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Abstract: The present paper considers the sliding mode control (SMC)design problem for nonlinear uncertain 

descriptor systems. The goal is todesign an adaptivesliding mode controllerto drive the trajectories of the 

resulting closed-loop system onto a prescribed sliding surface and maintained there for all subsequent times. 

The appealing attributes of this approach include: (i) the closed-loop system exhibits a strong robustness 

against nonlinear dynamics and (ii) the control scheme enjoys the chattering-free characteristic. An example is 

provided to illustrate our control strategy. 
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I. Introduction 
Descriptor systems have been one of the major research fields of control community as a consequence 

of their flexibility for modelling real systems with constraints. They are convenient and natural representations 

to properly describe the behavior of many practical systems with both dynamic and static constraints. There 

have been a lot of work related to the stability, stabilization problems for descriptor systems; see [1,2,3,9,12].  

On the other hand, as one of the common methods, (SMC) has become a very effective approach in control 

engineering. It has proved to be an effective tool for coping with model uncertainties and non-linearities by 

taking advantage of the concepts of sliding mode surface design and equivalent control. During the past 

decades, various SMC approaches have been successfully applied for solving many practical control problems 

(see e.g. [1,4,5,8,9]). However, due to the physical limitation, the control input seems to have a non-linear 

character, such as sectors, saturation, dead-zone, and so on. Naturally originate from actuators in system 

realization, the non-linearities may deteriorate the system’s stability and performances. So, their effects cannot 

be ignored in analysis of realization. Recently, attention has been paid to input nonlinearity [6,7], but few works 

has been undertaken on SMC for descriptor systems subjected to input nonlinearity.  

In this paper, a novel robust (SMC) methodologyfor a class of uncertain nonlinear systems with mismatched 

uncertainties, and input nonlinearity, is addressed. The proposed results in this paper have the following 

advantages:  

 Proposition of a new sliding function and establishment of sufficient conditions to ensure the robust 

admissibility of the corresponding sliding mode, 

 Design of a sliding mode controller for the reaching motion such that all trajectories of the resulting closed-

loop system converge onto a prescribed sliding surface and maintain there for all subsequent times.  

This paper is organized as follows. System description and preliminaries are provided in Section 2. 

Section 3 presents our design scheme.The simulation results of the proposed approach are detailed in in Section 

4. Section 5 draws conclusions of thestudy. 

Notations Throughout this paper, X ∈ ℝndenotes the n-dimensional Euclidean space, while X ∈ ℝn×𝑚  

refers to the set of all 𝑛 × 𝑚 real matrices. The notation 𝑋 > 0 (respectively, 𝑋 ≥ 0)   means that the matrix 𝑋 is 

real symmetric positive definite (respectively, positive semi-definite). The symbol (*) stands for matrix block 

induced by symmetry, 𝑠𝑦𝑚(𝑋) stands for 𝑋 + 𝑋𝑇 . Matrices are assumed compatible for algebraic operations if 

their dimensions are not explicitly stated. If not explicitly stated, all matrices are assumed to have compatible 

dimensions for algebraic operations. 

 

II. System description and preliminaries 
We consider a class of nonlinear descriptor system described by:  

 𝐸𝑥 (𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝜙(𝑢) + 𝑓(𝑥(𝑡))) (1) 

where𝑥(𝑡) ∈ 𝑅𝑛  is the state, 𝑢 ∈ 𝑅𝑚  is the control input and 𝜙(𝑢) is a nonlinear function of 𝑢. 

𝑓(𝑡, 𝑥(𝑡))represents the system nonlinearity and any model uncertainties in the system including external 

disturbances. Matrix 𝐸 ∈ ℝn×n  may be singular with 𝑟𝑎𝑛𝑘(𝐸) = 𝑞 ≤ 𝑛. 𝐴(𝑡) = 𝐴 + Δ𝐴(𝑡)is time-varying 

system matrix. Matrices 𝐴, 𝐵 are constant with appropriate dimensions. Assume that uncertainties Δ𝐴(𝑡) is of 

the form Δ𝐴(𝑡) = 𝑀𝐹(𝑡)𝑁. where𝑀 and 𝑁 are known real constant matrices and 𝐹(𝑡) is an unknown time-

varying matrix function satisfying 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼. In addition, 𝜙(𝑢) = [𝜙1(𝑢1),𝜙2(𝑢2),⋯ ,𝜙𝑚 (𝑢𝑚 )]𝑇 , 

𝜙(0) = 0 is the nonlinear input vector.  
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Assumptions 

1. Matched nonlinearity 𝑓(𝑡, 𝑥(𝑡)) satisfies the inequality  

 𝑓(𝑡, 𝑥(𝑡)) ≤ 𝜂(𝑡, 𝑥(𝑡)) (2) 

where𝜂(𝑡, 𝑥(𝑡)) is a positive known vector-valued function.  

2. Nonlinear input 𝜙(𝑢) applied to the system satisfies 𝜙(0) = 0 and  

 𝑢𝑇𝜙(𝑢) ≥ 𝛼𝑢𝑇𝑢 (3) 

where𝛼 is a positive constant.  

Definition 1. [11] System 𝐸𝑥 = 𝐴𝑥(𝑡) (or the pair (𝐸,𝐴)) is said to be:  

3. regular if 𝑑𝑒𝑡(𝑠𝐸 − 𝐴) ≠ 0.  

4. impulse free if deg det( 𝑠𝐸 − 𝐴) = 𝑟𝑎𝑛𝑘(𝐸).  

5. admissible if it is regular, impulse-free and stable.  

Lemma 1.[10] Let 𝑀 and 𝑁 be real matrices of appropriate dimensions. Then, for any Δ matrix satisfying 

Δ𝑇Δ ≤ 𝐼 and scalar 𝜀 > 0,  

 𝑠𝑦𝑚(𝑀Δ𝑁) ≤ 𝜀𝑀𝑀𝑇 + 𝜀−1𝑁𝑇𝑁 (4) 

 

III. Main results 
In this section, an appropriate integral switching surface is designed such that the sliding mode 

dynamics restricted to the surface is admissible. Furthermore, a sliding mode control law is synthesized to 

guarantee that the system state trajectories are globally driven onto the predefined sliding surface and 

maintained them there for all subsequent time 

 

1. Integral sliding mode surface 

Define the following switching function 

 𝑠(𝑡) = 𝔾𝐸𝑥(𝑡)− 𝔾(𝐸𝑥0 +  (
𝑡

0

𝐴 + 𝐵𝐾)𝑥(𝜃)𝑑𝜃) (5) 

and𝐾 ∈ ℝm×n  is a real matrix to be designed and 𝔾 ∈ ℝm×n  is a constant matrix satisfying 𝔾𝐵 is nonsingular.  

According to the sliding mode control theory, when the system trajectories reach onto the switching surface, we 

have 𝑠 (𝑡) = 0. Then the equivalent control law can be obtained as follows:  

 𝜙𝑒 𝑢 = −𝐾𝑥(𝑡)− 𝑓(𝑥(𝑡)) (6) 

Substituting (6) into (1), we obtain the following sliding mode dynamics:  

 𝐸𝑥 = 𝐴  𝑡 𝑥 𝑡  (7) 

where 

 𝐴  𝑡 = 𝐴 𝑡 + 𝐵𝐾, 𝔾 = 𝐼 − 𝐵(𝔾𝐵)−1𝔾, 𝑀 = 𝔾𝑀, (8) 

 

2. sliding mode dynamics analysis 
In this subsection, we will develop a sufficient condition that ensures for sliding mode dynamics 7 to be robustly 

admissible.  

Theorem 1.  The sliding mode dynamics of (7) is admissible, if there exist matrices𝑆, 𝑃 > 0, and 𝐺𝑗 , (𝑗 = 1,2) 

and a scalar 𝜀 > 0 such that the following inequality holds :  

  
𝑠𝑦𝑚(𝐺1𝐴 ) + 𝜀𝑁𝑇𝑁 𝑃 + 𝑆𝑅𝑇 − 𝐺1 + 𝐴 𝑇𝐺2

𝑇 𝐺1𝑀 

−𝑠𝑦𝑚(𝐺2) 𝐺2𝑀 

∗ −𝜀𝐼

 < 0 (9) 

 

Proof. The proof of this theorem is divided into two parts. The first one is concerned with the 

regularity and the impulse-free characterizations, and the second one treats the stability property of system (7).  

First we consider the nominal case of (7) (that isΔ𝐴 = 0 ).  

Since 𝑟𝑎𝑛𝑘(𝐸) = 𝑞 ≤ 𝑛, there always exist two nonsingular matrices 𝕄 and ℕ ∈ ℝ𝑛×𝑛  such that  

 𝔼 = 𝕄𝐸ℕ =  
𝐼𝑞 0

0 0
  (10) 

Then 𝑅 can be characterised as 𝑅 = 𝕄𝑇  
0
Φ 
 , where Φ ∈ ℝ(𝑛−𝑞)×(𝑛−𝑞) is any non-singular matrix.  

We also define  

 𝐴 = 𝕄𝐴 ℕ =  
𝐴 11 𝐴 12

𝐴 21 𝐴 22

 , 𝑆 = ℕ𝑇𝑆,𝑃 =  
𝑃 11 𝑃 12

𝑃 21 𝑃 22

  (11) 

 

Pre- and post-multiplying (9) by [𝐼𝐴 𝑇0] and its transpose, respectively, we can obtain easily that 

 𝑠𝑦𝑚(𝑆𝑅𝑇𝐴 + 𝑃𝐴 ) < 0 (12) 

Pre- and post-multiplying (12) by ℕ𝑇and ℕ, respectively, and then using expressions 10 and 11 yields  
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 𝑠𝑦𝑚(𝑆 21Φ 
𝑇
𝐴 22) < 0 (13) 

and𝐴 22  is thus non-singular. So, descriptor system (7) is regular and impulse free.  

In the following, we will prove that system (7) is asymptotically stable. For this purpose, we construct a 

candidate Lyapunov function as:  

 𝑽(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝐸𝑥(𝑡) (14) 

Evaluating the derivative of 𝑽(𝑥(𝑡)) along the solutions of system (7), it yields  

 𝑽 (𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝐸𝑥 (𝑡) (15) 

 

Defining 𝜉(𝑡) = [𝑥𝑇(𝑡) 𝑥 𝑇(𝑡)𝐸𝑇]𝑇  

From (7), the following equation holds for any matrices 𝐺𝑗 , 𝑗 = 1,2 with the appropriate dimensions  

2𝜉𝑇(𝑡)[𝐺1
𝑇𝐺2

𝑇]𝑇[−𝐸𝑥 (𝑡) + 𝐴 𝑥(𝑡)] = 0                                         (16) 
 

Furthermore, noting𝐸𝑇𝑅 = 0, we can deduce that  

 2𝑥 𝑇(𝑡)𝐸𝑇𝑅𝑆𝑇𝑥(𝑡) = 0 (17) 

Combining 18-20 yields  

 𝑽 (𝑥(𝑡)) ≤ 𝜉𝑇(𝑡)Φ𝜉(𝑡) (18) 

where 

 Φ =  
𝑠𝑦𝑚(𝐺1𝐴 ) 𝑃 + 𝑆𝑅𝑇 − 𝐺1 + 𝐴 𝑇𝐺2

𝑇

−𝑠𝑦𝑚(𝐺2)
 < 0 (19) 

Hence, 𝑽 (𝑥(𝑡)) ≤ −𝜆 ∥ 𝜉(𝑡) ∥2 which implies that nominal singular system (7) is asymptotically stable.  

Consider now the uncertain case. By following the same procedure as used above it is easy to verify that  

 Φ + 𝑠𝑦𝑚([𝐺1𝑇𝐺2
𝑇]𝑇𝑀 𝐹(𝑡)𝑁) < 0 (20) 

Then, according to Lemma 1, inequality (9) holds using the Schur complement. This completes the proof. 

 

3. sliding mode dynamics synthesis 

Here, our goal is to design gains 𝐾 in (5) such that sliding mode dynamics (7) is robustly admissible.  

Based on Theorem 1, we suggest the following result:  

Theorem 2.  Given 𝜆 a positive scalar. The sliding mode dynamics of (7) is admissible, if there exist matrices 𝑆, 

𝑃 > 0, 𝑌 and 𝑋 and positive scalars𝜀and 𝜖such that the following inequalities hold :  

 

 

 
 
 

𝑠𝑦𝑚(𝐴𝑋 + 𝐵𝑌) 𝑃 − 𝑋 + 𝜆(𝐴 + 𝐵𝑌)𝑇 𝑀 𝑋𝑁 𝑆 𝑅𝑇 0

−𝜆𝑠𝑦𝑚(𝑋) 𝜆𝑀 𝜆𝑋𝑁 0 𝑋

∗ −𝜀𝐼 0 0 0
∗ ∗ −𝜀𝐼 0 0
∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ −𝜖𝐼 

 
 
 

< 0 (21) 

Proof: Under the conditions of Theorem 1, a feasible solution satisfies condition– 𝑠𝑦𝑚 𝐺2 < 0 , which implies 

that, 𝐺2 is nonsingular. Let 𝐺2 = 𝜆𝐺1and 𝑋 = 𝐺1
−1 .  Checking a congruence transformation to (9) by 

𝑑𝑖𝑎𝑔(𝑋,𝑋, 𝐼) and using the fact that  

 2𝑠𝑦𝑚( 
𝑋𝑇𝑆

0
0

  0 𝑅𝑇𝑋 0 ) < 𝜖  
𝑋𝑇𝑆

0
0

  
𝑋𝑇𝑆

0
0

 + 𝜖−1  
0
𝑋𝑇𝑅

0
 

𝑇

 
0
𝑋𝑇𝑅

0
 

𝑇

 (22) 

 

inequality (24) holds using Schur complement. 

 

4. SMC law synthesis 

After establishing the appropriate switching surface (5), we will focus on designing a sliding mode 

controller to drive the system trajectories onto the sliding mode 𝑠(𝑡) = 0 even though uncertain and input 

nonlinearity are presented. To achieve the control objective, the input 𝑢(𝑡) is designed as follows:  

 𝑢(𝑡) = −𝛼 (𝑡)(Ψ + 𝜒)
𝑠(𝑡)

∥ 𝑠(𝑡) ∥
 (23) 

whereΨ 

 Ψ =∥ (𝔾𝐵)−1𝔾 ∥∥ 𝑀 ∥∥ 𝑁 ∥∥ 𝑥(𝑡) ∥ +∥ 𝐾𝑥(𝑡) ∥ +𝜂(𝑡, 𝑥(𝑡)) (24) 

and𝜒 > 0, is a small constant.  

Next, in the following theorem, it is shown that the sliding motion will be driven onto the specified switching 

surface 𝑠(𝑡) = 0 and be maintained there subsequently.  

Theorem 1.  If the control input 𝑢(𝑡) is designed as (23)-(24), then the trajectory of the system (1) converges to 

the sliding surface 𝑠(𝑡) = 0.  
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Proof.  

Consider the following Lyapunov function:  

 𝑉𝑠(𝑡) =
1

2
𝑠𝑇(𝑡)(𝔾𝐵)−1𝑠(𝑡) +

1

2𝜅
𝛼 2(𝑡) (25) 

where 𝛼 (𝑡) = 𝛼 −1(𝑡)− 𝛼.  

Without loss of generality, we can choose 𝔾 = 𝐵𝑇𝑋0, where 𝑋0 is a positive definite matrix. So 𝔾𝐵 = 𝐵𝑇𝑋0𝐵 is 

nonsingular.  

According to ?, we get  

 𝑠 (𝑡) = 𝔾((Δ𝐴(𝑡)− 𝐵𝐾)𝑥(𝑡) + 𝐵(𝜙(𝑢(𝑡)) + 𝑓(𝑥(𝑡)))) (26) 

Thus, taking the derivative of 𝑉𝑠(𝑡) and considering the above equation, we have  

 𝑉 𝑠(𝑡) = 𝑠𝑇(𝑡)(𝔾𝐵)−1𝑠 (𝑡) −
1

𝜅
𝛼 (𝑡)

𝛼  (𝑡)

𝛼 2(𝑡)
 (27) 

= 𝑠𝑇(𝑡)((𝔾𝐵)−1𝔾(Δ𝐴(𝑡)− 𝐵𝐾)𝑥(𝑡) + 𝜙(𝑢(𝑡)) + 𝑓(𝑥(𝑡))) 

−𝛼 (𝑡)𝛼 (𝑡)Ψ ∥ 𝑠(𝑡) ∥ 
≤ (1 − 𝛼 (𝑡)𝛼 (𝑡))Ψ ∥ 𝑠(𝑡) ∥ +𝑠𝑇(𝑡)𝜙(𝑢(𝑡)) 

Using (23) and assumption 3, it can be derived that  

 
𝑢𝑇(𝑡)𝜙(𝑢) = −𝛼 (𝑡)(Ψ + 𝜒)

𝑠𝑇(𝑡)

∥ 𝑠(𝑡) ∥
𝜙(𝑢(𝑡)) ≥ 𝛼𝑢𝑇(𝑡)𝑢(𝑡)

= 𝛼𝛼 2(𝑡)(Ψ + 𝜒)2 

(28) 

Since (Ψ + 𝜒) > 0, we get  

 𝑠𝑇(𝑡)𝜙(𝑢(𝑡)) ≤ −𝛼𝛼 (𝑡)(Ψ + 𝜒) ∥ 𝑠(𝑡) ∥ (29) 

Substituting (29) into (27), we obtain  

 𝑉 𝑠(𝑡) ≤ ((1 − 𝛼 (𝑡)𝛼 (𝑡) − 𝛼𝛼 (𝑡))(Ψ + 𝜒)) ∥ 𝑠(𝑡) ∥ (30) 

Noting that 𝛼𝛼 (𝑡) + 𝛼 (𝑡)𝛼 (𝑡) = 1and 𝛼 (𝑡) > 0, it is easy to verify that  

 𝑉 𝑠(𝑡) < 0, ∀𝑡 > 0 (31) 

This means the system trajectories converge to the predefined sliding surface and are restricted to the surface for 

all subsequent time. This completing the proof. 

 

IV. Simulation Results 
Now, we demonstrate the applicability of the main results by means of a simulation example.  

Example 1:  

Consider the switched systems (1) with the following parameters:  

𝐸 =  
1 0 0
0 1 0
0 0 0

 ,𝐴 =  
−2.7 0 0.3
−0.2 −3 0
0.11 1.74 −1

 ,𝐵 =  
1
0
0
 , 

 

Assume that the uncertain matrices are as follows:  

𝑀 =  0.5 −0.5 0.5 , 𝑁 =  1 1 1 . 
Our aim is to design an SMC in the form of 2 such that the sliding mode dynamics is robustly admissible. In the 

simulation, the design parameters are chosen as  

𝔾 =  1 1 1  
By solving LMI (?) we can obtain a feasible solution with the following parameters:  

𝑃 =  
0.9714 −0.0244   −0.0315

−0.0244       0.8634 −0.0708
−0.0315 −0.0708 0.9090

 ,, 

The associate controller gains are  

 𝐾 =  −0.7300    0.4471    0.6077   

The existence of a feasible solution shows that there exists a desire sliding surface in (5) such that the resulting 

sliding mode dynamics in (7) is admissible.  

The remaining task is to design a sliding mode controller such that the system trajectories can be driven onto the 

predefined sliding surface and maintained there for all subsequent time. For simulation purposes, we uncertain 

matrix function 𝐹(𝑡) = 0.8 + 0.2𝑠𝑖𝑛(𝑡) and  

𝑓 𝑥 = 1.7x1
2 cos 𝑥2 + 0.5 |𝑥1𝑥3|, 𝜙(𝑢) = (0.5 + 0.3cos(𝑢))𝑢,  

With 𝜒 = 0.5and 𝜅 = 0.01, the adaptive SMC law can be designed according to (2)-(?).  

To prevent the control signal from chattering, we replace 
𝑠(𝑡)

∥𝑠(𝑡)∥
with

𝑠(𝑡)

0.05+∥𝑠(𝑡)∥
.  

The simulation results depicted in figure (1) show that:  
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Figure 1: Simulation results 

 

for initial condition 𝑥0(𝑡) = [−1, 1, 1.5]𝑇 , Figures (1a)-(1d) depict respectively, the system state 

trajectories, the control input, the resulting sliding surface and the adaptive law when the SMC is applied. We 

observe that the system is stable despite the presence of actuator nonlinearity, parameter uncertainties and 

external disturbances. The proposed scheme can obtain better convergence performance by driving the system 

trajectories to the specified sliding surface asymptotically instead of to some neighbor of the surface.  

 

V. Conclusion 
A novel adaptive sliding model controller is proposed in this paper for stabilizing uncertain nonlinear 

descriptor systems nonlinear input containing sector nonlinearities. An integral sliding function is proposed and 

a sufficient condition is derived to guarantee that the sliding mode dynamics is robustly admissible. Moreover, 

an adaptive (SMC) law is designed such that the trajectories of the resulting closed-loop system can be driven 

onto a prescribed sliding surface and maintained there for all subsequent time. Finally, a simulation example is 

presented to demonstrate the effectiveness of the proposed method. The proposed controller shows that has the 

ability to eliminate the model uncertainties and to reduce the chattering on the sliding surface 
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