
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 4, Ver. V (Jul.-Aug. 2016), PP 97-107

www.iosrjournals.org

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 97 | Page

An Efficient Test Data Generation Approach for Unit Testing

Anil Kumar Gupta, Fayaz Ahmad Khan
Department of Computer Science and Applications, Barkatullah University, Bhopal (M.P)

Abstract: To ensure the delivery of high-quality software, software testing plays the vital role. One of the major

time-consuming and expensive activities in software testing is the generation of test data. Test data generation

activity has a strong impact on the effectiveness and efficiency of the whole testing process. In order to reduce

the cost and time involved in the process of test data generation, researchers and practitioners have tried to

automate it. In literature, many such techniques have been developed and the most commonly used are; Random

testing, Symbolic execution and evolutionary testing. In this work, an enhanced and efficient Random test data

generation approach is proposed and investigated on a suite of programs and its efficiency is compared with the

Genetic algorithm which is an evolutionary approach. The inconsistency of random approach is that it is not

capable of generating a specific set or combination of test cases for the program input variables and in search

of these effective test cases multiple populations needs to be created that will increase the burden of size . So, in

order to remove these inconsistencies from the test suite, it is seeded with a more effective set of test cases

through our proposed approach in order to make test suite more granular and limit its size by not generating

more populations in search of these effective test cases. In addition to the proposed approach, the classification

of test adequacy criteria and issues with random, symbolic execution and genetic algorithm based test data

generation techniques are also provided and highlighted.

Keywords: Software Testing, Test Data Generation, Random Testing, Symbolic Execution, and Genetic

Algorithm

I. Introduction
Software testing is technically and economically imperative for high quality software production. In

software production half of the expenses have been projected to be due to testing. Thus it is imperative to reduce

the cost and enhance the effectiveness of manual software testing by automating the whole software testing

process. In literature many techniques and tools have been proposed and developed for automatic the testing

process. One of the important issues in automating software testing process is the automatic generation of test

data [1, 2, 3]. Test data generation is the most time consuming task in software testing and one that impacts its

effectiveness and efficiency. Test data generation in software testing is the process of locating and selecting

input data that satisfies the given criterion [4]. Various artifacts of the Software can be considered to generate

test data like requirements, design models, code; the input/output data space and information obtained from

program execution.

The aim of automating the testing process is to reduce the cost and human effort devoted in manual

software testing. If the testing process could be automated, the cost of software development would also be

reduced significantly. Among many testing activities, test case generation is one of the most demanding task and

also most critical one. Normally, the large domain of input values for variables is a problem and choice of

exhaustive testing is impractical due to time and resource constraints. The only way is to use, a part of the input

domain to execute the software under test. The question to be answered is which values and how many should

be selected to maximize the chance of detecting faults. To generate test data, automated test case production

methods should be applied. Bertolino in [1] addresses the need for 100 percent automatic testing. But, an

automated testing strategy in addition to automatic test data generation activity must address other activities

like: the generation of test requirements, oracle generation, selection of test cases and test case prioritization.

II. Steps In Our Proposed Approach For Automatic Unit Testing
1. Subject programs for experimentation.

2. Generate the Control Flow Graph in order to know the differnt components present in them.

3. Set Test adequacy Criteria as stopping condition and for coverage measurement. Here in this study path

coverage (Basic paths or independent paths) and branch coverage are set as test adequacy criteria; because,

it impossible to do exhaustive path testing due to infinite number of paths if the program has loops).

4. Find all the basic path sequences in the program using Mc-Cabe Cyclomatic Complexity Metric.

5. Use the proposed Enhanced Random algorithm with additional seeded test cases as a Search Space.

6. Execute the Program until stopping condition or coverage criteria is satisfied.

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 98 | Page

III. Control Flow Graph Construction
Control flow graph is a graphical representation of the source code of a program. The statements or

expressions of a program are denoted with nodes and flow of control by edges in the program graph. The

program control flow graph (CFG) helps us to understand the internal structure of the program which may

provide the basis for designing the test cases. A control flow graph of a program P is a directed graph G= (N, A,

S, E), where

N= Set of Nodes. , A= A binary relation on NX N, known as set of edges.

S= Start or Unique Entry, E= Exit or unique exit.

In this study, Control Flow Graph Factory is used as an Eclipse plug-in for generating control flow

graphs and exporting them. The control flow graph and basic block graphs of programs in Figure 1 and Figure

2 are shown by Figure 3 and Figure 4. The Control flow graph factory is a tool from Dr. Garbage Tools, a suite

of Eclipse Plug-ins. Dr. Garbage tools are specialized in debugging and development.

IV. Test Adequacy Criteria
Two important questions arise with respect to software testing: “How is the design and selection of test

data performed?” and “How one may be able to decide when a product was sufficiently tested?” During testing,

testing criteria for test suite selection and evaluation are crucial to the success of the testing activity. A test

adequacy criterion tells us that how test cases should be selected in order to increase the fault detection ability of

the selected test suite. A testing criterion is used by the tester to subdivide or compress the input/ output

domains and provides a systematic way to select a finite number of test cases to compose a test suite. The main

objective is to create the smallest test suite which will take less time for execution and for which the output

indicates the largest set of faults.

V. Classification Of Adequacy Criteria
There are two categories (or Classes) of test data adequacy criteria [3]. These two categories are

considered as two dimensions of the space of software test adequacy criteria. One, classification based on the

information used to specify testing requirements and hence includes:

i. Specification Based.

ii. Program Based.

iii. Combined Specification and Program Based.

iv. Interface Based.

Another classification is based on the underlying testing approach and thus includes:

i. Structural Testing:

ii. Fault-based Testing.

iii. Error Based.

The two below mentioned adequacy criteria’s (Program Based) are most commonly used:

1. Control flow Based which includes :

a) Statement Coverage b) Branch Coverage c) Path coverage

d) Cyclomatic –Number Criteria e) Multiple Condition Coverage.

2. Data Flow Based Criteria’s

a) All definition Criterion. b) All Uses Criterion.

c) Interactions between variables (The Ntafos required K- touples Criteria).

d) Combinations of Definitions (Laski-Korel Criteria) and few others.

For the current study Path Coverage criteria and Branch Adequacy criteria are set as testing criteria.

Path testing is a complex problem and its challenging section is to generate test cases that cover selected paths.

Specifically, the path testing problem is an NP-complete problem [3]. That is why several heuristic approaches

have been developed and investigated for path coverage. In addition to this, instead of simply traversing every

path, it only traverses independent paths of code under test. An independent path is any path that tests a decision

independently of other decisions. To find the number of independent paths form both programs in Figure 1 and

Figure 2, the Cyclomatic complexity metric is employed and discussed below.

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 99 | Page

VI. Cyclomatic Complexity Metric
It is a measurement metric developed by Thomas McCabe [6] and is also named as Mc-Cabe

Cyclomatic Complexity. It is used to measure the logical complexity of the code, by determining the number of

linearly-independent paths of a structured program. It is used for two related purposes in testing methodology.

First, it gives the number of recommended test cases for software under test. Second, it is used during all phases

of the software lifecycle, beginning with design, to keep software reliable, testable, and manageable.

The following equation is used for computing Cyclomatic complexity of the program control flow graph (CFG).

V (G) = e - n + 2 Where,

V (G) = Number of independent paths in a CFG, e = Number of edges present in the graph

n = Number of nodes of the graph

The other formula or equation for the determination of Cyclomatic Complexity is known as Predicate Nodes

(Decision Nodes) formula:

V (G) = Number of Predicate Nodes + 1.

For the calculation of the Cyclomatic complexity of both the programs depicted in Figure 1 and Figure 2, any

one of the above formula can be used;

The Cyclomatic complexity of Program in Fig.1:

V (G1) = (Number of Predicate Nodes in CFG (1) + 1) = 3+1 = 4.

The Cyclomatic complexity of Program in Fig.2:

 V (G2) = (Number of Predicate Nodes in CFG (2) + 1) = 10+1= 11.

Based on Cyclomatic complexity measure, test data generation techniques are used for generation of input

values. The most commonly and widely used test data generation techniques are discussed below.

VII. Test Data Generation Techniques
The goal of software testing is to uncover as many as faults by examining the code with a potent set of

test cases. To automatically generate such a potent set of test cases in order to fulfill the desired or set adequacy

criteria; is an intellectually demanding and a very difficult task. It also has a very strong impact on the

effectiveness and efficiency of the whole testing process [1, 2, 3]. In literature, many such techniques have been

developed and investigated. The most commonly used ones are Random test Data Generation [7], Symbolic

Execution [8] and Search Based test data Generation [32] techniques.

VIII. Random Based Test Data Generation Techniques.
Random testing is one of the simplest, fundamental and most popular test data generation methods. In

random testing technique, the software is executed with non- associated volatile test data from the specified

input domain [7]. Random testing was introduced by Hanford [9], who reported a tool known as syntax machine

that randomly generate data for testing PL/I compilers. Random testing approach with respect to other

approaches discussed below is considered as economical, simple, unbiased, and also requires less computational

effort [10].

Hamlet and Taylor in [11] mentioned that random testing is better than other techniques in terms of

finding faults and there are not enough differences between partition and random testing. While as Deason in

[14], commented that random number generators are unproductive and thus does not provide the necessary

coverage of the program. Myers in [13] strengthened this statement and mentioned that random testing is almost

certainly the poorest methodology in software testing. However, Duran and Ntafos in [12] affirmed that many

errors can be easily found, but the problem is to determine whether a test run failed. So, automatic output

checking is essential if large numbers of tests are to be carried.

DeMillo in [15] declared that the capability of random data is very much dependent on the interval

from which the data is selected. In order to accommodate all the values including values out of the specified

range, the interval plays a vital role. Data from poorly chosen intervals are much worse than those from well-

chosen intervals. The authors in [12] also agreed that the change of range for random testing has a great effect

on the efficiency of the testing technique. The disadvantage of random testing is that, it is inadequate to generate

equality values of input variables. Bertolino in [16] stated that random testing is more stressing to the program

under test than handpicked test data. But it is also mentioned in [16], that random inputs may never exercise

both branches of a predicate when it is required to tests for equality between them. In this study as we are

applying a random generator tool for the generation of test cases from a fixed interval for testing the sample

programs. The initial automated generated test cases are depicted in Figure 5.

IX. Symbolic Execution Based Test Data Generation Techniques.
Symbolic execution is a white box automatic test data generation technique. Symbolic executions uses

symbolic values as program inputs instead of actual variables and represent these values as symbolic

expressions of those inputs [17]. Basically, a symbolic executed program includes the symbolic values of the

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 100 | Page

variables, a path constraint and a program counter. The path constraint is a Boolean formula and an

accumulation of constraints that the inputs must fulfill in order to execute the path. The role of program counter

is to identify the next statement to be executed. A major challenge with symbolic execution is that it needs to

understand each and every statement in order to collect the path constraints. Thus the effectiveness of symbolic

execution of real world programs is still limited due to the three fundamental problems like Path explosion, Path

divergence and the solution of Complex constraints. However, due enormous computational power of today’s

computers, the barrier of applying symbolic execution is lower and apart from its application to test data

generation [18,19,20], the other uses of symbolic execution include generation of security exploits [21],

regression testing [22] and data base testing [23]. Hence due to its wide application, a number of tools have

been developed and are available which includes: Symbolic Pathfinder, JCUTE [24], JFuzz [25] and LCT for

Java [26], CUTE [27], Klee [28], S2E [29], Crest target C language [30], and PEX [31], for .NET language.

X. Evolutionary Test Data Generation Techniques.
Local search techniques like Hill Climbing becoming trapped in local optima, so global search

techniques like Genetic Algorithms have been considered and applied in software test data generation. Genetic

algorithms are characterized by an iterative procedure and thus work in parallel on a number of potential

solutions. Miller and David Spooner in [32], generates test data consisting of floating-point inputs and is

completely a unique technique compared to the existing techniques developed at the time. In [32], the cost

function or fitness function is fundamental and is used to guide the optimization process towards the required

direction. They provide the means to evaluate individuals, thus allowing a search to move towards better

individuals in the hope of finding a solution. Inputs, which execute the desired path, were assigned lower cost

values and those inputs with higher cost values were discarded. In 1992, Xanthakis in [33] applied GA for

automatic test case generation. After that, there has been an explosion of work in applying Search-based

optimization techniques to a huge number of software testing problems like, functional testing [34], integration

testing [35], mutation testing [36], regression testing [37], test prioritization [38,39]. Among other optimization

algorithms, genetic algorithms have been the most widely applied search technique. Pargas et al. [40] used

Genetic Algorithm to search for test data to satisfy all-nodes and all branches criteria. Michael et al. [41] used

GAs for automatic test-data generation to satisfy condition-decision test-coverage criterion. They proposed a

Genetic Algorithm Data Generation Tool (GADGET) to generate test cases for large C and C++ programs.

XI. Issues Found While Applying Genetic Algorithm
In applying Genetic Algorithms, the authors Pargas et al in [40] and Benoit Baudry et al in [42] found the

following issues:

I. Representation of the population. The candidate solutions for the problem at hand must be encoded in order

to be manipulated by the search algorithm.

II. The fitness function is domain specific, and needs to be defined for a new problem.

III. Risk of suboptimal solution, delayed convergence and strike up at local optima.

IV. The experiments with genetic algorithms were not satisfactory. The mutation rate has to be increased

consistently when compared to usual application of genetic algorithms.

V. Moreover, due to the slow convergence, the results are not stable and one population can be more efficient

from the following, due to a non-explicit memorization.

XII. The Proposed Approach And Its Implementation
In this present preliminary study, our aim is to explain the experimental investigation into software

testing using the two well-known referenced programs shown in Figure 1 and Figure 2. This study is also an

extension to the two existing studies [43] [44], where the performance of random approach and the genetic

algorithm are compared. In both of the studies, random approach achieves lower code coverage compared to the

genetic algorithm in some cases. Because random approach lakes the ability to generate a specific combination

of input values for testing the program and in a triangle classification problem it is due to predicate branch,

where a triangle is classified as Equilateral. The other possibilities could be due to inconsistency in the random

approach that it could not be able to generate other values like, boundary values both upper and lower bound,

equal pair of values for each variables, some combination of these pairs, and other values. The initial test cases

depicted in Figure 5, are generated using generatedata.com tool, which is free data generation tool for database

testing and software testing. The tool is widely used by many vendors for the testing of data base and software

applications. In this study, the range of each input values (A, B, and C) is set as (-110 to +110) and initially 100

rows of different combinations of each values are generated. It is clearly visible that the generated test suite is

inefficient to achieve the specified adequacy Criteria’s due to the absence of effective test cases and it contains a

considerable number of redundant test cases which satisfied the same requirement multiple times. So, in order

to enhance the efficiency of the test suite, the proposed technique in Figure 6, will seed all the remaining

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 101 | Page

effective test cases automatically. The different number of effective test cases include (10,10,10), (1,2,3),

(3,2,1),(1,3,2),(2,3,1),(0,0,0),(-1,-2,-3) and many more.Thus due to the addition of more effective test cases

through our proposed approach, 100% branch coverage and independent path coverage is realized for both the

programs and is shown in Figure 7 and Figure 9. From the Figure 7 and Figure 9, it is also observed that in

addition to the specified adequacy criteria it also satisfied the other adequacy criteria’s. To address the

redundancy issue form the test suite, we have applied many clustering algorithms like K-Means and

Hierarchical approach in our previous studies [45] [46]. In [44], the code coverage performance of GA and

Random approach is shown in Figure 11. After the implementation of our proposed technique, the code

coverage outperformed GA and the results are shown in Figure 12. The size of the test suite compared to the

study in [43] is very small and will take less time to execute the whole test suite. The comparison of the size of

test suites generated with our proposed approach and approach followed in [43] is shown in Figure 13. The

reason for the size reduction is that, all the traditional random approaches generate multiple populations of test

cases in search of few effective test cases but with our proposed approach these test cases are effectively seeded

without a need to generate more populations. The future scope of this study will be the application of our

proposed approach to all of the remaining programs in study [44] and its comparison with other search based

techniques.

import java.util.Scanner;

public class Testing {

 public static void main(String[] args) {

 int A, B, C;

 System.out.println ("Enter three integers ");

 Scanner s = new Scanner (System. in);

 A = S.nextInt (); B = S.nextInt (); C = S.nextInt ();

 int D= (B*B)-4*(A*C);

 s.close();

 if (A==0)

 System.out.println ("NOT QAUDRATIC");

 else if (D>0)

 System.out.println ("ROOTS ARE REAL AND UNEQUAL.");

 else if (D==0)

 System.out.println ("EQUAL ROOTS.");

 else System.out.println("ROOTS ARE COMPLEX.");

 } }

Figure 1 Quadratic Triangle.

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 102 | Page

import java.util.Scanner;

public class Traingle {

 public static void main(String[] args) {

 Scanner S =new Scanner(System. in);

 int A,B,C;

 System.out.println ("ENTER THREE SIDES OF TRIANGLE");

 A= S.nextInt (); B= S.nextInt (); C= S.nextInt ();

int triang;

 if (A <= 0 || B <= 0 || C <= 0)

 System.out.println ("illegal Input Values for sides");

 Else { triang = 0;

 if (A == B) triang = triang + 1;

 if (A == C) triang = triang + 2;

 if (B == C) triang = triang + 3;

 if (triang == 0)

 if (A + B <= C ||B + C <= A ||A + C <= B)

 {

 System.out.println ("illegal Not a traingle");

 }

else

 System.out.println ("Scanlene Traingle");

 if (triang > 3)

 System.out.println ("equilateral Traingle");

 else if (triang == 1 && A + B > C)

 System.out.println ("isosceles");

 else if (triang == 2 && A + C > B)

 System.out.println ("isosceles");

 else if (triang == 3 && ((B + C) > A))

 System.out.println ("isosceles");

 }

}}

Figure 2 Triangle Classification Problem

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 103 | Page

Figure 3. Source Code Graph and Basic Block Graph of the Program shown in Figure 1

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 104 | Page

Figure 4. Source Code Graph and Basic Block Graph of Program Shown in Figure.2

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 105 | Page

T51 19 17 28

T52 21 18 22

T53 -5 63 73

T54 85 48 86

T55 45 4 3

T56 89 73 85

T57 108 38 105

T58 66 1 21

T59 104 75 44

T60 84 -4 27

T61 82 43 70

T62 58 53 -1

T63 10 -2 83

T64 52 109 38

T65 0 51 11

T66 108 42 58

T67 -7 14 92

T68 -8 104 68

T69 85 -3 7

T70 101 104 26

T71 23 91 15

T72 -9 26 -2

T73 -9 3 43

T74 6 88 60

T75 20 104 99

T76 37 60 62

T77 12 60 67

T78 102 6 73

T79 29 32 -3

T80 32 50 104

T81 22 12 84

T82 -1 49 54

T83 102 -9 75

T84 53 90 57

T85 109 29 40

T86 13 1 74

T87 81 16 73

T88 94 2 -2

T89 16 5 43

T90 62 52 82

T91 1 76 106

T92 52 80 32

T93 77 43 36

T94 45 86 21

T95 32 64 70

T96 48 84 3

T97 63 88 81

T98 100 18 32

T99 73 49 83

T100 36 79 21

Figure 5. Randomly Generated Test Cases using Generatedata.com tool for Both Programs in Figure 1 & Figure

2.

Test Case ID A B C
T1 82 36 86

T2 109 15 68

T3 37 -5 77

T4 99 45 104

T5 96 86 15

T6 4 82 107

T7 31 27 71

T8 11 -7 74

T9 -6 15 32

T10 42 10 83

T11 24 35 0

T12 -2 60 40

T13 80 31 84

T14 -8 64 31

T15 105 51 21

T16 108 8 92

T17 31 110 105

T18 109 79 13

T19 104 43 55

T20 92 31 7

T21 50 73 21

T22 50 63 83

T23 54 9 84

T24 55 42 -4

T25 52 -7 100

T26 47 105 6

T27 75 13 -9

T28 81 104 66

T29 4 50 66

T30 16 64 2

T31 27 36 81

T32 41 7 45

T33 69 4 70

T34 -1 -6 46

T35 71 83 71

T36 97 60 79

T37 32 17 105

T38 66 23 7

T39 45 -5 64

T40 35 64 63

T41 16 93 49

T42 2 80 95

T43 31 49 97

T44 39 0 -9

T45 16 -7 94

T46 13 62 -5

T47 44 77 61

T48 76 0 58

T49 19 38 10

T50 58 23 75

T51 19 17 28

T52 21 18 22

T53 -5 63 73

T54 85 48 86

T55 45 4 3

T56 89 73 85

T57 108 38 105

T58 66 1 21

T59 104 75 44

T60 84 -4 27

T61 82 43 70

T62 58 53 -1

T63 10 -2 83

T64 52 109 38

T65 0 51 11

T66 108 42 58

T67 -7 14 92

T68 -8 104 68

T69 85 -3 7

T70 101 104 26

T71 23 91 15

T72 -9 26 -2

T73 -9 3 43

T74 6 88 60

T75 20 104 99

T76 37 60 62

T77 12 60 67

T78 102 6 73

T79 29 32 -3

T80 32 50 104

T81 22 12 84

T82 -1 49 54

T83 102 -9 75

T84 53 90 57

T85 109 29 40

T86 13 1 74

T87 81 16 73

T88 94 2 -2

T89 16 5 43

T90 62 52 82

T91 1 76 106

T92 52 80 32

T93 77 43 36

T94 45 86 21

T95 32 64 70

T96 48 84 3

T97 63 88 81

T98 100 18 32

T99 73 49 83

T100 36 79 21

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 106 | Page

Figure 6. Proposed Approach

Figure 7. Code Coverage of the individual components of Fig.3

Figure 8. Code Coverage (Light Green area) of the Whole Unit

Input: {CFG, Test Adequacy Criteria and TS (Test cases generated with

Generatedata.com tool) of unit under Test}

Begin

 Execute (the Unit under Test with TS)

 If (TS is Adequate and Adequacy Criteria Met)

 Stop and Display The Coverage Information of The Unit Under Test.

 Else

 Update (TS) with More Effective set of test Cases.

 End

 Update (Ts)

 STC = {All those combination of test cases not generated by the tool}

 TS= Update TS with STC and Return TS

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 107 | Page

Figure 9. Code Coverage of the individual Components of Figure 4

Figure 10. Code Coverage of the whole Unit.

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 108 | Page

Figure 13. Test Case size Comparison with test cases in [43] and our technique.

Conclusion and future Study

Test data generation activity in software testing is the process of identifying the program inputs which

satisfy the required adequacy criteria. To automatically generate such a potent set of test cases in order to fulfill

the adequacy criteria is an intellectually demanding and a very difficult task and it strongly impacts its

efficiency and effectiveness. This paper investigated the most prominent techniques used in automatic test data

generation including symbolic execution, random and search based. In this study it is found that random

approach is a simple process of test data generation and inexpensive compared to symbolic execution and

Genetic algorithm. Random approach requires a random number generator and a small amount of software

support. It was also found that there are also disadvantages in applying random testing. First, there is no

assurance that full coverage can be attained and secondly, it is considered expensive in terms of human

resources and it may mean examining the output from thousands of tests. So in order to combat the issues in

random approach, we propose an efficient approach in which, we have seeded the test suite with those specific

test cases which are not generated by our random generator tool. The future scope of the study will be the

application of proposed approach to a large collection of programs and its comparison to other search based

techniques.

References
[1]. Bertolino, A., 2007. Software testing research: achievements, challenges, dreams. In: Proceedings of the 1st Workshop on Future of

Software Engineering (FOSE’07) at ICSE 2007, pp. 85–103.

[2]. Pezzè, M., Young, M., Software Testing and Analysis, Process, Principles and, Techniques. Wiley. 2007.

[3]. Zhu, H., Hall, P.A.V., May, J.H.R., 1997. Software unit test coverage and adequacy. ACM Computing Surveys 29 (4), 366–427.
[4]. Korel, B. (1990). Automated software test data generation. IEEE Transactions on software engineering, 16(8), 870-879

[5]. Korel, B. 1992. Dynamic method for software test data and generation, J. of Software Testing, Verification, and Reliability 2: 203–

213.
[6]. McCabe, T.. Structured Testing. Washington, DC, US Government Printing Office. 1982.

[7]. Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. Normalized restricted random testing. In Reliable Software Technologies

Ada-Europe 2003, pages 368–381. Springer, 2003.
[8]. J.C., 1975. A new approach to program testing. In: Programming Methodology. LNCS Vol. 23, pp. 278-290.

[9]. Kenneth V. Hanford. Automatic generation of test cases. IBM Systems Journal, 9(4):242–257, 1970.

[10]. Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. ARTOO: Adaptive random testing for object-oriented software.
In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages 71–80. IEEE, 2008.

[11] Hamlet D. and Taylor R.: Partition testing does not inspire Confidence, IEEE Trans. On Software Engineering, Vol. 16, No. 12, pp.

1402-1411, December 1990
[12] Duran J. W. and Ntafos S. C.: 'An Evaluation of Random Testing', IEEE Transactions on Software Engineering, Vol. SE-10, No. 4,

pp. 438-444, July 1984

An Efficient Test Data Generation Approach for Unit Testing

DOI: 10.9790/0661-18040597107 www.iosrjournals.org 109 | Page

[13] Myers G.J. The Art of Software Testing, John Wiley and Sons Inc, 1979.

[14] Deason W. H., Brown D. B., Chang K.H. and Cross J. H.: A rule-based software test data generator, IEEE Transactions on
Knowledge and Data Engineering, Vol. 3, No. 1, pp.108-117, March 1991

[15] DeMillo R. A., Lipton R. J. and Sayward F. G.: 'Hints on test data selection: Help for the practicing programmer', IEEE Trans. on

Computer, Vol. 11, Part 4, pp. 34-41, April 1978
[16] Bertolino, A. An overview of automated software testing, Journal Systems Software, Vol. 15, pp. 133-138, 1991

[17] King, J.C., 1975. A new approach to program testing. In: Programming Methodology. LNCS, Vol. 23, pp. 278-290.

[18] Cadar, C., Dunbar, D., Engler, D.R., 2008. KLEE: Unassisted and automatic generation of high-coverage tests for complex
systems programs. In: Proceedings of the Symposium on Operating Systems Design and Implementation, pp. 209–224.

[19] Godefroid, P., Levin, M.Y., Molnar, D.A., 2008. Automated white box fuzz testing. In: Proceedings of the 15th Annual Network

and Distributed System Security Symposium (NDSS’08).
[20] Khurshid, S., Pasareanu, C., Visser, W., 2003. Generalized symbolic execution for model checking and testing. In: Proceedings of

the 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), pp. 553–

568.
[21] Brumley, D., Poosankam, P., Song, D.X., 0002, J.Z., 2008. Automatic patch-based exploit generation is possible: Techniques and

implications. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 143–157.

[22] Santelices, R.A., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.,2008. Test-suite augmentation for
evolving software. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering

(ASE’08), pp. 218–227.

[23] Grechanik, M., Csallner, C., Fu, C., Xie, Q., 2010. Is data privacy always good for software testing? In: Proceedings of the IEEE
21st International Symposium on Software Reliability Engineering (ISSRE’10), pp. 368–377.

[24] Pasareanu, C.S., Rungta, N., 2010. Symbolic Path Finder: Symbolic execution of Java byte code. In: Proceedings of the 25th

IEEE/ACM International Conference on Automated Software Engineering (ASE’10), pp. 179–180.
[25] Sen, K., Agha, G., 2006. CUTE and jCUTE: concolic unit testing and explicit path model-checking tools. In: Proceedings of the

18th International Conference on Computer Aided Verification. (CAV’06), pp. 419–423.

[26] Jayaraman, K., Harvison, D., Ganeshan, V., Kiezun, A., 2009. A concolic white box fuzzer for Java. In: Proceedings of the 1st
NASA Formal Methods Symposium, pp. 121–125.

[27] Kähkönen, K., Launiainen, T., Saarikivi, O., Kauttio, J., Heljanko, K., Niemelä, I., 2011. LCT: an open source concolic testing tool

for Java programs. In: Proceedings of the 6th Workshop on Byte code Semantics, Verification, Analysis and Transformation
(Bycode’11), pp. 75–80.

[28] Sen, K., Marinov, D., Agha, G., 2005. CUTE: A concolic unit testing engine for C. In: Proceedings of the 2005 Joint meeting of

the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

pp. 263–272.

[29] Cadar, C., Dunbar, D., Engler, D.R., 2008. KLEE: Unassisted and automatic generation of high-coverage tests for complex

systems programs. In: Proceedings of the Symposium on Operating Systems Design and Implementation, pp. 209–224.
[30] Chipounov, V., Kuznetsov, V., Candea, G., 2011. S2e: a platform for in-vivo multi-path analysis of software systems. In:

Proceedings of the 16th International Con- ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’11), pp. 265–278.

[31] Tillmann, N., de Halleux, J., 2008. Pex-White box test generation for .NET, In: Proceedings of the 2nd International Conference

on Tests and Proofs (TAP’08), pp. 134–153.
 [32] W. Miller and D. Spooner, Automatic generation of floating point test data, IEEE Transactions on Software Engineering, vol. 2, no.

3, pp. 223–226, 1976.

 [33] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios, “Application of genetic algorithms to software
testing (Application des algorithmes g´en´etiques au test des logiciels),” in 5th International Conference on Software Engineering

and its Applications, Toulouse, France, 1992, pp. 625–636.

[34] Oliver Bühler , Joachim Wegener, Evolutionary functional testing, Computers and Operations Research, v.35 n.10, p.3144-3160,
October, 2008.

[35] L. C. Briand, J. Feng, and Y. Labiche, Using genetic algorithms and coupling measures to devise optimal integration test orders, in

14th IEEE Software Engineering and Knowledge Engineering (SEKE), Ischia, Italy, 2002, pp. 43–50.

[36] Y. Jia and M. Harman, Constructing subtle faults using higher order mutation testing, in 8th International Working Conference on

Source Code Analysis and Manipulation (SCAM 2008. Beijing, China: IEEE Computer Society, 2008.

[37] Z. Li, M. Harman, and R. M. Hierons, Search algorithms for regression test case prioritization, vol. 33, no. 4, pp. 225–237, 2007.
[38] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, Time aware test suite prioritization, in International Symposium on

Software Testing and Analysis (ISSTA 06). Portland, Maine, USA: ACM Press, 2006, pp. 1–12.

[39] S. Yoo and M. Harman, Pareto efficient multi-objective test case selection, in International Symposium on Software Testing and
Analysis (ISSTA’07). ACM Press, July 2007, pp.140–150.

[40] R. P. Pargas, M. J. Harrold and R. R. Peck, Test data generation using genetic algorithms, Software Testing Verification and

Reliability, Vol. 9, pp. 263-282, 1999.
[41] C. C. Michael, G. E. McGraw and M. A. Schatz, Generating software test data by evolution, IEEE Transactions on Software

Engineering, Vol. 27, No.12, pp. 1085-1110, 2001.

[42] Baudry B., Fleurey F., Le Traon Y. and Jézéquel J.M. (2005), An Original Approach for Automatic Test Cases Optimization: A
Bacteriologic Algorithm’. I.E.E.E. Software, Vol. 22, No. 2, pp.76-82

[43] H.-H. Sthamer, The automatic generation of software test data using genetic algorithms, PhD Thesis, University of Glamorgan,

Pontyprid, Wales, Great Britain, 1996.
[44] Michael, Christoph C., et al. Genetic algorithms for dynamic test data generation. Automated Software Engineering, 1997.

Proceedings., 12th IEEE International Conference. IEEE, 1997.

[45] FA Khan, AK Gupta, and DJ Bora. An Efficient Technique to Test Suite Minimization using Hierarchical Clustering Approach.
IJESE, Volume-3 Issue-11, September 2015.

[46] FA Khan, AK Gupta, and DJ Bora. Profiling of Test Cases with Clustering Methodology, International Journal of Computer

Applications, 106.14 (2014).

