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Abstract: Vibration conditions of discrete multi-degrees-of-opportunity (MDOF) basic frameworks is
arrangement of differential conditions. In direct frameworks, the differential conditions are likewise straight.
Different logical and numerical strategies are accessible for illuminating the vibration conditions in auxiliary
elements. In this paper adjusted differential change strategy (MDTM) as a semi-diagnostic methodology is
summed up for the arrangement of differential conditions and is used for tackling the vibration conditions of
MDOF frameworks. The MDTM is a recursive strategy which is a half breed of Differential Transform Method
(DTM), Pade' approximant and Laplace Transformation. A progression of models including constrained and
free vibration of MDOF frameworks with old style and non-old style damping are additionally fathomed by this
strategy. Correlation of the outcomes acquired by MDTM with precise arrangements shows great exactness of
the proposed technique; so that now and again the arrangements of the vibration condition that found by
MDTM are the specific arrangements. Additionally, MDTM is more affordable in computational expense and
less complex with contrast with the other accessible methodologies.

Keywords: Modified Differential Transform Method; Multi-Degrees-of-Freedom Systems; Pade' Approximant;
Vibration Equation.

I.  Introduction

Most of the existing structural systems are multi-degrees-of-freedom (MDOF) that can be categorized
into discrete and continuous systems. In discrete systems, the structural properties such as mass, stiffness and
damping are localized and the equations of motion are in the form of a system of ordinary differential equations.
On the other hand in continuous systems the structural properties are distributed and the vibration equations are
in the form of partial differential equations. Discrete systems have finite number of degrees of freedom while in
continuous systems the number of degrees of freedom is infinite. There are different tools such as the
generalized coordinates method which can be applied on continuous systems to formulate the equations of
motion. By these methods the vibration equation of a continuous system turns into the vibration equation of a
discrete system with finite degrees of freedom. Hence, solving the vibration equations of discrete MDOF
systems has been considered significantly by researchers.

Vibration equation of a linear discrete structural system with initial values is as follows:

C _ )
mu(t) cu(t) ku(t) p(t)u(0) a u(0) b Q)

In the case of linear MDOF systems, Eq. (1) is a system of linear ordinary differential equations and
u(t) is the displacement vector along degrees of freedom. Also, m is the mass matrix, ¢ is the damping matrix, k
is the stiffness matrix and p(t) is the applied load vector on the system. The left hand side of Eq. (1) consists of
inertia force ( mu(t) ), damping force ( cu(t) ) and elastic force (k(u(t)) and the right hand side of the equation is
the applied load vector. In Figure (1-a) a discrete MDOF system is illustrated. In single-degree-of-freedom
(SDOF) systems, Eq. (1) turns into a linear ordinary differential equation and the coefficients of the equation are
single numbers instead of matrices. The mass-spring model in Figure (1-b) is an example of a SDOF system.
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Figure 1. Discrete structural systems, a- a MDOF system, b- a SDOF system

Solving the vibration equation of structural systems (both SDOF and MDOF systems) has been
addressed from past decades by many researchers. Hence, different analytical and numerical approaches have
been introduced for this purpose. Direct Integration Method has been used widely for solving the vibration
equations. For this purpose, various numerical methods such as Newmark  Method and Wilson 6 method have
been employed for numerical integration of the equations of motion. Extensive information about these methods
is available in the structural dynamics text books, [1, 2].

Recently, Differential Transform Method (DTM) as a recursive semi-analytical approach for solving
initial value problems has been introduced. This method was first proposed by Zhou [3] (1986) for solving
linear and non-linear initial value problems in electric circuit analysis. Thereafter this method has been
developed by other researchers [4-9]. Since vibration equation of a SDOF system is a differential equation with
initial values, DTM has been employed for solving vibration equation of linear and nonlinear SDOF oscillators
in structural dynamics. El. Shahed [10] applied DTM for solving vibration equation of non-linear SDOF
oscillatory systems. He proposed the modified differential transform method (MDTM) with Pade
Approximation for this purpose. Momania and Erturk [11] also applied MDTM for solving vibration equation
of non-linear SDOF oscillators. They concluded that MDTM is an efficient method for calculating periodic
solutions of non-linear oscillatory systems. The examples indicated that MDTM greatly improves DTM’s
truncated series solution in the convergence rate, and it often yields the true analytic solution. Nourazar and
Mirzabeigy [12] employed MDTM for solving the nonlinear Duffing oscillator with damping effect. They also
found the solution by using the fourth-order Runge—Kutta numerical method. Comparison of the results showed
good accuracy of MDTM results. DTM has been also employed for solving the free vibration equations of
continuous systems such as beams and plates. As one of the earliest works, Chen and Ho [13] applied DTM for
solving transverse vibration of a rotating twisted Timoshenko beam under axial loading. They found closed
form solutions for the free vibration problems of a rotating twisted Timoshenko beam. In another research, they
applied DTM for solving the free and forced vibration problems of general elastically end restrained non-
uniform beams resting on a non-homogeneous elastic foundation and subjected to axial tensile and transverse
forces [14]. Ozdemir and Kaya [15] utilized DTM for bending vibration analysis of a rotating tapered cantilever
Bernoulli-Euler beam. They found the non-dimensional angular velocities of the beams. Also the effects of
different parameters on vibration characteristics of the rotating tapered cantilever beam were evaluated. Catal
[16] used DTM for free vibration equations of a beam on elastic soil. It was concluded that the rate of
convergence and accuracy of DTM was very good. Vibration of composite sandwich beams with visco-elastic
core was also investigated by application of DTM by Arikoglu and Ozkol [17]. Demirdag and Yesilce [18]
applied DTM for free vibration analysis of an elastically supported Timoshenko column with a tip mass.
Comparison of the results from DTM with the exact solution showed very good accuracy of the DTM results.
The method is also employed for vibration of plates. Recently, Lal and Ahlawat [19] applied DTM for
axisymmetric vibration and buckling analysis of functionally graded circular plates subjected to uniform in-
plane forces.

As it is seen, numerous researches on application of DTM and MDTM for solving the vibration
equation of SDOF systems has been carried out, where the equation of motion is a single differential equation.
Based on the ability of MDTM for solving the vibration equations of oscillatory systems and according to the
interests in solving the vibration equations of MDOF systems, in current research MDTM is applied on the
vibration equations of MDOF systems. In this paper, at first DTM is introduced for solving the differential
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equations with initial values. Since this method gives the solutions in restricted intervals, it is not suitable for
solving the vibration equations of oscillatory systems. Therefore MDTM which is a hybrid of DTM, Pade'
approximant and Laplace transformation is described and the procedure for solving vibration equations of
MDOF systems is presented. Finally, some examples which include free and forced vibration of damped and
un-damped systems subjected to different loading functions are solved by MDTM and the results are compared
with the other common methods.

Il.  Differential Transform Method
Function u(t) which is analytical in domain Q can be written in the form of a power series around each
arbitrary point in this domain. Differential transform of function u(t) is given by:

k|
1 d ut)
U (k)

to
(2)

In Eg. (2), u(t) and U(K) are original and transformed functions, respectively. Differential inverse transform of
U(k)

is defined as follows:

L) UK @)
k 0

Combining Egs. (2) and (3), yields the following equation for u(t):

-

LK "k_l
td ou(t)
u(t) .
k
k! dt
k 0 to
(4)

In typical applications, function u(t) is represented by a finite number of terms. Obviously, the accuracy will be
improved by increasing number of terms. Therefore, Eq. (4) can be rewritten as follows:

N
ult) = S UfkE (3)
k=0

Some transformation rules for differential transform method which are useful for practical problems are stated
as follows:
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1) If 2(t) =) (T then 2 (k) = UE Vil
2) If z(t) —icu(t) then Z (k)= oL/ (K) where a is a constant.
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ke :
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exp( f) then 7 (k) k! where .is a constant.
Ll m | m(m - 1}.(m =+ k 4+ 1)
PO G thenz() T T g
-
10)If z(f) —icos(.f o) then Z (k) ﬁCUS ’Hﬂi H 1) where @ and & are constarnts
] - i 2 “R:
IDI z{f) =sin(it + o) then Z (k) ;ﬁsiﬂ L+ ) where & and a are constants
T Tk i .

I11.  Differential Transform Method for Vibration Equation of MDOF Systems
DTM can be applied for solving systems of differential equations with initial values. As stated before,
vibration equation of a discrete MDOF system is in the form of a system of differential equations with initial
values. Therefore, DTM can be utilized for solving vibration equation of these systems. The vector form of the
vibration equation of a discrete MODF system is as follows:

MU(t) +Cu(t) +Ku(t) =p(t), u(0) =A, u(0) =B. ()

Where the mass matrix (M), the damping matrix (C) and the stiffness matrix (K) are nxn matrices and
displacements along degrees of freedom (u(t)) and applied loads (p(t)) are nx1 vectors. n represents the number
of degrees of freedom of the system. A and B are also the vector of initial displacements and velocities,
respectively. The general form of the vectors u(t) and p(t) are as follows:
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u(t) p(t)
ult)y - 1o e ol (7)
u - (f) p_(t
uit)
Eqg.(6)1s a systemlcfn—nrfijna differential equations with mitial values where unknowmns are u (£) ‘
i i i u ."F_ _i

Tosolve Eq. (6) by DTM, first of all differential transformis applied on the system of differential equations and
their mitial values. Consequently, a new system of equations will be obtained as follows:

. L 1id"pit)
Mk )k + 20U (k+2)4C (kMU (k 1) KU (k) ; : (8)
ki gt s
o) LA, UM =B )
Uik L2 Uik i) Uik
Where U (k & 2)= 5 Uk + 1 - Uk =i 1% |, Uyk) fori=1,2,3, ., nare differential
Ulk & 2) Uk 1) U k)
d*pit)
Uamfmnffmrﬁomgjﬁ)anddkp(r} ) __Qi___w
& k)
Lk

Consider U(k), U(k+1) and U(k+2) as new unknowns of the system of Eq. (8). According to initial values
presented in Eq. (9), a recursive relation is obtained from system of Eq. (8) for different values of k. Note that
Ui(k) i=1,2,...,n for different values of k are coefficients of power expansion of function ui(t). By application of
DTM, system of differential equations (6) turns into a series of simple algebraic systems of equations.

1 dk

Inthe systemof Eq. (8), let P (K)= — ! , therefore recursive relation canbe written as follows:
pltkldh || o

Mk ik +2)U (k+2) +Cik + U (k+ 9y KU (k) =P (k). (10)

Since p(t) is a known function, P(k) is also a known vector for different values of k. In each step of process, for
given values of k, U(k) and U(k+1)are known values which were obtained from the previous steps, except for
k=0 that in this case U(k) and U(k+1) are konwn from initial values (9). Therefore, in each step of the recursive
process, only U(k+2) is unknown in the system of Eq. (10).

Recursive relations that are obtained from Eq. (10) for different values of k are as follows:

k0 - 2MU@) +eur) + KUo) = P(0). (11)
k1. | BMUB) - 2CU2) +KUM) = P(1). (12)
k-2 - 12MUA) H3CUR3) i+ KUR) = P2). (13)

Recursive relations in Egs. (11-13) can be solved successively and consequently the coefficients of the power
series of u(t) would be determined. Finally, by applying Differential Inverse Transform, u(t) would be obtained.

IV. Pade' Approximants
Based on differential transform method (DTM) which was described before, in order to achieve an
accurate analytical response of vibration equation, Pade' Approximant should be applied on the truncated Taylor
expansion which is obtained from DTM. Modification of DTM by Pade' Approximant was suggested first by El
Shahed [10] for a SDOF system.
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Pade' Approximantis a ratio of two polynomials which is made by Taylorexpansion ofa fimetionyix) [20]. The

 Padd Approximant of fimetion pf) is miven by

L A (14
MQw (x)
Where Frixland Ouy (x) are polynormials of degrees atmeost L and M| respectively. Coefficients ofthe polynonuals
FPrixc) and Oy (x) are determined by the following power seres:

¥ (x) g:‘am (15)
P ix) i
[x) GLE ofx M) (16)

1: remains unchanged the following

§||-

Since the mumerator and denominator can be multiplied by a constant and

normalization conditionis applied:

Q0 - 10 i Qan

=

Itis reqm.red that Prix) and Oy ix) don't have any conmmon factors. Prix) and Oayix) canbe represented as follow:

Fix) |l g i pXiy pXx2yi...pXxlL,
L o i | IZ L {18)

G x)rq - gx1 g Xx24 b 4G XM,

oA ] 1 2 it

Then, based on Egs. (17) and (18), Eq. (16) can be multiplied by Qm(x) to linearize the coefficients of equations.
Finally, Eq. (16) can be obtained as follows:

B A e 8 Ly = 0
a a8 g %i.i435 o=
St 2 LT _ L MM (19)
g 2 b duh Ll L U,
STILUM T P LI 1 ) ;E:.m'
9Fa
28041 = B
a28141 + a0§2 p2 (20
a 8 e
ar_ L 1[}1 Q’ L p

a Toa Al - T - Ay Moo il ——————— -

Therefore at flrst qg's unknbwns are obtalned from Eq (19). Then, p's unknowns are obtained from Eq. (20) by
knowing g's.

If Egs. (19) and (20) are nonsingular, then they can be solved directly as shown in Eq. (21) [20]. In Eq. (21), if
lower index on a sum exceeds upper index, sum is replaced by zero.
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V.  Modified Differential Transform Method

Truncated power series which obtained from DTM is an approximate solution of the vibration
equation. Usually, the convergence domain of this power series for vibration problems is very small. So that, it
is only accurate in a very small time interval and it is not appropriate for larger time intervals. Using a hybrid of
DTM, Pade' approximant and Laplace transformation leads to increasing the convergence domain of the
solution [10]. In this way DTM is modified and is called Modified Differential Transform Method (MDTM) in
literature. In most cases the solution which obtained by MDTM might be the exact solution. The procedure of
the MDTM is explained in subsequent paragraphs.
For each entry of vector u(t) which is a truncated power series and was obtained previously by DTM, the
following steps should be applied:

1) First, Laplace transform is applied on each entry of vector u(t).

1
Y riz substituted by ';' in resulting expressions from step 1.

L
3! Pade’ approximant of order i is applied on transformed senes which were obtamedin step 2. L and M are
arbitrary and should be smaller than the order of the power series. In this step, Pade' approximant leads to

improvement of the solution accuracy and increases convergence domain of the solution.

4) tis substituted by

5) Finally, inverse Laplace transform is applied on resulting expression in respect of variable s.
Consequently, this method leads to an approximate or accurate solution of the vibration Equation.

VI.  Examples
To evaluate the efficiency of MDTM for solving vibration equations of MDOF systems, a series of
examples are solved by this method. The examples include free and forced vibration of structural systems with
or without damping. The solutions obtained from MDTM are compared with the solutions that result from
DTM and Fehlberg fourth-fifth order Runge-Kutta (RKF45) as a numerical method for solving systems of
differential equations.

6.1. Forced Vibration of a Damped SDOF System

In this example a damped SDOF system subjected to an external load is considered. Vibration equation of the
system is given in Eq. (22):

10t 100t
01u 350u 7.2( e ), u(0) 0, u(0) 0.

(22)

Here, DTM and MDTM are applied for solving the vibration equation and the solutions are compared with the
exact one.
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The procedure of solving the above vibration equation by DTM is as follows:
At first, differential transform is applied on both sides of Eq. (22) and its initial values:

[ wk Jil"uil ki

0.1 kT 2) ™ 380" Uk 7.2 k1 g . »
Ly= 0, U()=0 , (23)
forik =1 012 3.

Eq.(23)tums into the followmgrecursive relation by a shight simplification

- : -t U.lk I—'“é---f

Uk i 2)= — 3500 UKy T2 PR S ). "
L0y 0 UE O, (24)
for ki =012 3,.. |

As described in section 3, UiE) which contams coefficients of power senes of i), canbe calculated by using
recursive relation (24). Thus, the tnincated power senes ofu?) 15 gabtamed as follows:

=N e ! A

i i S ¥ TTTE T T EI ! § c
ult) | 10800 ¢ 297000 £ 4104104 | 653 104 | 1.086557143 107 . @2
Here seven terms ofthe series are considered. Eq. (23) is plottedin Figure (2).

Now, theresults from DTM canbe improved by MDTM. Therefore, Laplace transformis applied on both sides of
Eqg.(23) as follows:

5 i :

i
Llu(ty: 72 (90;'"1" QQUE'_;E';" 6.24000 1[]_;!'5 6.5340000° 10

7 1 ¢ 1
T 7.605900001 107, (26)

&l L

£

By applying MDTM, s is substituted by in Eq. (26) and Pade' approximant of order 4/4is calculated. Then, t is
t L]

substituted by ;=1 and the following eguation is obtained:
s ¥
4 £479.9999
‘ _‘J 4 3 Z s = (27
(0.5999 s +110.0000000 s +4459599998 5! +3.62000000C 10 s+3.5000000417 10

Now, inverse Laplace transfonmis applied on Eq. (27) and solution of the vibration equationis detenmined as
follows:

u(t)— —0.0053 exp( 100 1+/0.02 exp(—10.0/1) —

exp{ﬁ.EQSﬁi '1{]--*5: t)>d (0,014 T cos(59.1608t ) 4+ 0.0096 =sin(59.16081)) @8
ExactsclutionofEq. (22)is also available [1] andis as follows:
wit) [ 00056 sin(59.16 £ 1)+ 0.01467 cos{59.16+ 1) ¢ 0.02 exp{ 10t}): 0.0053 exp( 100f .| (29

Itis seen that MDTM canproduce an analytical solution for Eq.(22).
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It is seen that MDTM can produce an analytical solution for Eq.(22).

In Figure (2-a), the diagrams of function u(t) which result from MDTM and the exact solution are
plotted. Comparison of the curves shows a remarkable accuracy of MDTM. In Figure (2-b), the diagrams of
function u(t) which result from DTM, MDTM and the exact solution are plotted. Comparison of the curves
shows that DTM is only accurate in a very small time interval and this method is not applicable for these
problems.
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Figure 2. Response of the SDOF system, a- exact and MDTM b- exact, MDTM and DTM

6.2. Free Vibration of an Un-damped Two DOF System
In this example, free vibration of a two DOF system without damping is considered. Vibration equation of the
system and the mass and stiffness matrices are given below:

1
o
Mu +Ku =11, uo) = 2|, (o) = o (30
1
Where I 2 C ndik 3 1]
e o1 ° 1)

Here, DTM and MDTM are applied for solving the vibration equation. Alzo, solution of the equation iz obtained
from REKF45 which 15 a useful mumencal method for selving systems of differential equations. Finally, the results are
compared with each other.

The procedure for solving the above vibration equation by DTM is as follows:

Eqg.(30) iz equivalent to the following system of differential equations with mitial values asis stated here:

24 L3 .= 0
1
U u = 0
L 31
W(0)el | (0) - 1. w(0) O] 4 (0)-0;
I, i Z

At first, differential transfonmis applied on all the differential equations of Egs. (31) and the initial values:

2(k s 2k 233U KLU K = O
1 1

Uik L2 k2 UK = 0

TR ()] L SUE 01, U= 0
i 1

2
fork - 0

(32)

(130

[ T -
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The system of Egs. (32) turns into the following recursive relations by a slight simplification:

3U3(k) UsK
Uik 2) ,
2 (k 2)
Uk 2) Ui(k) Uyk),
1
U1(0) : T, Ux(0) 1, Uy(1) 0, Uy(1) O,

fork 0,1,23,... .

As it was mentioned in section 3, by using recursive relations in Egs. (33) and solving the system of
equations in each step, Uy(k) and U,(k) which contain coefficients of power series of the functions u,(t) and
Uy(t), can be obtained. Therefore, the truncated power series of functions uy(t) and u,(t) are determined as
follows:

LLITLTLWT, LT LIl d LT PU"-YEJ. STLITS UL LU LI LS Hfri)l dllkl Hd:lri)l AlT UTLTIIILIITLL A3 LU W

ur  05-0.0125t2, 0.0052t* -0.00018,
(34)
up —1-0.25t2+ 0.0104t* - 0.00026 |

Here seven terms of the series are considered. It should be noted that even if the number of terms of the
truncated power series of uy(t) and u ,(t) are increased, the convergence domain of functions uy(t) and uy(t)
which result from DTM wouldn’t be improved. Therefore, MDTM is employed. For each of the functions us(t)
and uz(t), the following steps would be applied. These steps will be described with more details for us(t).

L (0] | 0.5 0250012481 00721 . 35)

! 5 5 4 [ 5
. . o 1, - , . . . 3.
By applyingMDTM, s is substituted by ¢ in Eg. (33) amd then Pade’ mpproximant of emder 3 iz caleulated Theni

1
1s substituted by
5

and the following equationis obtained:

3 0.5 -0.0004,
: (36)
3 s3' 0.4992s

Finally, mverse Laplace transformis applied on the Eq. (36) and the solution ofthe vibration equationis obtamed
as follows:

ur(t)  0.5008 « cos{0.7065¢)-0.0016 . (37

Itis seen that MIDTM hasproduced an analytical selution for Eq. (30).

Finally, inverse Laplace transform is applied on the Eq. (36) and the solution of the vibration equation is
obtained as follows:

tiff) - 0.5008% cos{0.7065¢) - 0.0016 . (37

It is seen that MDTM has produced an analytical solution for Eq. (30).

In Figure (3-a), the diagrams of function uy(t) which result from MDTM and RKF45 method are plotted.
Comparison of the curves shows a remarkable accuracy of MDTM. In Figure (3-b), the diagrams of function
uy(t) which result from DTM,MDTM and RKF45 are plotted. Comparison of the plotting curves shows that
DTM is only accurate in a very small time interval and again it is not applicable for vibration problems.
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Figure 3. Response of the un-damped two DOF system (ul(t)), a- RKF45 and MDTM, b- RKF45, MDTM
and DTM

The above approach is also applied on function u,(t) and the final result is stated here. Function u(t) which
results

ua(t) —1.0016x cos( 0.7065¢) - 0.0016 , (38)

Results which obtained for function uy(t) are plotted in Figures (4-a) and (4-b). Comparison of the
curves shows that the proposed method in this article has an acceptable accuracy.

1
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Figure 4. Response of the un-damped two DOF system (u2(t)), a- RKF45 and MDTM b- RKF45, MDTM
and DTM

As it is seen again, MDTM produces an acceptable solution for the vibration equations. While in the case of
DTM, the convergence domain is not in any way appropriate.

6.3. Forced Vibration of an Un-damped Two DOF System

In this example an un-damped two DOF system subjected to a harmonic dynamic load is considered. The forced
vibration equation of the system is given below:
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R — C ) o]
Mu +Ku = p(t). WO 4O = hT 39)
Where 0z 0] 3l L 100 ksin(0.8 1)

U I T | A I | R = U 0 '

Similar to the previous example. at first MDTM is applied onthe Eq. (39). Then the resulting solution is compared
with the solution obtained from RKF45.

Eqg.{39) 1= equivalent to the following system of differential equations with initial values:

0.204+ 314 — U2 7100 sinf0.88,
o i+ =g (40)
u1(0) | 0, u2(0)T 0 u1T0) 0, up(0) 0.

7
Now MDTM and Pade’ approximant of order s which were described completely in previous examples are

applied onthe Eq. (40) andits solution is obtained as follows:

L 95.4058" sin{ 0. 80191

T 1372037 sinf 2. 23441) — 3. 0806 + sinf 4. 47201) ,

(41}

U - 992777 sinf 0. 79791~ 27.3013~ sinf 2. 23718 + 3. 0908 * sinf 4. 4720f) .

It is seen that MDTM produces

an analytic solution for the vibration equation.

In Figure (5-a), the diagrams of function u,(t) which result from MDTM and RKF45 method are plotted.
Comparison of the plotting curves shows a remarkable accuracy of MDTM. In Figure (5-b), the diagrams of the

function uy(t) which result from

DTM, MDTM and RKF45 are plotted. Comparison of the curves shows that

DTM is only accurate in a very small time interval.
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Figure 5. Response of the un-damped two DOF system (ul(t)), a- RKF45 and MDTM b- RKF45, MDTM

and DTM

Results which obtained for function uy(t) are plotted in Figure (6). Comparison of the figures shows that the
proposed method in this paper has an acceptable accuracy.
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Figure 6. Response of the un-damped two DOF system (u2(t)), a- RKF45 and MDTM b- RKF45, MDTM
and DTM

6.4. Forced Vibration of Two DOF System with Classical Damping

To show that the proposed method is applicable to the problems with damping, a two DOF system with classical
damping is taken into consideration here. The forced vibration equation of the system is given below:

0 0
Mu +Cu i+ Ku=pt}, U{GF?“{'}‘H . u(o) = (42)
02 0 0.1344 | 0.0448 3 1 100 -sinf 0.8 1)
WhereM | D 0t .C © 00448 00448, K 1 1| andpft) | 0
Eq.(42) 1z equivalent to the following system of differential equations with mitial values:
. . . u
0.2uq " 0.1344u47 0.0448u5 3wy — 25 100° sinf0.8¢,
0.1us | 0.044BuqT 0.0448us ~ vy F = 0. (43)
w07 0, we (0070, wy(D) T 0 [wp(0) 0

6is applied on the vibration equation and the corresponding
MDTM and Pade' approximant of order  solution is as

6
follows:
U exp( 0.4480t)  (0.6366  cOs(4.4496t) 3.0277  sin(4.4496t))
1 ‘ }
exp(  0.1117t) (15702 cos(2.2318t)  13:6310 sin(2.2318t))
exp( 0.0001t)” ( 2.2068 c0s(0.8018t)  55.3216 sin(0.8018t)),
X - X ) .
(44)
u exp( 0.4480t) ( 0.6363 cos(4.4496t)  3.0273 sin(4.4496t))
2 — X -+ X
exp( 0.1122t) « (3.1447 « c0s(2.2333t) — 27.1798« sin(2.2333t))
exp( 0.0002t )« { 2.5084 x c0s(0.7999t) + 59.1304 » sin(0.7999t)) .
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It is seen that MDTM produces an analytic solution for Eq. (42).

In Figure (7), the diagrams of functions u(t) and ux(t) which result from MDTM and RKF45 method are
plotted.

Comparison of the plotting curves shows remarkable accuracy of MDTM for the response of the both DOF.
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Figure 7. Response of the damped two DOF system a- ul(t), b- u2(t)

6.5. Forced Vibration of a Two DOF System with Non-classical Damping

The proposed method in this article can be used for systems with non-classical damping. For this
purpose a two DOF system with non-classical damping subjected to a harmonic dynamic load is considered
here. Forced vibration equation of the system is as follows:

0 0
M Cu” + Ku = pit), u(0) = | u(0)=1=1| (43)
|
02 0 0112 | .0.0896] 31 100 -sinf 0.8 1)
Where M | 0 01 IC | 00896 00898 K 1 1| andpit) | 0

Eqg.(43) i1z equivalent to the following system of differential equations with imitial vahies:

020 4 01120 - 0089w 4 3u —wi = 100« sinf 0.8 £} |
1 1 i & iy
UG CUTI20 5 UYL S e (46)

e 1 5 = *
u(l 0wy = 0 wil)yi=0 "1 di (U= 0.
i . i p

MDTM md Pade’ approximant of order |

zz gpplied on Eg. 46 md the analytical solutions are = follows
i[6 : i

U exp( 0.0001t) ( 05585 cos(0.8002t) 55.4342 sin(0.8002t))

' exp( 0.0924t) ( 0.7925 cos(2.2441t)  13.9605 sin(2.2441t))
exp( 0.6354t) (1.3510 cos(4.4063t)  2.7785 sin(4.4063))
(47)
U exp( 0.6354t) ( 0.7303 cos(4.4063t) 3.1658  sin(4.4063t))
) - . X - X

exp( 0.0930t) (1.6411 cos(2.2442t)  -27.4640 sin(2.2442t))
exp(0.0004t) -0.9108 »cos(0.8005t) +59.1838 sin(0.8005t)) .
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In Figure (8), the diagrams of the functions uy(t) and uy(t) which result from MDTM and RKF45 method are
plotted. Comparison of the plotting curves shows remarkable accuracy of MDTM.
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Figure 8. Response of the damped two DOF system a- ul(t), b- u2(t)

6.6. Free Vibration of a Damped Three DOF System
A three DOF system is considered in this example. Free vibration equation of the system is as follows:

1 [
Mi Cu” Ku 0= u0)243, | 0|, (48)
113 a
700 2583 0471 0 600 - 6007 O
Where M = 0 2 0,C - — 0471 3526 —0.943 K - — 600 1800 |-1200 .
002 0 | -0943. 494 0 |- 1200 3600

Eqg.(4%) iz equivalent to the following system of differential equations with mitial values:

EHE I 2.55‘3H1§ — 0471 4 600y _.ﬁl}ﬂui — 0 ,{ i
1 T & T L | [
207, DATIUT 35260 - 00430 600U, 4 180061 - 120001 =0
2, 004307, 4040 ] F12000%, /336000 =0 (49)
U(0) 1, 002 u(0) = u(0) 2 0 4 (00,1 (0)0!
L S F O Y 4 O N S 4 |

MDTM and Pade' approximant of order 10 .are applied on Eq. 49 and its analytical
__|solutions are as follows:
10
(0.0583 €0s(45.9170t ) 0.0017

u 1.3038 10’ exp( 1.3569t) sin(45.9170t))

1

exp( 0.8246t) (0.0640 cos(27.4474t) 0.0019  sin(27.4474t))
exp( 0.5807t) (0.2107  cos(11.6366t)  0.0105  sin(11.63661)),

up exp(  1.3569t) (0.005 cos(45.917t) 0.0001 sin(45.917t))
exp( 0.8246t) ( 0.0738 co0s(27.4474t) 0.0022 sin(27.4474t))
(50)
exp( 0.5807t) (1.0688  cos(11.6366t)  0.0534 sin(11.6366t)) ,
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36 10  exp( 26.5907t)

cos(45.9170t ) 0.0009
u 13748 107 exp( 1.3569t) (  0.0301 sin(45.9170t))
3 x +- - X — x —

b

exp(  0.8246t) (01117 cos(27.4474t) 0.0034 sin(27.4474t))
exp( 0.5807t) (05852  cos(11.6366t)  0.0292  sin(11.6366t)) .

In Figure (9), the diagrams of functions uy(t), ux(t) and us(t) which result from MDTM and RKF45 method are
plotted. Although this problem has more DOF with compare to the previous examples, but again comparison of
the curves shows good accuracy of MDTM.
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Figure 9. Response of the damped two DOF system a- ul(t), b- u2(t), c- u3(t)

6.7. Free vibration of an un-damped five DOF system
The last example that is considered in this article is free vibration of an un-damped five DOF system. Free
vibration equation of the system is as follows:

1/5 0
2(5 0
MU - Ku = 0, u(0) = 375 . (o) = |0 D
405 0
1 0
i 0 0 G0 2771 0 oo
£ 1 0 00 1 2 —1 0 0
Where M —  C 0 1 00 amdK — (0 1 2 —1 0|
£ 0 0 10 0 0l 1 -1
C 0 C 01 0.0l 01 1

The above equation can be written in the following equivalent form:

g 2w g0,
e o
i (T e HE—:
Ll Soss
U g 20, il =0
i 4-21{4:;_;:0, (52
W i =10
w(0) bl w02 ) U (0 L (02w (0L 1,
il 2 N i) R o * 2
(0} E 0 1-;59_1_?5, U (0 w0y =0 i (0k=_ 0O
i : i it E
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10
MDTM and Pade’ approximant of order o are applied on Eq. (32). In Figure (10), the diagrams ofuj ). uai),

uz(t), ug(t) and us(t) which result from MDTM and RKF45 method are plotted. Comparison of the plotting
curves shows that the response of the whole five degrees if freedom obtained by MDTM has good accuracy.
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Figure 10: Response of the un-damped five DOF system a- ul(t), b- u2(t), c- u3(t), d- u4(t) e- us(t).

VII.  Conclusions
In this article, the MDTM as a recursive semi-analytical method which is a hybrid of DTM, Pade'
approximant and Laplace transformation is generalized for solving system of differential equations. Then it is
applied on vibration equation of linear MDOF systems. Finally, a series of examples which include free and
forced vibration of some structural systems with different number of degrees of freedom are solved by MDTM
and the following conclusions are obtained:
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The results which obtained by DTM don’t have acceptable accuracy in large time intervals, so this method
is not appropriate for solving the vibration equations of oscillatory systems. Therefore, using MDTM is
inevitable.

The results which obtained by MDTM have acceptable accuracy. Also, low computational cost and
simplicity are some superiorities of MDTM with respect to the others methods which are commonly used
for solving the vibration equations of MDOF systems.

The method which is described in this article is usable for solving vibration equations of MDOF systems
with classical and non-classical damping.

In some cases such as vibration of a single degree of freedom system, the solution which obtained by
MDTM is the exact solution.
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