
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 2, Ver. I (Mar.-Apr. 2017), PP 57-64

www.iosrjournals.org

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 57 | Page

A Development Model for Predicting Software Reliability Using Ant

Colony Optimization Technique for Change Oriented

Software Process

1
D. Hema Latha ,

2
Prof. P. Premchand

1
Research Scholar, Dept of Computer Science, Rayalaseema University, Kurnool, Andhra Pradesh, India

2
Professor, Dept of Computer Science and Engineering, UCE, Osmania University, Hyderabad, TS, India

Abstract: Software reliability prediction is very challenging in maintenance phase as well as in the starting

phases of software development. In the past few years many software reliability models have been proposed for

assessing reliability of software but developing accurate reliability prediction models is difficult due to the

recurrent or frequent changes in data in the domain of software engineering. As a result, the software reliability

prediction models built on one dataset show a significant decrease in their accuracy when they are used with

new data. The objective of this paper is to introduce a new approach that optimizes the accuracy of software

reliability predictive models when used with raw data. Ant Colony Optimization Technique (ACOT) is proposed

to predict software reliability based on data collected from literature. An ant colony system by combining

Travelling Sales Problem (TSP) algorithm has been used, which has been changed by implementing different

algorithms and extra functionality, in an attempt to achieve better software reliability results with new data for

change oriented systems. The intellectual behavior of the ant colony framework by means of a colony of

cooperating artificial ants are resulting in very promising results. The method is validated with real dataset

using Mean Time to Failure (MTTF) and Mean Time Between Failure (MTBF).

Keywords: Software Reliability, Bio-inspired Computing, Ant Colony Optimization technique

I. Introduction
As the past decades have seen the computerization of all the functionalities in all the fields turn out to

be supplementary multifaceted and therefore, there is a constant demand for discovering innovative well

organized methodologies to software development and preservation. There is a prerequisite of the enormous

scope of effort, time and currency to arrange and build up any feasible software apart from the human resource

and their organization. For outstanding rising competition, today's profitable conditions have become very

dynamic. Corporate industries require proceeding extremely fast to unstable needs of the market. Hence,

software engineering which emphasizes with all these regions has become an individual study from researchers.

The software crisis is defined as mismatch between what the software can deliver and the capacities of computer

systems, as well as the expectations of their users and where software problems cause the system tasks to be

delayed, expensive, and/or not amenable to the user‟s desires. Apart from software can be developed to meet the

various stages of reliability, security, portability, usability, effective cost and response time.

Developing awfully trustworthy software from the user‟s perspective is a demanding profession for all

software engineers. However, Software Reliability is a significant aspect influencing system reliability. The

following four practical aspects which are related to achieving reliable software systems and these aspects

furthermore be treated as four fault Lifecycle techniques:

1) Fault avoidance: to avoid, by building, error existence. 2) Fault elimination: to identify, by confirmation and

proof, the presence of faults and eliminate them. 3) Fault tolerance: to specify, by redundancy, facility

conforming to the requirement in spite of faults having rising. 4) Fault/failure Predicting to estimate: by the

assessment, the occurrence of faults and consequences of failures.

Software reliability is the probability that software will not cause the failure of a system for a particular

point in time underneath particular circumstances. The probability is a function of the inputs to and use of the

system as well as a function of the existence of faults in the software. According to ANSI, Software Reliability

is defined as: “the probability of failure free software operation for a particular period of time in a particular

atmosphere”. Software reliability evaluation is significant to evaluate and forecast the trustworthiness and

performance of software systems. Reliability representation is a crucial ingredient of the reliability evaluation

procedure and it also validate whether a product meets up its reliability objective and is ready to distribute. The

fundamental intention of most of software reliability models is making them to understand distinctiveness and

reasons to fail software, and try to enumerate software reliability. The current article lay emphasis on about a

bio inspired computing technique Swarm Intelligence known as the Ant Colony Optimization Technique to

predict software reliability. The anticipated method is employed into a TSP problem with software failure

datasets to predict software reliability and the results of our approach are reported. And, thus, the focus of the

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 58 | Page

discussion to be presented here is an ACO for discrete optimization that has been used to predict software

reliability using the Travelling Sales Person Problem where failure data is given as input and the result is

calculated through Mean Time to Failure (MTTF) and Mean Time Between Failure (MTBF) to predict the

reliability.

II. Methodology
A Bio Inspired Computing

Natural computing [22] is a term presented to comprise three classes of methods: (1) those that take

motivation from nature for the development of novel problem-solving techniques; (2) those that are constructed

with the use of computers to synthesize natural facts; and (3) those that employ natural resources (e.g.,

molecules) to compute. The main areas of research that comprise these three branches are the artificial neural

networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial

life, DNA computing, and quantum computing, among others. Bio-inspired Computing is the combination of

computational aptitude and collective intelligence. These computational approaches are used to resolve

multifaceted problems, and developed after design principles confronted in natural / biological systems, and

tend to be adaptive, responsive, and distributed. The aim of bio-inspired computing is to develop computational

tools with enhanced strength, scalability, flexibility and which can interact more efficiently with humans. It can

offer biologists, for example, with an IT-oriented concept for looking at how cells compute or process

information, or help computer scientists build algorithms based on natural systems, such as evolutionary and

genetic algorithms. Biocomputing [23] has the potential to be a very powerful tool. The association of bio-

inspired computing are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune

systems, fractal geometry, artificial life, DNA computing and quantum computing.

B Ant Colony Optimization Technique

Ant Colony [24-27] is one of the techniques of bio inspired computing. The main concept of this is

technique is that the self-organizing rules which allow the highly synchronized behavior of real ants can be

utilized to manage populations of artificial agents that cooperate to solve computational problems. Various

distinctive attributes of the behavior of ant colonies have inspired different kinds of ant algorithms. Examples

are foraging, distribution of labor, issue sorting, and cooperative transport. Ants coordinate their activities via

stigmergy, a form of implicit interaction mediated by changes in the environment. For example, a foraging ant

deposit a chemical on the ground which raises the probability that other ant will follow the same path. Biologists

have presented that many colony-level behaviors witnessed in social insects can be described through relatively

simple models in which only stigmergic communication is present. In other words, biologists have shown that it

is often sufficient to consider stigmergic, indirect communication to explain how social insects can attain self-

organization. The notion behind ant algorithms is to use a form of artificial stigmergy to coordinate societies of

artificial agents. One of the most effective examples of ant algorithms is known as „„ant colony optimization‟‟,

or ACO. ACO is motivated by the foraging behavior of ant colonies, and targets discrete optimization problems.

The ants may deposit a pheromone on the ground while returning back to their nests. The ants follow with high

probability pheromone trails their sense on the ground.

Each Ant evaluates the next move to another vertex based on Gambardella et al., [28, 29],

p

k
ij is the probability for a worker K to move to vertex “ij”

ij τ is the amount of pheromone deposited on edge to “ij”

η is the inverted distance, describes how fast ants select their path.

The tour cost of each ant is given by di j the tour cost from the city i to city j (edge weight) is

calculated and hence the shortest path is found. This is applied to the Travelling Sales Person Problem and

optimized solutions are obtained using

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 59 | Page

The amount of pheromone deposited by each ant is given by

C Algorithm

The ACO algorithm [30] which has been proposed based on the study that real ants are skilled in finding the

shortest path from a food source to the nest without using visual signals. From the originating point the ants start

the tour selecting randomly any path.

1. Set the initial parameters.

2. Initialize pheromone trails.

3. Calculate the maximum specific ways in which the ants can travel.

4. Loop //iteration

5. Each ant is positioned at a given node randomly selecting the node according to some distribution strategy

(each node has at least one ant)

6. For k=1 to m do //steps in a loop

7. The first step: move each ant in a different route

8. Repeat //till all the nodes are visited

9. Select node j to be visited next // the next node must not be an already visited node

10. Apply local updating rule

11. Until ant k has completed a tour

12. End for

13. Apply sub tour that is sub Local search // to improve tour

14. Apply global updating rule

15. Compute entropy value of current pheromone trails

16. Update the heuristic parameter

17. Until End_condition

18. End

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 60 | Page

The flow chart of the ACO algorithm is presented in Fig. 1.

III. Experimental Design
In our experiment, time series forecasting model is employed to predict software reliability which has

only one dependent variable and no explanatory variables in strict sense. In this paper, the software failure data

obtained from Musa [21] data sets is employed in this study. It is used to demonstrate the forecasting

performance of Ant colony optimization techniques. The data contains 101 observations of the pair (t, Yt)

pertaining to software failure. Here Yt represents the time to failure of the software after the tth modification has

been made. We created five datasets viz.lag # 1,2,3,4 and 5 in view of the foregoing discussion on generating

lagged data sets out of a time series. The experiments are performed by dividing the data into training and test

set in the ratio of 80:20.

Simulation Results

 Reliability is calculated as:

• Reliability = MTBF / (1+MTBF)

 MTBF : Mean Time Between Failure

MTTF : Mean Time to Failure

To calculate MTTF in MS-Excel the following formula is used:

MTTF = f(x+dx)-f(x)/dx

Or

If the relaibility is checked on hourly basis the following formula can be used:

MTTF = 1/ failure rate

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 61 | Page

Mean Time to Failure

• Measures time between observable system failures

For example, assume you tested 3 identical systems starting from time 0 until all of them failed. The first system

failed at 10 hours, the second failed at 12 hours and the third failed at 13 hours. The MTTF is the average of the

three failure times, which is 11.6667 hours. If these three failures are random samples from a population and the

failure times of this population follow a distribution with a probability density function (pdf) of , then the

population MTTF can be mathematically calculated by:

Mean Time between Failures

The points on the plot are the observed cumulative MTBFs. These values are calculated by the following

equation:

where:

 t is the cumulative operating time.

 N(t) is the observed number of failures by time t.

Or

MTBF = 1/MTTF

Reliability Validations:
 20 Projects Failure Rates (Data Set –I)

I-Year II-Year III-Year IV-Year MTTF MTBF Reliability

12.2793 11.3667 12.2021 12.7831 -0.263392571 -3.796614299 1.35757523

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

14.4113 8.3333 14.192 11.3704 18.11824044 0.055192998 0.052306069

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

11.3923 14.4113 12.0907 13.0977 12.14683428 0.082325977 0.076063939

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

12.2793 11.3667 13.0977 13.368 -0.263392571 -3.796614299 1.35757523

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

12.2021 12.2793 9.7981 12.0907 170.1831902 0.005876021 0.005841695

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

12.2021 12.7831 12.0907 13.0977 32.62299329 0.030653226 0.029741552

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

12.7206 14.192 9.7981 12.0907 19.89443583 0.050265311 0.047859632

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

13.0977 13.368 13.368 12.7206 61.28355982 0.01631759 0.016055601

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

8.3333 8.0709 12.0907 13.0977 -23.16230305 -0.0431736 -0.045121664

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

8.0709 12.2021 9.7981 12.0907 5.89334543 0.16968291 0.145067444

12.2793 11.3667 12.2793 11.3667 -0.263392571 -3.796614299 1.35757523

Graph for Data Set –I

I-Year II-Year Reliability

12.2793 11.3667 1.35757523

12.2793 11.3667 1.35757523

14.4113 8.3333 0.052306069

12.2793 11.3667 1.35757523

11.3923 14.4113 0.076063939

12.2793 11.3667 1.35757523

12.2793 11.3667 1.35757523

12.2793 11.3667 1.35757523

12.2021 12.2793 0.005841695

12.2793 11.3667 1.35757523

12.2021 12.7831 0.029741552

12.2793 11.3667 1.35757523

12.7206 14.192 0.047859632

12.2793 11.3667 1.35757523

13.0977 13.368 0.016055601

12.2793 11.3667 1.35757523

8.3333 8.0709 -0.045121664

12.2793 11.3667 1.35757523

8.0709 12.2021 0.145067444

12.2793 11.3667 1.35757523

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 62 | Page

20 Projects Failure Rates (Data Set -II)

I-Year II-Year III-Year IV-Year MTTF MTBF Reliability

14.4113 8.3333 14.192 11.3704 18.11824 0.055193 0.052306

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

11.3923 14.4113 12.0907 13.0977 12.14683 0.082326 0.076064

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

12.2793 11.3667 13.0977 13.368 -0.26339 -3.79661 1.357575

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

12.2021 12.2793 9.7981 12.0907 170.1832 0.005876 0.005842

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

12.2021 12.7831 12.0907 13.0977 32.62299 0.030653 0.029742

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

12.7206 14.192 9.7981 12.0907 19.89444 0.050265 0.04786

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

13.0977 13.368 13.368 12.7206 61.28356 0.016318 0.016056

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

8.3333 8.0709 12.0907 13.0977 -23.1623 -0.04317 -0.04512

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

8.0709 12.2021 9.7981 12.0907 5.893345 0.169683 0.145067

12.2793 11.3667 12.2793 11.3667 -0.26339 -3.79661 1.357575

 Graph for Data Set –II

I-Year II-Year Reliability

14.4113 8.3333 0.89285676

12.2793 11.3667 0.919137684

11.3923 14.4113 0.935112547

12.2793 11.3667 0.919137684

12.2793 11.3667 0.919137684

12.2793 11.3667 0.919137684

12.2021 12.2793 0.924694826

12.2793 11.3667 0.919137684

12.2021 12.7831 0.927447381

12.2793 11.3667 0.919137684

12.7206 14.192 0.934175882

12.2793 11.3667 0.919137684

13.0977 13.368 0.930400891

12.2793 11.3667 0.919137684

8.3333 8.0709 0.889757356

12.2793 11.3667 0.919137684

8.0709 12.2021 0.924254475

12.2793 11.3667 0.919137684

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 63 | Page

IV. Conclusions
In this paper, ACOT using software reliability datasets can be employed. The performance of ACOT

that of BPNN, TANN, PSN, MARS, GRNN, MLR, TreeNet, DENFIS, Morlet based WNN and Gaussian based

WNN can be compared. It is observed that the performance of ACOT is better when compared with other

techniques when combined with error checking computational method. Thus, ACOT holds a very good promise

in the field of software reliability, Reliability calculated using Mean Time Between Failure (MTBF) and Mean

Time To Failure (MTTF) gave good results.

References
[1]. R. K. Mohanty, V. Ravi, and M. R. Patra, “Hybrid intelligent Systems for predicting Software reliability,” Elsevier, Applied Soft

Computing, vol. 13, No. 1, pp. 189-200, 2013.
[2]. R. K. Mohanty, V. Ravi, and M. R. Patra, “Application of Machine learning Techniques to Predict software reliability,”

International Journal of Applied Evolutionary Computation, vol. 1, No.3, pp. 70-86, 2010.

[3]. K. Cai, C. Yuan, and M. L. Zhang, “A critical review on software reliability modeling,” Reliability engineering and Systems Safety,
vol. 32, pp. 357-371, 1991.

[4]. T. Dohi, Y, Nishio, and S. Osaki, “Optional software release scheduling based on artificial neural networks,” Annals of Software
engineering, vol. 8, pp. 167-185, 1999.

[5]. N. Karunanithi, Y. K. Malaiya, and D. Whitley, “The scaling problem in neural networks for software reliability prediction,” In

Proceedings of the Third International IEEE Symposium of Software Reliability Engineering, Los Alamitos, CA, pp. 76- 82, 1992a.
[6]. N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Prediction of software reliability using connectionist models,” IEEE Transactions

on Software Engineering, vol. 18, pp. 563-574, 1992b.

[7]. T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya, “A neural network modeling for detection of high-risk program,” In
Proceedings of the Fourth IEEE International Symposium on Software reliability Engineering, Denver, Colorado, pp. 302-309,

1993.

[8]. T. M. Khoshgoftaar, and P. Rebours, “Noise elimination with partitioning filter for software quality estimation,“ International
Journal of Computer Application in Technology, vol. 27, pp. 246-258, 2003.

[9]. T. M. Khoshgoftaar, A.S. Pandya, and H.B. More, “A neural network approach for predicting software development faults,” In

Proceedings of the third IEEE International Symposium on Software Reliability Engineering, Los Aiamitos, CA, pp. 83- 89, 1992.
[10]. T. M. Khoshgoftaar, E. B. Allen, and J.P. Hudepohl, S.J. Aud, “Application of neural networks to software quality modeling of a

very large telecommunications system,” IEEE Transactions on Neural Networks, vol. 8, No. 4, pp. 902-909, 1997.

[11]. T. M. Khoshgoftaar, E.B. Allen, W. D. Jones, and J. P. Hudepohl, “Classification –Tree models of software quality over multiple
releases,” IEEE Transactions on Reliability, vol. 49, No. 1, pp. 4-11, 2000.

[12]. J. R. Koza, “Genetic Programming: On the Programming of Computers by Means of Natural Selection”. Cambridge, MA: The MIT

Press, 1992.

[13]. J. D. Musa, Iannino, A., and K. Okumoto, “Software Reliability, Measurement, Prediction and Application,” McGraw-Hill, New

York, 1987.

[14]. J. D. Musa,”Software reliability data,” IEEE Computer Society- Repository, 1979.
[15]. N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Prediction of software reliability using neural networks,” International Symposium

on Software Reliability, pp. 124-130, 1991.

[16]. T.M. Khoshgoftaar, and R.M. Szabo, “Predicting software quality, during testing using neural network models: A comparative
study,” International Journal of Reliability, Quality and Safety Engineering, vol. 1, pp. 303-319, 1994.

[17]. L. Tian, and A. Noore, “Evolutionary neural network modeling for software cumulative failure time prediction,” Reliability

Engineering and System Safety, vol. 87, pp. 45-51, 2005b.
[18]. N. Rajkiran, and V. Ravi. “Software Reliability prediction by soft computing technique,” The Journal of Systems and Software, vol.

81, No.4, pp. 576-583, 2007.

[19]. N. Rajkiran, and V. Ravi, “Software Reliability prediction using wavelet Neural Networks,” International Conference on
Computational Intelligence and Multimedia Application (ICCIMA, 2007), pp. 195-197, 2007

[20]. V. Ravi, N. J. Chauhan, and N. RajKiran., “Software reliability prediction using intelligent techniques: Application to operational

risk prediction in Firms,” International Journal of Computational Intelligence and Applications, vol.8, No. 2, pp. 181-194, 2009
[21]. E. Bonabeau, M. Dorigo, and G. Théraulaz, “Inspiration for optimization from social insect behavior,” Nature, pp. 39–42, 2000.

A Development Model for Predicting Software Reliability Using Ant Colony Optimization ..

DOI: 10.9790/0661-1902015764 www.iosrjournals.org 64 | Page

[22]. A. Coloni, M. Dorigo, and V. Maniezzo, “Ant system: Optimization by a colony of cooperating agent,” IEEE Trans. Systems Man

and Cybemetics-Part B: Cybemetics, vol. 26, No.1, pp. 29-41, 1996.

[23]. M. Dorigo and G. Di Caro, “The Ant Colony OptimizationMeta-Heuristic,” In D. Corne, M. Dorigo and F. Glover, editors, New
Ideas in Optimization, McGraw-Hill, pp. 11-32, 1999.

[24]. M. Dorigo, and L. M. Gambardella, “Ant colonies for the traveling salesman problem”, BioSystems 43, pp. 73–81, 1997.

[25]. M. Dorigo, and. L. M. Gambardella, “Ant Colony System: A cooperative learning approach to the traveling salesman problem,”
IEEE Transactions on Evolutionary Computation, vol. 1, No.1, pp.53–66, 1997.

[26]. M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: An autocatalytic optimizing process,” Technical Report 91-016

Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.
[27]. L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant colonies for the quadratic assignment problem,” Journal of the Operational

Research Society, vol.50, No.2, pp.167–176, 1999.

[28]. V. Maniezzo, and A. Colorni, “The Ant System applied to the quadratic assignment problem,” IEEE Transactions on Data and
Knowledge Engineering, Vol.11, No. 5, pp. 769– 778, 1999.

[29]. L. M. Gambardella, E. D. Taillard, and M. Dorigo, “Ant Colonies for the Quadratic Assignment Problem,” Journal of the

Operational Research Society, The Journal of the Operational Research Society, vol. 50, No.2, pp. 167-176, 1999.
[30]. L. M. Gambardella, E. D. Taillard, and G. Agazzi, “MACSVRPTW: A multiple ant colony system for vehicle routing problems

with time windows,” In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pp. 63–76. Hill, London, UK,

1999.
[31]. R. Poli, and W.B. Langdon, J.R. Koza, “A field guide to Genetic Programming,” ISBN: 978-1-4092-0073-4, publisher- Lulu.com ,

United Kingdom, 2008.

[32]. P. F. Pai, and W. C. Hong, “Software reliability forecasting by support vector machine with simulated annealing algorithms,”
Journal of System and Software, vol.79, No.6, pp. 747-755, 2006.

