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Abstract -- In data analysis, the accuracy of analysis depends on (1) the data representation, (2) the algorithm 
and (3) the metric used to measure error. For ordinary linear least square approximation (OLA), the existing 
formulation measures error along y or vertical direction. Conventionally, ordinary linear least square 
approximation (OLA) technique has been considered as the best fit regression line for linear trend data.  Based 
on domain knowledge, several versions of OLA have been developed. They are all reformulations of OLA using 
prior domain knowledge, for supervised learning. Singular Value Decomposition (SVD) is also used least 
square approximation.  The robustness of SVD approximation is attributed to (1) the SVD line is sensitive to 
temporal variation in time variables whereas OLA is not, it makes OLA less suitable for time sensitive data, and 
(2) SVD has smaller approximation error than OLA regression line. But SVD has inherent weaknesses. Herein 
we present a hybrid algorithm that achieves a balance between quantitative and qualitative approximation 
accuracy of both OLA and SVD. This algorithm is also suitable for noise reduction.  Visualization is a preferred 
way to ascertain the quality of a new algorithm, we use MATLAB R2017b and linear regression in simple two-
dimensional space to demonstrate the hybrid algorithm. 
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I. Introduction 
For data analysis, most of the time raw data is not suitable to apply analysis algorithms. It becomes 

mandatary to preprocess data for reliable and accurate data mining and regression. Also, it is necessary to 
determine if the data is labelled, un-labelled or mixture of both. It is assumed that the data is accurate else the 
prediction analysis will be inaccurate accordingly. If the data is correlated and noisy, for general algorithm, it is 
preferable to transform the data into noise free and uncorrelated data as far as possible to avoid overfit. 
Furthermore, the numerical data may need to be regularized, mean centered and unit standard deviation etc. The 
approximation is matter of metric used to calculate approximation. For multivariable data, (x, y), x, y are 
vectors, sometimes y is scaler valued. The simplest case occurs when both x, y are scalar values, it is easy to 
understand. We use the simple case for examples in the paper. Now linear least square regression is line that 
represent the data by means of a straight line.  This linear representation model approximates the non-parametric 
data points (xi, yi) with points  (xp, yp) on a parametric line. Since the line depends on two parameters, intercept, 
a, and slope, b, the line is parametric representation of data.  One of the models, measures error along the y-axis.   
In other words, xi = xip, yip = a + b xip such that the sum of squares of errors is minimum, error E1=∑k=1,n (xk- 
xkp)2+(yk- ykp)2  = ∑k=1,n(yk- a - b xk)2.  

In statistical analysis, the accuracy of approximation depends on several parameters. One such 
parameter is the metric used to measure the approximation error.  Each metric has its own merits. We do assume 
that data is accurate, else we get inaccurate approximation. For linear least square approximation regression 
(OLA), we discuss its merits, and shortcomings of the metric to improve on it. For OLA, there are several 
issues. First it is least square approximation, it is in fact approximation in y direction, not min distance 
perpendicular to the approximation line [1],[2],[3]. In order to correct this, we devise a true line at min-distance 
from the input data, normal distance least square fit line. We refer to it normal linear least square approximation 
(NLA) similar to ordinary linear least square approximation (OLA). NLA may become complicated for multiple 
dimensions, we also show that linear algebra SVD can be leveraged to achieve OLA more easily.  Finally, we 
see that OLA is not sensitive to data spread, NLA will also correct this deficiency of OLA.  We also define a 
new metric, propensity scoring metric (PSM) for OLA, NLA and hybrid algorithms. Propensity score has been 
used in other area for estimating the effect of a treatment, policy or other causal effects [24]. We will show the 
effect of new metric as compared to OLA and NLA metrics. We show that the hybrid algorithm achieves a 
balance between quantitative and qualitative approximation accuracy of both OLA and SVD. Also, it will be 
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shown that it can be used for noise and anomaly reduction. Thus, there are several approaches to approximate 
data linearly: ordinary linear least square regression (OLA), (new) normal linear least square regression (NLA), 
singular value decomposition linear least square regression (SVD), (new) hybrid linear least square regression 
(HLA).  To measure the accuracy of approximation, there are several metrics: quantitative and qualitative. 
Knowing what technique and metric to use makes all the difference in analysis and makes most out of data.  
That way one spends less time on justifying the conclusions. The challenge is the decision making on the metric 
used to approximate. The intent of this paper is the design a hybrid algorithm that yields better approximation 
than the OLA and SVD approximate algorithms, also a way to detect and remove anomalies in data. 

The paper is organized as SectionII describe OLA and an efficient computation by mean-centering data 
formulation, Section III derives new NLA, Section IV describes SVD and it connection to NLA, Section V 
gives new hybrid approximation algorithm and its implementation, error analysis of OLA,NLA, SVD, and 
Hybrid algorithms is provided with respect to both metrics, it introduces propensity score metric and anomaly 
reduction, Section VI is conclusion. 
 

II. Background 
Data is represented as a matrix of real or discrete values. It is easier to work with data if it is 

regularized. Simple example of regularization is mean-centered normalized data. It may be standardized to unit 
standard deviation. Ordinarily the reference point of data is the origin, mean-centering implies that the centroid 
of data is translated to the origin. We will soon see how mean-centering simplifies the computations. 

Let the data be represented by an m×n matrix A, i.e., m rows of  n-vectors or n columns of m-vectors. 
If x is column of A, the mean of xi’s denoted by 𝑥̅, x is translated to x - 𝑥̅.  Similarly, if y is row of A, it is 
replaced with y - 𝑦%, where the mean of y is 𝑦% = ∑ ())

*
.  Further, if x and y are both columns or both rows, the 

means of dot product of x  and y is denoted by 𝑥𝑦%%% = ∑ +)())
*

,  for x = y, it is denoted by 𝑥,%%% = ∑ +)-)
*

.  For matrix 
operations most of the linear transformations are performed by means of matrix multiplication, centralization is 
a linear transformation [4] for mean-centering a matrix.  There is an immaculate transformation Tm to mean-
center the columns of A as follows. Let Im be m𝑥m identity matrix, em be a column m-vector of ones, and Tm = 
Im - ememT/m.  This Tm is called the column centralizer. For example, if x is a column vector then  

Tmx =Im x -ememTx/m 
= x -emem•x/m  
= x -𝑥̅em 

or in short x -𝑥̅ where 𝑥̅  is the mean of x.  This Tm applied on the left of A, it centralizes columns of the matrix.  
Similarly, if Tn is multiplied on the right of A, the ATn mean-centers the rows of A. For example, for row vector 
y:  

yTn = ( y In - yenenT/n) 
= y - y •en enT /n  
= y - y •en /n enT 
= y -𝑦%enT 

After preforming analysis on mean-centered data, reference point can be translated back to the centroid. This is 
a standard technique used for visualization [5],[6]. 
 
A. Ordinary Linear Least Square Approximation (OLA) 
A.1 Conventional formulation  

 
For input data n×2 matrix, columns are x, y coordinates of data points, we find a linear least square 

approximation line. Before exploiting any approximation, it is assumed that data is accurate, else prediction will 
also be inaccurate.  For linear approximation line y = a + b x, we need to calculate two parameters a and b for 
minimizing of   

f(a,b)=∑ (𝑦/ − 𝑎 − 𝑏𝑥/),/45,* .   
That leads to two equations 

78(9,:)
79

 =  ∑ (𝑦/ − 𝑎 − 𝑏𝑥/)/45,* = 0  (1) 
𝑦% − 𝑎 − 𝑏	𝑥̅ = 0 

and  
  78(9,:)

7:
 =   ∑ (𝑦/ − 𝑎 − 𝑏𝑥/)𝑥//45,* = 0 (2)  

𝑥𝑦%%% − 𝑎𝑥̅ − 𝑏𝑥,%%% = 0.    
The first equation (1) becomes 𝑦% = 𝑎 + 𝑏	𝑥̅, which implies that the regression line passes through the centroid 
(𝑥̅,𝑦%). These two equations are 
  𝑦% = 𝑎 + 𝑏	𝑥̅ and  𝑥𝑦%%% = 𝑎𝑥̅ + 𝑏𝑥,%%% 
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can be solved for a and b to yield 
b = +(%%%%>	+̅(%

+-%%%%>	+̅-
    and   a = +

-%%%%(%	>	+̅+(%%%%
+-%%%%>	+̅-

 
However since 𝑦% = 𝑎 + 𝑏	𝑥̅ , once b is known, the offset/bias term a can be efficiently computed from a = 𝑦% −
𝑏	𝑥̅.  
It may be noted that for mean-centered data, 𝑥̅ = 0, 𝑦% = 0, it results in a=0.    
 
A.2 Mean-Centered data formulation 

 
Mean-centering allows us to consider regression line through the origin because centroid is translated 

to the origin. The bias term a becomes zero automatically and the data becomes unbiased.  To take advantage of 
regularization, the OLA can be reformulated for mean-centered data, we need to compute only one parameter b 
for  
minimizing  f(b) =1/n∑i=1,n(yi-bxi)2 
or  

f(b) =1/n∑i=1,n(yi-bxi)2 
= 1/n∑i=1,n (yi2 -2byixi+ b2 xi2) 
= 𝑦,%%% − 2𝑏𝑥𝑦%%% + 𝑏,𝑥,%%% 

That is  
f(b)  = 𝑦,%%% − 2𝑥𝑦%%%	𝑏 +	𝑥,%%%𝑏, 

 
Calculus based critical value criteria requires that f’(b) = 0. This leads to−2𝑥𝑦%%% +	𝑥,%%%	2𝑏 = 0 or  

b =  +(%%%%
+-%%%%

 
So, for mean-centered data, OLA line is  

y =bx, with b =  +(%%%%
+-%%%%

 
which is simpler expression than the raw data computations. Since f’’(b) = 2	𝑥,%%% is positive, the critical value is 
minimum. 
 
However, if we want to go to the original frame, original reference point, we translate the origin back to the 
centroid  
then line translate into original coordinates 

y - 𝑦% = b(x-𝑥̅) or y = 𝑦% - b𝑥̅ + b x  
that is  
  y = a+ b x where a =	𝑦@  - b𝑥̅ 
In this case, only b is to be computed, a is automatic byproduct. 
This gives a line through (0,a) and along the direction (5,:)

A	(5B:-)
 

 
Non-Calculus based algebraic approach proceeds as follow. 

f(b)  = 𝑦,%%% − 2𝑥𝑦%%%	𝑏 +	𝑥,%%%𝑏, 
Since it is convex function, there is only one minimum,Figure1.  This expression simplifies to  

f(b)  = 𝑦,%%% − 2𝑥𝑦%%%	𝑏 +	𝑥,%%%𝑏, 
   = 𝑥,%%%(	𝑏			 −	+(%%%%

+-%%%%
), 		+ +-%%%%(-%%%%	>		+(%%%%-

+-%%%%
 

Since 𝑥,%%%𝑦,%%% 	−		𝑥𝑦%%%, ≥ 0, f(b) is min only if b =  +(%%%%
+-%%%%

.  This what we saw above using calculus. 
 

 
Figure 1. The convex function f(b) has only one global minimum giving the slope for OLA line. 
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In essence, this is a common sense three step approach to find the OLA line. The three steps are, (1) 
mean-center the data, translate the centroid (𝑥̅,𝑦%) to the origin (0,0), (2) calculate the direction of least square 
error approximating line through the origin, (3) translate back to centroid (𝑥̅,𝑦% ) for original frame of reference.  
The computations using mean-centered data are simpler.In,Figure2, Cyan dots are the raw data, red line is the 
approximation line, and red dotted lines are errors between the data and corresponding approximations. In 
Figure3, black dotted lines are normal to the regression line where as red dotted lines are vertical, along the y-
axis direction. Clearly the normal lines are shorter than vertical lines. We will explore further whether there are 
some other lines whose normal distance error is even smaller than this line error. That leads us to next section. 

 

 
Figure 2.  Data points, regression line, approximation errors 

 

 
Figure 3. The red vertical dotted lines are error from OLA line along y-axis, the black orthogonal dotted 
lines are error from OLA line along the normal. Normal distance error is smaller than vertical distance 

error. 
 

III. Normal Linear Least Square Approximation (NLA) 
The ordinary linear approximation(OLA) line is not as close to the data points because distances are 

measured along the y-axis. If distances are measured along the normal (perpendicular) to the approximation line, 
then line is more representative of data.  The normal (perpendicular, orthogonal) distance problem is formulated 
below. For the reasons stated above, we assume that the data is mean-centered, else it can be transformed  by 
centralizer transformation to mean-center it.  The problem becomes that of finding the value of only b that 
minimizes f(b) where 
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f(b) = 1/n ∑ (()>:+)
A5B:-

),/45,*    or  

   f(b) =  1/n ∑ (()
-B:-+)

->,:+)())
5B:-/45,*  

   =	(
-%%%%B:-+-%%%%>,:+(%%%%

5B:-
 

Thus, for local minima of  
f(b)  = (

-%%%%B:-+-%%%%>,:+(%%%%
5B:-

  (1) 
 

f(b)  = :
-+-%%%%>,:+(%%%%B	(-%%%%

5B:-
  = 

:-+-%%%%>,:+(%%%%B	DE%%%%
-

D-%%%%
-		>			

DE%%%%-

D-%%%%
-B	(-

%%%%

5B:-
 

     = 
:-+-%%%%>,:+(%%%%B	DE%%%%

-

D-%%%%
		>			DE%%%%

-

D-%%%%
B	(-%%%%

5B:-
 

     = 
+-%%%%(	:			>	DE%%%%

D-%%%%
)-		>			DE%%%%

-

D-%%%%
B	(-%%%%

5B:-
 

     = 
+-%%%%(	:			>	DE%%%%

D-%%%%
)-		B		D

-%%%%E-%%%%	F		DE%%%%-

D-%%%%

5B:-
 

 
Note 𝑥,%%%𝑦,%%% 	−		𝑥𝑦%%%,always ≥ 0. It is equivalent to standard result |x•y|≤|x||y| which can be quickly derived from 
triangle inequality. 
We saw that in the unnormalized case, f(b) is minimum when  

𝑏	 −	
𝑥𝑦%%%
𝑥,%%%

= 0 

or 

𝑏		 = 	
𝑥𝑦%%%
𝑥,%%%

 

This is not true in this case, see Figure 4. For OLA, f(b) is convex and has only one extreme/minima. For NLA, 
f(b) is not convex. It has two extrema, one maxima and one minima. In both cases, the minima are close to each 
other, but not identical. 
 

 
Figure 4. The minimization function f(b) is convex for OLA case.  

 
f(b) is not convex for NLA case. 

For NLA, f(b) is never negative. As b approaches zero, f(b) becomes 𝑦,%%% and as b approaches infinity, f(b) 
becomes 𝑥,%%%.  
To calculate the minimum, setting the first derivative of f(b) w.r.t b to zero, f’(b)=0, we get quadratic 
 𝑥𝑦%%%	𝑏, + G𝑥,%%% − 𝑦,%%%H	𝑏 − 𝑥𝑦%%% = 0  (2) 
Since it is a quadratic, it has two critical values, b1, b2 
 

b = 
>	(+-%%%%>(-%%%%)	±J(+-%%%%>(-%%%%)-BK	+(%%%%-

,	+(%%%%
   (3) 
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f(b) can’t have both local minima, see Figure 4. If f”(b1)>0, the b1 is a local minima else f”(b2)>0 , then b2 is a 
local minima. Once b is computed, we have a line through the origin (0,0) along the direction (5,:)

A	(5B:-)
 

The normal least square line (NLA) are shown in Figure5. This is not the same as OLA regression line as seen 
in Figure2 and Figure3. 
 

 
Figure 5. Cyan dots are the data points blue line is NLA line. Blue dots are the approximation, Blue 

dotted lines are normal errors from NLA line. 
 

 
Figure 6. Red line is OLA, Blue line is NLA. Red dotted lines and Blue dotted lines are vertical errors 

form the Cyan data points.  NLAvertical error from Blue line is  
more than OLA error from red line.  

 

 
Figure 7.  Red line is OLA, Blue line is NLA. Red dotted lines and Blue dotted lines are orthogonal errors 

form the Cyan data points.  NLA normal error from Blue line is less than OLA error from red line. 
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 Further, the approximation error in both cases (OLA and NLA) is minimum depending on how the error is 
measured. Visual inspection shows that majority of the cyan dots are closer to blue line dots than the cyan dots 
to red line dots, see Figure6, Figure7.  This visualization justifies, to some extent, to prefer NLA over OLA. We 
will give formal justification later in section V. Since NLA is based on calculus, its derivative is complex, the 
second derivative is quite complex, we explore an easier implementation of this idea by means of linear algebra, 
singular value decomposition (SVD). 

 
IV. Singular Value Decomposition (SVD) 

This normal least square approximation (NLA) line can also be obtained directly by using linear 
algebra singular value decomposition (SVD).  Today, singular value decomposition is used in many branches of 
science: computer science and engineering, psychology and sociology, atmospheric science and astronomy, 
health and medicine etc. [7],[8],[9],[10],[11],[12],[13]. It is also extremely useful in machine learning and in 
both descriptive and predictive statistics. For the sake of completeness, we give brief description of SVD. 

Singular Value Decomposition (SVD) is a matrix factorization technique generalizing eigen-
decomposition. Every positive semi-definite real matrix can be decomposed into three matrix factors: left 
singular vectors matrix, right singular vectors matrix and a diagonal matrix of singular values in descending 
order on main diagonal. The goal is not to recreate the matrix, but to create the best linear least square 
approximation [14], [15]. There are various advantages of SVD.   First, 150 years old Principal Component 
Analysis (PCA) is a generalization of eigen-decomposition to symmetric matrices with orthogonal eigenvectors 
such that A = VDV-1  = VDVT.   In our case, A is data matrix, it not a square. But ATA is a symmetric square 
positive semi-definite matrix, then ATA = VDVT, [16],[17],[18]. Besides other benefits of this factorization, we 
are interested in direction vector only.  The columns of V are eigenvectors of ATA corresponding to eigenvalues 
arranged in descending order. Since we are interested in direction of approximation line, we show that direction 
vector of NLA corresponds to first eigenvector of SVD [19], [20],[21].    

We derive the direction v so that sum of squares of distances of points from v is least. Note, v passes 
through the origin and the data is mean-centered. Since data is mean-centered, the approximation line passes 
through the origin.  By default, vectors P are column vectors in linear algebra, thus rows of A are position 
vectors [x,y] = PT. The vector P can be written as the sum of a vector along unit vector v and a unit vector w 
orthogonal to v, that is, using vector notation P = P•v v+ (P-P•v v) = vv+ww.  This means that minimizing the 
distance w amounts to maximizing the component v. We are to maximize over all data points Pi. The problem 
becomes that of maximizing  

∑i=1,n |Pi•v|2    

for all Pi and some vector v, that is of interest to us. Now  
∑i=1,n |Pi•v|2 = ∑i=1,n Pi•v Pi•v = ∑iv•Pi Pi•v  

= ∑i=1,n vTPi PiTv= vT (∑i=1,n Pi PiT)v 

= vT (ATA)v.   
 

This means that ∑i |Pi•v|2 is maximum if v is an eigenvector of ATA and corresponds to largest 
eigenvalue of ATA. Similarly, all the other eigenvectors can be obtained incrementally one at a time, 
constraining each vector orthogonal to the previous eigenvectors. Thus, SVD is computed iteratively in 
descending order of eigenvalues and corresponding eigenvectors orthogonal to the previously computed 
eigenvectors. It may be noted that largest eigenvalue refers to the largest spread of data along the eigenvector.  
The spread of projections of data on v1 is larger than that onv2, see Figure8(d).  
For example, PT’s are data points in 2D, v1, v2 are eigenvectors corresponding to largest eigenvalues of ATA . 
For this consideration, the NLA requires only v1, the direction with largest eigenvalue, and with largest data 
spread.   
 

 

(a) data points, 
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(b) eigenvectors 

 

 
(c) data, axes, eignevectors 

 

 
(d) everything with projections on eigenvectors. 

 
Figure 8. (a) Four data points {P1, P2, P3, P4} with standard axes, (b) Four data points {P1, P2, P3, P4} with 

eigenvectors,  axes of data trend, (c) data points, standard xy-axes, eigenvectors frame, (d) both xy and 
v1v2, frames with data points and projections on v1 and v2. 

 
Uniqueness of Eigenvectors.  As a side remark, for the matrix, any non-zero multiple of an eigenvector 

is again an eigenvector. To make the eigenvectors unique, they are normalized to unit vectors.  But if u is unit 
eigenvector, then –u is also a unit vector, see Figure 9(a) for MATLAB SVD computed eigenvectors [19], [20]. 
In the literature. It is an accepted convention to make the first non-zero component positive in the eigenvector, 
see Figure 9(b).  Since eigenvectors are ordered, we use ordering to make the k-th element of k-th vector to be 
positive, see Figure 9(c) that makes the vectors look more natural like a right-handed system. In case, the kth 
element is zero, then the first non-zero element is made positive. This is the approach we prefer to use 
[21].Incidentally, recall that the direction vectors in OLA and NLA had first component as positive. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 9.  (a) Eigenvectors as computed by MATLAB SVD, (b) each vector has first no element positive 

by convention, (c) first eigenvector has first component positive, second eigenvector has second 
component positive on using ordering of eigenvectors, so the eigenvectors form a right handed system. 

 
V. Hybrid Algorithm Design 

We design a hybrid algorithm leveraging the best of OLA and NLA/SVD approximation lines in two 
forms: non-parametric overfitting and parametric in general. For each observed point, (x0,y0),  we have seen in 
Figure 6 and Figure 7  that there is a corresponding predicted point (xR, yR) on regression line and  a predicted 
point (xS, yS) on SVD line.  If (x0,y0) is an observed value,  (xR, yR)  is predicted point value corresponding to 
the OLA line y=a+bx. The vertical distance is along y direction. The distance between (x0,y0) and  (xR,yR) is the 
y-distance, the OLA regression error eR = |y0-yR|.  For normal distance from NLA or SVD approximation line, it 
is along perpendicular to the line, it turns out that xS ≠ x0 in (xS, yS) , the distance between (x0, y0) and  (xS,yS) is 
Euclidian normal distance eS = √( (x0-xS)2 + (y0-yS)2 ).It is clear from Figure 6 and Figure 7 that for some points 
in observed data, eR <eS while for some other points eS <eR.  In each method, the total error E is sum of squares 
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of pointwise distances (errors) for all data points, question arises which one (ER for OLA and ES for SVD) is 
acceptable due to the dual nature on error computation. There is no denying the fact if vertical distances are used 
for both lines, then ER<ES and if normal distances are used for both lines, then ES < ER.  Then how does the user 
determine which one preferable to use:  OLA or NLA/SVD? For hybrid algorithm, define the approximation 
point (xH, yH) to be that point which is closer to the observed point (x0,y0) in both ways.  Euclidean distance is 
used to measure closeness. For each input, we will determine approximate line that represents the input data no 
matter how the error is computed, see Figure11for green color dots, these are closer to cyan dots than red line 
dots or blue line dots. Instead of measuring the quantitative distance we define a qualitative metric that is more 
useful in visualization and cognitively acceptable. 
 
A. Non-Parametric Hybrid algorithm 
Algorithm A:  
Input: array of x and y mean-centered data values 
Output: hybrid approximation points (xH, yH),where(xRyR) is on OLA, (xS, yS) is on SVD line 
1. Calculate a and b for OLA regression for observed x, y 

Calculate predicted values by linear regression yR = a+bx 
Calculate  approximation error ER 
Test Goodness of the regression line 

2. Calculate A=[x, y], x, y are columns of matrix A. 
Calculate SVD  [U S V] = svd(A) 
Use first column of V to get b.  a is automatic 
Calculate xS, yS of projected points [xS, yS] on column vectors  of V that is AVV’     
Calculate approximation error ES 
Compare error ER and ES 

3. Calculate hybrid xH, yH  using variation of relaxation method  
for all point pairs(xR, yR),(xS, yS) 
 if d( (xS, yS), (x0, y0))<= d( (xR, yR), (x0, y0)) 
  (xH, yH) = (xS, yS); 
 else  
  (xH, yH) = (xR, yR); 
 end 
end  
Calculate error EH from pointwise eH 
Compare error ES, ER, EH 
Calculate and Compare by propensity values  

4. xH, yH are arrays of predicted coordinates on hybrid polygonal line.  
  

This algorithm gives non-parametric polygonal approximation and overfitting. The next algorithm 
parametrizes it by using SVD, see Table 1. In practice we do not need to store for prediction it is more efficient 
to retain the line parameters of OLA and NLA/SVD for in real time calculations. 
 
B. Parametric Hybrid algorithm 
This algorithm is of theoretical interest, Algorithm A is sufficient for practical use.  The non-parametric 
polygonal approximation algorithm gives insight for improving the accuracy, Figure 12. It has two shortcomings 
it does conserve space, and it is overfitting the input. Here we explore double approximation to design a general 
algorithm which conserves space as well as it is parametric, see Figure 12. 
 
Algorithm B  
Input: array of x and y mean-centered data values 
Output: hybrid approximation line parameters for points (xH, yH),where(xR, yR) is on OLA, (xS, yS) is on SVD 
line 
1. From algorithm A,  (xH, yH) is polygonal hybrid approximation 
2. Use SVD to fit points (xH, yH) with SVD algorithm  to derive parameters for the direction of the line 
3. Use parameters of SVD line to compute (xD, yD) approximation based on this line 
4. Calibrate to determine the pointwise mean of predicted values 
 

Now almost all observed points are closer to hybrid line than OLA and NLA/SVD approximation lines. 
It satisfies the general parametric and space conservation requirements, see Table1. 
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Figure 10. Cyan dots are data points, Red line is OLA line , Blue line is NLA/SVD line, Green dots are 

hybrid approximation dots 
 

Note over the entire data set, red dots have smallest error from cyan dots when distances are measured 
along y, while blue dots have smallest error from cyan dots when distances are measured along the normal to 
the line.  Each green dot is at a smaller of the two distances from cyan dot, interestingly, it does not mean that 
green dots have overall smaller error than the two, in fact it will be bigger than each. The green dots can be 
connected by a polygonal line see Figure11 or an SVD straight line approximation. We have seen that NLA is 
better than OLA. We may use SVD to approximate data (xH, yH) to a line, see Figure12. 

 

 
Figure 11.  Non-Parametric polygonal Hybrid data points, Cyan dots are points which are closer to green 
dots than red or blue dots. Hybrid polygonal line, green polygonal line connects the green hybrid points 

(xH, yH). 
 

 
Figure 12. Parametric line Green dots in Figure 11 are not shown here for  clarity. SVD line is created to 

corresponding green points into the green Hybrid parametric line. 
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B. Precision and Propensity 
The linear least square approximation error is quantitative measure.  The precision and propensity are a 

qualitative measure of accuracy [22],[23],[24].  Quantitative error is a function of the location of data points, 
propensity depends on percentage of data points for pointwise binary outcome from comparing error due to a 
pair of methods.  This is similar to precision metric used in data mining community. For percentage of data truly 
closer to OLA, SVD, Hybrid lines pairwise, see Table 1 and Table 2.  From Figure 11, it is clear that green 
construction is preferable, but the quantitative error comparison is inconclusive.  However, we use propensity 
metric to determine the level of accuracy that hybrid line has as compared to OLA and SVD. When errors are 
measured in the respective methods, we can calculate the propensity value for one line relative to the other line 
to conclude the preference irrespective of which method is used to calculate errors. It is determined that overall 
SVD/NLA approximation is better approximation than OLA, see Figure 11.Similarly,propensity metric shows, 
that hybrid line is preferable to both OLA and SVD lines, see Figure 12, Table 1. Table 2.  
 
C.  Anomaly Detection and Removal 

It is clear that vertical distance, ER, is always greater than normal distance, ES, from a line. Since sum 
of squares of errors for OLA line, ER is smallest in the vertical distance metric, the regression error from any 
other line is bound to be larger than error, ER, from OLA line. Pointwise error between OLA and NLA is not 
deterministic, Propensity score metric(PSM) is a qualitative measure to differentiate for better approximation 
line, where the distance metric fails. Not only that, PSM can also leveraged identify the anomalies. To detect 
anomalies accurately, we create a confusion matrix for number of points within one standard deviation of both 
the lines. Any point which is not within this band about any of the two lines, is probably an anomaly. Such is 
point is candidate for further scrutiny. After clipping suspicious points for the data, we reapplied our algorithm 
to ascertain that reduced data set gives better accuracy, see Table 1, and Table 2. 

Example: Noisy data, vertical distances not realistic. In the Figure 13(b), we can see that if fifth point is 
noisy, it has affected the entire approximation line. In particular for the neighboring points, there is glaring 
offset.  Experiments show that one noise point can adversely affect the approximation line in the immediate 
neighborhood of noisy point, see Figure 13.  Red line is least square regression line on raw data of 20 points. 
This regression line is noise sensitive, see Figure 13(a), (b). If one of data points is an outlier, it can create a 
large adverse effect on the outcome. Figure 13(c) shows the improvement on this shortcoming after removing 
noise. 
 

 
(a) No noise 

 

 
(b) Noise introduced in position 5, direction of line changes  
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(c) Noise removal, position 5 removed from the data, data has one less point. 

 
Figure 13. (a) has no noise, (b) has noise in position 5, as a result the regression lines are different, (c) here 

noise is removed, now (a) and (c) are same , but (c) has one less points as point 5 has been removed. We 
do not see any major difference in the regression lines. 

 
The goal is to determine the prediction capability rather than numeric value. The hybrid algorithm 

achieves a balance between quantitative and qualitative approximation accuracy of both OLA and NLA/SVD.  
Numeric error is a measure of divergence from the true value. We use STD-standard deviation for confidence 
interval about the approximation lines. If A is the set of points outside the confidence interval and B is the set of 
points where eR > eS,  the AB is a candidate set of anomalies. 
 

 
 

 
 
D.  Temporal Sensitivity 

If the time interval for a treatment is changed, we expect to see the temporal change in response. Using 
OLA, we see that there is no change, that is error computation remains unchanged, see Figures 10-13. Figure 14 
is the visual summary of quantitative and qualitative error in the methods. Using the same data set, on scaling 
the time interval, the NLA/SVD and Hybrid algorithms respond positively to the changes. This suggests that 
OLA is not suitable for such applications. In the example we also notice that as the slope of the hybrid line 
increase, the error decreases. Experiments confirm that slop of 45 degrees is break-even point with maximum 
error. Slope below or above accounts for reduction in error. For comparison of the three algorithms, see Table 1, 
Table 2. It shows the computed direction vectors of the approximation lines, approximation error in the 
Euclidean distance metric, and propensity value, how close is data to one formulation vs the other formulation. 
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Figure 14. Relative errors one-time interval [0.01,0.62] 

 

 
Figure 15. Relative errors on time interval [0.01,0.93] 

 

 
Figure 16. Relative errors on time interval [0.02,1.25]  
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Figure 17.  Relative errors on time interval [0.02,1.56] 

 

 
Figure 18. Green line shows percentage of Hybrid points closer to data points as compared to OLA. 

Purple line shows percentage of SVD points closer to data points as compared to OLA. Blue line shows 
percentage of error in OLA. Yellow and red (on top of each other) percentage of error in SVD and 

Hybrid algorithms. 
 

VI. Conclusion 
In the paper we have described 1. various ways to approximate numerical data, 2. Temporal versions of 

prediction, 3.  how to reduce noise.  For approximation, the ordinary linear least square approximation (OLA) 
regression is suitable for continuous real data, normal linear least square approximation (NLA),  Singular Value 
Decomposition (SVD) may be used for continuous data for best approximation, and for compression. Here we 
used OLA and NLA/SVD first to compare and remove noise by virtually using OLA and NLA. The hybrid data 
is then approximated by using NLA/SVD. It is determined that hybrid algorithm outperforms the two algorithms 
when applied individually. The statistician in the area will benefit from the hybrid linear least approximation 
algorithm. 

OLA was found to be insensitive to data spread, whereas SVD was implicitly modifying the 
independent (temporal) variable of the original input in pursuit of lower error. We designed a hybrid algorithm 
that overcomes the shortcomings and supersedes the accuracy of existing algorithms.   From the experiments, it 
follows that error is least for lines that are almost horizontal or vertical, the breakeven point occurs as the slope 
of the line becomes closer to 45 degrees.  NO matter what the slope is, the new hybrid regression line error is 
always bounded above by the error in OLS regression line. It is interesting to note that OLA remains unchanged 
while new regression line approximation error responds to the slope variation. We also showed how to improve 
MATLAB SVD with correct directions of eigenvectors, a natural technique.  We designed and implemented a 
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hybrid algorithm that supersedes both accuracy and efficacy. The algorithm was implemented on MAC OS 
Seirra v 10.13.4, Intel Cire i5, 8GB 1600MHZ using Matlab R1700b. 
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