
IOSR Journal of Computer Engineering (IOSR-JCE)  

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 21, Issue 1, Ser. III (Jan - Feb 2019), PP 26-34 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     26 | Page 

An enhanced Sniffing Tool for Network Management 
 

Bukie, P. T.
1
 Oyo-Ita, E.U.

2
Ideba, M. E.

3
 Oboyi, J.

4
 

Department of Computer Science, University of Calabar 

Department of Computer Science, Cross River University of Technology, Calabar 

Department of Computer Science, University of Calabar 

Department of Mathematics, University of Calabar 

Corresponding Author: Bukie, P. T. 

 

Abstract:The use of packet sniffers is most effective in monitoring and troubleshootingcomputer 

networksagainst vulnerabilities mostly threaten data security and integrity. However, an initial investigation 

showed that the efficiency of existing packet sniffing platforms suffered setbacks in the areas of malware 

detection, platform dependency and user interface. As such, an easy graphical user interface (GUI) and minimal 

memory requirements were established asthe most essential features required to effectively monitor network 

activities. This report analyses the limitations of existing packet sniffing tools, using an Object-

OrientedModelling (OOM) design methodology; in a bid to develop a platform independent tool with simpler 

GUI, better performance and security whereby a user can perform different routines built into the packet 

sniffing system by selecting the File or View menus for sub menus to appear for selection, in less time. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 01-02-2019                                                                          Date of acceptance:18-02-2019 

----------------------------------------------------------------------------------------------------------------------------- ---------- 
 

I. Background 
The development of third generation computers introduced supportive capabilities for computer 

networks and integrated communication components into operating systems. This integration brought about 

some colossal vulnerability into computer which has grown significantly as operating systems keeps evolving. 

The innovation, though, has made computers that hitherto used to be safe, vulnerable to different kinds of 

attacks by cyberpunks (Esin, 2017), has also reduced the entire globe into a unique “village”, where people and 

organisations can share data or information with ease. The innovation has brought “terror” to the globe as the 

world has been completely cybernated by cyberneticians. 

Generally, communication takes different forms: from simple voice conversations to complexlight 

manipulations. The process is exponentially more complicated in computerized data communication because of 

the dynamic nature of the type and medium of communication as data is transmitted from one node to 

another(Tillers and Fish, 1999). When a computer communication is established, numerous vulnerabilities in the 

accessibility of the communication do exist in different forms: man, in the middle attack, spoofing, phishing, 

and other cybercrimes. The ability to intercept the communicationdepends on the type and medium of 

communication adopted. Any communication regardless of the type and medium employed (wired or wireless) 

can be intercepted based on available resources and environmental conditions at some point in time. 

Computer network systems allow multiple computers to be interconnected together via suitable 

communication media: cables, microwave, etc. (Forouzan, 2007). This allows for sharing of resourcesand 

peripherals betweeninterconnected systems. Informationtravelson computer networks (local and internet) in the 

form of packets.Packets in computer communications can be defined as a quantity of data of limited 

sizetravelling on the network.  

Unfortunately, network users may not fully be aware of all the underlying services and packetsrunning 

on the network because they do not have the right tools for network administration and management. One of the 

contemporary tools for network management is called “Packet sniffer” or “Network sniffer”.A Network sniffer 

is a tool that can scan the Transmission Control Protocol (TCP) ports to identify which services are currently 

running on the computer. It can also be used to detectintrusionof unauthorized services such as malware running 

on the system.Packet sniffing tool are used in network management, monitoring and ethical hacking of 

information flow across network (Qadeeretal, 2010). Kevin (2003) defined a packet sniffer as a computer 

program or piece of computer hardware that can intercept and log traffic that passes over a digital network or 

part of a network. Sniffers function by capturing individual packet and decoding if necessary, the raw data from 

packets as they flow across networks, showing the values of various fields in the packet, and analysing its 

content according to the appropriate rules for communication (RFC) or other specifications.  

Conversely, sniffers can also be deployed by network attackers as a powerful tool to obtain information 

from a network communication. Nevertheless, Bradley (2017) affirms that packet snifferscan be used 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     27 | Page 

legitimately as network monitors oranalysers byadministrators to monitor and troubleshoot network traffic.She 

went further to say that sniffers can be deployed both for good and bad intentions targeted at a computer 

network. 

Network administrators need to intercept the packet traffic on a network to identify underlying 

problems, detect intrusion and control content transmission for the overall network performance.By analysing 

various properties of the intercepted communications, an administrator can use the information collected to 

diagnose network related performance issues such as, poorly configured devices, system errors, and network 

activities to assist in the determination of network design (Tillers and Fish, 1999).  

Packet sniffing can be used for network traffic monitoring, traffic analysis, troubleshooting, capturing 

username/password credentials, amongst other functions. Practically,Asrodia and Sharma (2013) assert that 

sniffing a non-switched network is easier as is difficult with a switched network due to the use of switches 

which narrow traffic. Vimalesvaran (2015) infers accordingly that, since all machines on an un-switched 

network are attached to the same hub, its network packets are sent to all connected machines, in other words, 

broadcasted to the entire LAN. However, switched networks tend to be faster and cheaper over time as each 

network connected machine is attached to a switch which keeps track of the machines using information and 

sends packets to the specified machine as they arrive. Hence the use of independent sniffer program platforms 

based on neural networks is recommended as an effective approach towards enhancing packet sniffing. 

Most current network sniffer User Interface does not meet the standard of contemporary system user 

interface. Aside the user-friendly interface which makes some current Network sniffer difficult to use, most 

current Network sniffers are not cross platform and as such they are integrated to the kernel of operating system, 

which could pose a serious risk to the computer system. Furthermore, most current Network sniffers are poor in 

term of malware detection activity. 

Wide Area Networks (WAN) have consistently grown in size, complexity and along withit the number 

ofusers from government parastatals, corporate organizations and individuals.Hence, network traffic flowing at 

each node has increased drastically. One thing worthy of note is that, some connections are aimed at hacking 

and defrauding other people connected to the network as well. This entirely compromises the pivot objective of 

computer networks which is to share resources and information. Furthermore, on simple LANs, some customers 

perform malicious third-party activities while others connect to networks and download very large files-an 

action that is capable of reducing network transmission speed, its overall reliability and performance. Capturing 

packets transfer with promiscuous mode will not necessarily be sufficient to see all traffic on the network. 

According to Stallings (2000), different categories of attacks can target the flow of packets from source 

to destination. They include: interruptions, interceptions, modifications, and fabrications. 

 

II.  Literature Review 
Magers (2002) identified the following sniffer components: Hardware, Drive program, Buffer and 

Packet analyser. The hardware is required when working with snifferat times for analysing hardware related 

problems like voltage fluctuation and poor cabling. The main component of sniffer is the drive program which 

captures traffic in network and filters it to restrict data. The buffer on the other hand is a storage device where 

captured data from network is stored. While Packet analysis can be done on real time or stored in buffer, retrieve 

later for analysis. It is possible when data is stored in buffer for analysis to be done both on the header and 

actual data, when we store data in memory or we perform real time analysis, decoder is used to decode the data 

store in packets. 

Bhandari and Ailawadhi (2017) categorisedsniffing techniques into client side: where web page of 

sniffer uses java, script interpreted by user agent to web servers; server side where sniffer attacks from server 

side using http communication protocol; browser sniffing where websites and applications are used to 

misinterpret html, etc. And aid malicious users steal private data; Content Sniffing where alteration is made in 

the stream of bytes which changes the format of the file to malicious contents; Password sniffing aims to crack 

passwords and login information saved in data packets. 

Nevertheless, network packet sniffers can access and inspect data packages flowing through network 

interface of a machine running a network sniffing software. For instance, the PRTG sniffing software uses a 

switch that offers a monitoring port – also called port mirroring configuration. This switch sends a copy to the 

monitoring port of all data packages travelling through the switch and analyses traffic entirely as it travels 

through the switch. 

Similarly, study reports from Frieden (2008) show that network service providers are willing to pay for 

packet sniffing enhancements that provide more protection, privacy and reliability. In a bid to accommodate an 

increasing demand for higher bandwidths and less tolerance for dropped, delayed or lost packet delivery, 

equipment that can examine and prioritise internet traffic at an increasingly granular level and inspect network 

traffic on a packet-by-packet basis are being developed. As such, network service providers now diversify 

service on the basis of allocated bandwidth, routing priority and performance guarantees.Packet sniffing in this 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     28 | Page 

case also entails actively examining packet headers that provide traffic routing information and identify content 

characteristics contained thereof in the packet sniffed. 

There are a lot of works done in packet sniffing for LAN and WAN to monitor network traffic as well 

as its user’s activities to keep the network smooth and efficient. Packet sniffers are of two types: Active and 

Passive (Menga and Timm, 2006). Passive packet sniffers do not respond back, i.e. they only collect data and 

are impossible to detect them (Gandhi et al, 2014) and are useful in areas such as telecommunication, Radar 

systems, medical equipment, etc. Active packet sniffers can send the data in the network and hence could be 

detected by other systems through different techniques (Rupam et al, 2013). For example, active packet sniffer 

can fake replies tothe broadcast or can forward it to a legitimate host. Top passive packet sniffers in used are: 

Tcpdump, Wireshark, ColasoftCapsa etc.(Gandhi et al, 2014). 

The rapid increase in the deployment of computer networks by organisations and individuals has 

increased traffic flow and created more demand for network administrator; thereby creating more need for 

packet sniffers to cope with attacks by cyberpunks. To effectively evaluate an attack against system security and 

choose appropriate mitigation mechanisms, specific security policy defining properties are essential (Kruegel et 

al, 2005). When packets are transfer from source to destination, the packets pass through many intermediate 

devices.  A node whose NIC is set in the promiscuous mode receives all information travelling on network 

(Ansari, Rajeev and Chandrasekhar, 2002). Each NIC has a unique physical address and network. When packets 

arrive at NIC, hardware address of frames match with the physical address of NICs, but if set in promiscuous 

mode then all packets will arrive at that interface. When switches which already pass filtered data are used, then 

some methods to capture all data of network are performed. When NIC accept packets, packets are copied to 

driver memory then it passes to kernel and kernel passes it to user application. 

 

Von, Wulf, Schröder, & Wolf, (2016)presented a real time capable UWB sniffer. Their main design objectives 

were easy setup and usage, and packet timestamps that are as precise as possible. To accomplish these goals, 

they employed the generally famous Wireshark and the hardware timestamping unit of the DW1000 which 

offers a resolution of 15 ps. Their UWB Sniffer comprises of three major components. First the DW1000 UWB 

transceiver which is linked to a STM32 ARM based microcontroller via a SPI interface. The microcontroller is 

connected to the PC through a USB link. On the PC they developed custom application software that is capable 

of reading the captured packets from the USB and forwarding same to Wireshark. This Software is also used as 

a configuration interface for the DW1000. 

 

Talekar, Tidake, & Shinde, (2011) designed a network sniffer with data mining techniques. Their network 

sniffer differs from the previous existing IDS because it automatically detects the type of the user such as 

normal user, spy, unauthorized user, and intruder from the network traffic graph. The system can be used as a 

utility for anti-hacking, Mobile Agent, LAN monitoring as well as for controlling the entire network. 

 

Portoles-Comeras, Requena-Esteso, Mangues-Bafalluy, & Cardenete-Suriol, (2006) presented a performance 

assessment of a common tool used in wireless networking testing: off-the-shelf wireless sniffers. In their work, 

they first, analysed the performance of marketable devices in terms of packet generation rates, illuminating the 

sundry behaviours that can be detected conditional on the hardware deployed for communications. This first 

step serves, then, to analyse the fruition of wireless sniffers adopting the packet capture proportion or estimate 

as a performance parameter Secondly, they flaunt that sniffers can percolate full-rate capture when decorously 

calibrated. However, experimental observations show that Prism-based sniffers begin losing packets when they 

have to capture them at rates above a certain limit. They called this development saturation loss. They further 

demonstrated how, with the adoption of a correlation factor between traces acquired using autonomous sniffers, 

one can achieve a degree of excellence of the traces and the performance of respective sniffer. Lastly, they 

demonstrated how innumerable sniffers can work synchronously in the same device, auditing similar or diverse 

channels. However, in case of using Prism-based devices, they posited that the performance of such architecture 

is circumscribed or restrained at certain packet capture degrees. 

 

Min, Kim, & Ping, (2012)developed a novel and robust multi-channel traffic management scheme in 2.4 GHz 

wireless automation networks architecture for a local automation system. Their system incorporates a channel 

resource optimization scheme using a centralized channel assignment algorithm and an intrusion discovery 

scheme using traffic extrapolation algorithms. To evaluate the performance of their system, they used the 

wireless data measured from an actual wireless test networks. A simulation result of their system demonstrated 

that the scheme is capable of managing the multi-channel status of the networks and present the analysis result 

to network administrator for the network resource configuration of the system. In their system, the security 

manager could detect the intrusion attack to improve the whole performance of the system, and the intrusion 

detection ratio is acceptable to enhance the security efficiently. 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     29 | Page 

 

Cote, Wang, Zeng, & Shi, (2010) in their article, experimentally reconnoitred the proficiency and dependability 

of mote-class sniffers for sensor network watching. They computed the maintainable workload experimentally 

and guessed the buffer overflow likelihood using a waiting line model. In furtherance, they compared per-hop 

loss measurements by the sniffers and the receivers. Lastly, they compared fine-grain timing measurements 

from the sniffers to those from a logic analyser to evaluate the accuracy of delay measurements. In their result, 

they discovered that a sniffer can observe traffic at the rate of 60 packets / sec with diminutive buffer overspill. 

They also demonstrated that per-hop loss measurements from sniffers unveil disparities but are comparable to 

those at the receiver and that per-hop delay measurements from a sniffer are correct (with errors up to 300 μs). 

Their results showed that measurement quality by mote-class sniffers is suitable for many watching devotions. 

 

As a limitation, their work did not compare their model to standard models like MicaZ, and Imote2. They also 

did not equate their model in terms of the loss and delay characteristics as well as capability and fidelity of 

diverse mote platforms. They did not also conduct experiments over all-encompassing networks but used 

simulated circumstantial traffic. Finally, they did not conduct akin experiments in union with electromagnetic 

interference from other shopper or engineering devices. 

 

Appraisal of some Classic Packet Sniffer Software 

Case 1: Tcpdump 
Tcpdump isone of the oldest and most commonly used packetanalyser that uses command line 

statement and works only on the Linux based systems. It allows the user to capture and display TCP/IP and 

other packets being transmitted or received over a network. The modified version of tcpdump called windump is 

a free and open source windows base version of Tcpdump used for packet capturing, network analysis and 

protocol debugging in windows environment.TCPdumppackets can beaccessed remotely and this gives it an 

advantage overother packet sniffers. Hence, it is the most preferred analysis tool with small overhead cost for 

Network administrators intending to work from a different network (McCanne and Jacobson, 1992). Although 

TcpDump has advantage in terms of memory utilization as its installation filesize is just 484 KB, it has poor or 

noGUI as users may be required to study and get acquainted with the command prompt to make efficient use of 

the tool. 

Tcpdump provides standard interface to all common (UNIX-based) operating systems such as Linux 

and FreeBSD as well as windows platform. It is also memory efficient, but has technological limitation in terms 

of GUI, platform dependence and malware detection. 

 

Case 2: Wireshark 

Similar to TCPdump, Wireshark is a free and open- source packet analyser with Graphical User 

Interface in addition to sorting and filtering features.This tool allows for configuration ofnetwork interface card 

in promiscuous modeto make visible both packets on that interface configured addresses and broadcast/multicast 

traffic. VoIP can also be captured and even played if only it is properlydecoded.It supportsbothLinux-based, 

windows and Mac operating systems. Wireshark provides option for network layer filtering with supports for 

geo-localisation of packets (Borja, 2011). 

Wireshark has a user-friendly GUI, displaying the information inside packets in a meaningful manner, 

but its size of installation file is about 18 MB and has a running memory of 81 MB in Windows and aslarge as 

449 MB in Linux. This make it more expensive when compared to TCPdumpin terms of memory requirements, 

and resource utilization. However, neither TCPdump nor Wireshark has intrusion detection function. They 

cannot generate alarms for attacks or hints when a passive attack or anything strange happens in the network.  

 

Case 3: ColasoftCapsa 
 ColasoftCapsasupports most of the featuresof Wireshark but with powerful TCP flow analysis andits easier 

interpretation. It has versatile networktraffic, bandwidth and utilization analysis. It has in-depth packet decoding 

feature with multiplenetwork behaviour monitoring. It has a matrixrepresentation and eclipse visualisation of 

thenetwork. ColasoftCapsa extends the network diagnosis by detectingand locating suspicious hosts that may 

cause problemand alerts computer against network anomalies. One of the demerits of ColasoftCapsa is that it is 

quite expensive because it is a proprietary packet sniffer. 

 

Case 4: Ethereal 

This is an open-source and cross-platform network sniffer that supports quite a large number of 

network protocols and provides core and rudimentary statistical information. It was initially developed for 

Unix/Linux applications based on libPcap (Clincy and Abu-Halaweh, 2005). However, Ethereal is currently 

available for Windows platforms. Because of its “fine” and detailed documentation and superlative GUI, it is 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     30 | Page 

easy to understand and use.The main function for which it was designed was to capture and analyse traffic 

passing through a network segment as well as study the architectures of all the protocols captured. 

Furthermore, it has the capability of displaying the service response times, endpoints list, conversation 

lists, and other protocol statistics. Ethereal can show chats that occur among two hosts, group packets that are 

related to the same TCP connection, and display protocol spectrum spread (Clincy and Abu-Halaweh, 2005). 

Ethereal comprises of three main panes. The topmost pane which displays a summary of captured 

packets; the middle pane, which displays the details of a selected captured packet and the third pane, which 

displays the data from the packet selected in the packet list pane and highlights the field selected in the packet 

details pane.  

One major flaw of Ethereal is that it does not provide graphical representation of statistical data. 

Ethereal is not intended for use in intrusion detection systems. It cannot recommend network fixes. Furthermore, 

because it is open-source software, it lacks the required technical support for application of its kind. 

In Network Sniffers such as tcpdump, packets that are blocked by network gateway firewalls may not 

be seen by the packet sniffer. This is quite a big flaw, considering the standard of developing sniffers. In packet 

sniffers like etherape, due to the fact that it requires root privileges to run, there could be risk to the machine 

running when connected to the internet.  

Network Sniffer such as Snoop is disadvantaged because it is tightly integrated within the Solaris 

kernel; its use is largely limited to Sun-based systems. Though there have been hacks to port it to kernels like 

FreeBSD and Linux, most of them have been fairly limited by number. 

 

 

III. Materials and Methods 
 The study adopted Object Oriented Modelling (OOM) design methodology. TheOOM design method is 

employed to bring out detailed description of the system as well as providing avenue for easy modification of 

the system using flowchart, Context Diagram, Data Flow Diagram to describe the system and gives out a clearer 

view of the modules, procedures, functions and sub-systems alongsidetheir respective relationships and the 

representation of the objects (data and processes) of the Network Sniffer. 

 

Figure 1 shows the OOP model class diagram of the enhance proposed Network Sniffers  

 
Fig 1: Class Diagram 

As represented in figure 1,the designedsystem consists of six classes namely: Sniffer, window, Tool 

Control, Data packet, Sniffer thread and Port scanner class. Each of these performs different function in the 

system. While the Sniffer Classes the data capturing module and contains procedures that implement the packet 

capturing operations, the window class is used for GUI design of the application whichdisplay available menu 

options for user selection. On the other hand, the Tool Control Class is the application’s main module 

responsible for handling the processing of the application’s inputs, invocation of the relevant, application 

modules and formatting of the program output. The Data packet class is used to model the network data packet. 

The class defines the structures of a packetand providemember functions with the responsibility of handling a 

free list for objects of this format. The storing of information related to a single data packet on a network is also 

performed by this class. Another class in OOP model design is the Sniffer thread class. This class models a 

computer process that encapsulates the sniffer module thus enabling the data capture operation to run in the 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     31 | Page 

background without blocking the user’s interaction with the system. Finally, Port scanner class as the name 

implies is the module with routines for implementation of the port scanning operation. 

The system is compartmentalized into five (5) different and independent modules which take care of 

different tasks efficiently. The compartments are as follows: User Interface Module, Packet Sniffing Module, 

Analyse layers Module, Free Memory Module, and Protocol Analysis Module. 

 

User Interface Module 

Actually, every application has one user interface for accessing the entire application. The user interface 

for the proposed system is designed completely based on the end users. It provides an easy to use interface to the 

users. This user interface has an attractive look and provides ease of navigation. The module was developed 

using HTML, CSS and PHP.  

 

Packet Sniffing Module 

This module takes care of capturing packets that are seen by a machine’s network interface. It grabs all the 

packets that go in and out of the Network Interface Card (NIC) of the machine on which the sniffer is installed. 

This means that, if the NIC is set to the promiscuous mode, then it will receive all the packets sent to the 

network. 

 

Analyse Layers Module 

This module contains the code for analysing the layers in the system. Mostly in this module we have to 

discuss about three layers Transport layer, Application Layer, Network Layer. The module shows the graphical 

representation of the usage of different layers in packet capturing time. It can show the graph in two manners 

like line graph and pie graph. 

 

Free Memory Module 

This module analyses computer memory usage at the time of packet capturing. It can show the memory 

size in number format as well as graphical representation. 

 

Protocol Analysis Module 

This module analyses the protocols of the layers. Like Transmission Control Protocol (TCP), User 

Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP) etc. It can show the source port, destination 

port and packet length of the system of each protocol. 

 

The sophisticated features of this system can handle both packet analysis, malware detection and many other 

features. These features enable: 

i. Administrators to show statistics of received packets 

ii. Administrators detect malicious IP addresses according to its number of ARP requests in previously 

specified time 

iii. Administrators to view all network interfaces and enable them to capture data from that interface and 

consequently save captured packets. 

iv. Administrators generate reports that aid effective and efficient decision making. 

 

 

 

 

 

 

 

 

 

 

 

 

Architecture of the New System 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     32 | Page 

 
Fig 2: Architectural design of the Proposed System 

 

Figure 2 is the architectural design. The diagram depicts the working of the system and the integration 

of relevant components. It consists of four fundamental components: sniffer, pre-processor, detection engine and 

output. The activities of the network sniffer are in sequence starting from sniffing, pre-processors, detection 

engine and finally output. That means, when the software sniffs the network packets, it forwards the packets to 

the pre-processor which is responsible for preparing and processing the packets for the detection engine to 

detect the actual packet. Upon detection of the packet, the software gives out output.   

 

IV. Results and Discussion 
Thedesigned network sniffer is platform independent i.e., it eliminates the need for system dependent 

packet capture modules in each application; providing detailed description of a source address, destination 

address and the type of traffic that has been detected. Also it has both Graphical User Interface (GUI) and Non 

Graphical User Interface and can understands and work in the structure of different network protocol. 

Figure 5 is the application main menu with just two menus: File and View menu. The user can perform 

different routines built into the system by selecting the File or View menus for sub menus to appear for further 

selections. The Application Window also have three shortcut icons: Start, Stop and Clear as shown in figure 4. 

 

 
Figure 3: IP / Packet size Selection Window 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     33 | Page 

The input format for the system consists of a combo box where users can select the IP address and the 

Packet number to be buffered. It also has a button called the Start where users can issue command. This is 

shown in figure3. 

Details of the captured packets showing the Source Mac and IP addresses, Destination Mac and IP 

addresses and methods of system on the network at the time it was sniffed and is represented in pie chart as 

shown in Figure 5. The output of the proposed system is displayed inthe general packet analysis window shown 

in figure 5. It shows the full packet analysis as well as the IP, protocols and open ports analysis. It also display 

Packet No, Packet time, Packet source, Packet destination, Packet source port, Packet destination port, Packet 

protocol, packet size, system name and system. 

 

 
Figure 4: Packet Analysis Window 

 

Figure 4 window is divided into two sections: the IP and Protocol sections. This IP window shows the 

protocol version, header length, type of service, total length, identification number, fragmented flags, not 

fragmented offset TTL, source address, destination address. The Protocol section displays the Sequence No., 

Acknowledgement No., Header length, Flags, Window size, checksum and message length. This description is 

for TCP. For UDP, the protocol section displays length and checksum only. Details of the captured packets of 

the protocol used on the transport layer at the time the network was sniffed is represented in a pie chart in Figure 

5. The Pie chart shows percentage, total packets and size of packets used on the transport layer. 

 

 
Figure5: 3D pie chart showing received packet characteristics on transport layer 



An enhanced Sniffing Tool for Network Management 

 

DOI: 10.9790/0661-2101032634  www.iosrjournals.org     34 | Page 

V. Conclusion 

 The result from this research work shows that the develop network sniffer have the capacity to reduce time 

wasted on manually monitoring of network connected node, as well minimized overhead of packet sniffing to 

enable network administrators analyse the network and evaluation of any network for better performance and 

security. Data sniff from the network was used for analysis. Real time data was collected from a life network 

environment and the pattern of the traffic was analysed based on used system resourceslike memory and 

processor which was less compared to other existing system. The packet loss was also less. 

 

References 
[1]. Ansari, S., Rajeev, S., and Chandrashekar, H. (2002). Packet Sniffing: A BriefIntroduction. IEEE Potentials, 21(5), 17-19. 

[2]. Asrodia, P., Sharma, V. (2013) Network Monitoring and Analysis by PacketSniffing Method.International Journal of Engineering 

Trends and Technology,(4)5. [Online] Available from <http://www.ijettjournal.org/volume-4/issue-5/IJETT-V4I5P160.pdf> [July 
2018] 

[3]. Bhandari, A. and Ailawadhi, A. (2017). Literature Review on an Approach to Detect Packets Using Packet Sniffing.Journal of 

Network Communications and Emerging Technologies [online] Available from <www.jncet.org> [June 2018] 
[4]. Borja, F. (2011) Traffic analysis with Wireshark [online] available from 

<https://www.csirtcv.gva.es/sites/all/files/downloads/cert_trafficwireshark.pdf > [August, 2018] 

[5]. Bradley, M. (2017). What is a Network Sniffer? Both Admins and Hackers Can Capture Network Traffic. Retrieved from 
https://www.lifewire.com/definition-of-sniffer-817996 on 24/10/2017 

[6]. Esin, J. O. (2017). System overview of a cyber-technology in a digitally connected global society. Bloomington, USA: 

AuthorHouse. P.67.  
[7]. Magers, D. (2002). “Packet Sniffing: An Integral Part of Network Defense”,May 09, 2002 SANS Institute 2000 – 2002. 

[8]. Forouzan, B.A. (2007). Data Communications and Networking. (4th Edition), McGraw Hill Higher Education, New York. 

[9]. Gandhi, C., Suri, G., Golyan, R., Saxena, P., Saxena, B. (2014) Packet Sniffer – A Comparative Study.International Journal of 

Computer Networks and Communications Security, (2)5, 179–187 [online] available from < www.ijcncs.org > [May 2018] 

[10]. McCanne, S., & Jacobson, V. (1992).The BSD packet filter: A new architecture for user-level packet capture [online] available 

from <https://www.tcpdump.org/papers/bpf-usenix93.pdf> [July, 2018] 
[11]. Kevin, W. (2002) A Layered Model for Internet Policy, 1 J. TELECOMM. & HIGH TECH. L. 37  

[12]. Kevin J. C. (2003). Law of Internet Security and Privacy. Aspen Publishers: California  

[13]. Kruegel, C., Valeur, F., Vigna, G. (2005). Intrusion Detection and Correlation Challenges and Solutions London:Springer 
[14]. Rupam, Verma, A. And Singh, A. (2013) An Approach to Detect Packets Using PacketSniffing ‘International Journal of 

Computer Science & Engineering Survey (IJCSES) (4)3 [online] available from 

<http://airccse.org/journal/ijcses/papers/4313ijcses02.pdf >[June 2018] 
[15]. Vimalesvaran, M. (2015). Packet Sniffing: What it’s used for, its Vulnerabilities, and How to Uncover Sniffers [online] available 

from <http://www.cs.tufts.edu/comp/116/archive/fall2015/mvimalesvaran.pdf> [22 July 2018] 

[16]. Clincy, V. A. and Abu-Halaweh, N. (2005). A Taxonomy of free Network Sniffers for teaching and research. Journal of 

Computing Sciences in Colleges,(21)1, 64-75. 

[17]. Talekar, S. A., Tidake, V. S., & Shinde, P. V. (2011). Intelligent network sniffer. Proceedings of the International Conference & 

Workshop on Emerging Trends in Technology-ICWET 2011. 258-261. doi:10.1145/1980022.1980081. Retrieved from sci-
hub.tw/10.1145/1980022.1980081on 16th December, 2018 

[18]. Portoles-Comeras, M., Requena-Esteso, M., Mangues-Bafalluy, J., & Cardenete-Suriol, M. (2006). Monitoring wireless networks: 

performance assessment of sniffer architectures. 2006 IEEE International Conference on Communications. 
doi:10.1109/icc.2006.254780. Retrieved from sci-hub.tw/10.1109/ICC.2006.254780 on 16th December, 2018 

[19]. Menga, J. and Timm, C. (2006) CCSP: Secure Intrusion Detection and SAFE Implementation Study Guide: Exams 642-531 and 

642-541 John Wiley & Sons: London 
[20]. Min, W., Kim, K., & Ping, W. (2012). A traffic management scheme using multi-channel sniffer for secure wireless networks. 

Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication-ICUIMC 2012. 
doi:10.1145/2184751.2184768. Retrieved from sci-hub.tw/10.1145/2184751.2184768 on 16th January, 2018. 

[21]. Cote, J., Wang, B., Zeng, W., & Shi, Z. (2010). Capability and Fidelity of Mote-Class Wireless Sniffers. 2010 IEEE Global 

Telecommunications Conference GLOBECOM.doi:10.1109/glocom.2010.5683714. Retrieved from sci-

hub.tw/10.1109/GLOCOM.2010.5683714 on 16th January, 2019 
[22]. Tillers, J. S. and Fish, B. D. (1999). Packet Sniffers and Network Monitors. Harold, F. Tipton and Micki Krause (eds.). Information 

Security Management Handbook, 4th (ed.) Vol. 2. USA: Auerbach Publications, p117-145. 

 

IOSR Journal of Computer Engineering (IOSR-JCE) is UGC approved Journal with Sl. No. 

5019, Journal no. 49102. 

Bukie, P. T. "An enhanced Sniffing Tool for Network Management" IOSR Journal of Computer 

Engineering (IOSR-JCE) 21.1 (2019): 26-34. 

 

https://www.lifewire.com/definition-of-sniffer-817996%20on%2024/10/2017
https://sci-hub.tw/10.1145/1980022.1980081
https://sci-hub.tw/10.1145/1980022.1980081
https://sci-hub.tw/10.1109/ICC.2006.254780
https://sci-hub.tw/10.1145/2184751.2184768
https://sci-hub.tw/10.1109/GLOCOM.2010.5683714
https://sci-hub.tw/10.1109/GLOCOM.2010.5683714

