Finally, we plan to work on an overlay or peer-to-peer system for managing the interaction between Efficient 

Doubletree monitors.      

   
References 

[1]  V. Jacobsen  “Traceroute  UNIX,” 1989. [Online]. Available: ftp://ftp.ee.lbl.gov/traceroute.tar.gz, man page. 

[2]  R. Braden, “Requirements for internet hosts. communication layers,” Internet Engineering Task Force, RFC 1122, Oct. 1989.  [3] 

E.C. Rosen, “Vulnerabilities of network control protocols: An  examples”,  RFC 789, July 1981. 

[4]  Y. Rekhter, “BGP Protocol Analysis”, RFC 1265, October 1991. 

[5]  D. Atkins and R. Austein. “Threat Analysis of the Domain Name System (DNS)”. RFC 3833 (Informational), August 2004. 

[6]  S. Murphy.  “BGP  Security  Vulnerable  Analysis”, RFC  4272 (Informational),  January 2006. 

[7]  A. Retana,  R. White,  V. Fuller,  and  D. McPherson.  “Using 31-Bit Prefixes on IPv4 Point-to- Point Links”, RFC 3021 (Proposed 

Standard), December 2000. 

[8]  Y. Rekhter  and  T. Li,  “A  Border  Gateway Protocol 4 (BGP-4)”, RFC 1771 (Draft Standard),  March 1995. Obsoleted by RFC 

4271. 

 


