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Abstract: Within the precincts of this study, predictive maintenance deals with a system’s ability to recognize 

and report deviations in components to component’s performance on a real-time basis. When this condition is 

embedded into the composite design of the manufacturing infrastructure, computational models can be developed 

to capture these deviations and convert them into raster codes for in-process behavioral parameter acquisitions 

and analysis. In this paper, we have demonstrated how predictive maintenance can be computationally deployed 

to interpret internal multi-machines transients and behaviors that deviates from standard conditions of 

performance as a result of wear, tear, shatter and vibration spurs. Thus, various manufacturing configurations 

were evaluated for consistency with the simulation model proposed in this study. Consequently, the 

computational syntax necessary for the proposed model have been shown to be direct logical performance 

derivativesof mathematical and statistical expressions used in representation of deployable machine readable 

codifications of the manufacturing process’ behaviors. As expected, the generated simulation data and their 

derivative computations indicate the appropriateness of this model in various multi-machines configuration 

assembliesand were further projected to serve the decision making process with respect to maintenance 

prediction timing, machine capacity scoping, investment portfolio decision analysis and manufacturing 

capability and characterization.  
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I. Introduction 
It should be noted that equipment design computations significantly require inter and intra component 

analysis of stresses and tensions. The component to component inter-relationships established at the design phase 

is usually carried through to the operational stage and utilized to define the system’s logic of operation. This 

characteristically form the basis for reliability assessments and evaluation anticipatory of machine work life 

conditionalities. Thus, operational mode of a manufacturing line, directly connote a factual condition of gradual 

component deterioration resulting from internal and external impacted stresses. This is referred to as wear and 

tear regime of a machine life cycle; and the resultant effect of this development, is a depiction of the original 

operational integrity referred to as its reliability;accordingly, a machine’s reliability distribution is a function of 

its remaining useful life (RUL), design strategy and complexity, which varies with the corporate desires of the 

investor,environmental / legal compliances and reputational anticipations of the manufacturers. 

In view of the foregoing the useful life of a machine or a manufacturing line-up of machines can be 

sustained for a longer time with an effective deployment of appropriate maintenance model or strategy
1
, this 

feature could be more proactive if the appropriate maintenance model is not only recognized but also 

incorporated at the design phase of the venture. 

Further, studies have shown that in-process and real time process data acquisition and analysis should be 

the basis for determination of maintenance type and characteristics
2
suggestive of condition-based maintenance 

(CBM) strategy,
2,3

which largely depends on cumulative operational data, analyzable into operational history of 

the plant in order to establish depletion tendency or likely maintenance directions. This situation is only 

achievable by means of extended periods of component monitoring and in-process surveillance; and implies that 

data generated from this surveillance can further be utilized to carry out the required cost benefit analysis of the 

chosen method. Thus, the maintenance-in-design inbuilt strategy has to be verified for applicability by effective 

comparison with other known models and appropriate deployment of cost benefit analysis. 
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It should further be noted that in-process data acquisition is capital intensive but generally cost effective 

when comparison with maintenance-based on failure regime is conducted. This imply that the benefits expected 

from maintenance regimes that has embedded futuristic and deterministic maintenance programs results a trade-

off in terms of near-optimum cost distribution relativity for a specified operations cycle
4
; this strategy thus 

revolves around condition monitoring of critical and non-critical components within the plant until their 

reliability is no longer guaranteed and they fail.  

However, it should be noted that in a typical multi-system manufacturing set-ups, inter-related 

components fail at various points under different constraints and service conditions. In view of this situation, it 

has been suggested that condition-based maintenance is the most appropriate strategy
5
. Specifically, and in 

response to multi-machine manufacturing conditions, the use of CBM in multi-gear wear conditions have been 

properly investigated experimentally
6
.  

The foregoing thus imply that any applicable operational real-time data acquisition technique must be 

designed to capture multi-system depreciation initiators in the various forms of wear and as to predict their 

possible progression to components failure. This need, further underscores the inability of most investigations to 

venture into CBM strategies that consider multi system conditions, with integrated parameter optimization 

schemes for maintenance scheduling.  

This means that maintenance is only possible when certain threshold operational limits are envisaged 

such the complexity of this model is definitive of benchmark comparison between initial and operational 

parameters. The advantage of this proposition is that multi-system component to component interactions can be 

theoretically and computationally analyzed within the limits of imposed operational constraints on the active 

components. Thus, indicative of end to end process configurations of components inter-relationships and inter-

phase results that can be deployed to enhanceprediction of maintenance stages, within a machine’s lifecycle. 

Notwithstanding the foregoing, certain continuous running or operating plants such as cargo vessels or 

ship, bulky production lines, chemical and process plants, etc., are likely to experience higher cost in 

maintenance downtime as compared with actual maintenance cost
7
.In such a circumstance, the cost of machine 

unavailability far outweighs the cost of maintenance
4,7

. This type of manufacturing strategy thus requires in-built 

real-time maintenance assessment condition that are designed to prompt the operator on the need for certain 

checks given the fact that,known parameter configurations have undergone some variable impacts, thus resulting 

a range of internal transient behaviors. 

 

I. Opportunistic Maintenance Strategy in Combined 

Multi-Components System Conditions 
 

 Although Opportunistic maintenance policy is not new, the implication of this strategy in multi 

machines systems can be a manufacturing system novelty. In view of this position survey reported that between 

1976 to 1991 maintenance models in multi-components situations largely utilize time-based strategies
8
. 

Predictively, this tendency has been subsequently maintained over the years of manufacturing advancement till 

present time. In view of this situation, this study observe that time-based maintenance strategies are better viewed 

as group maintenance strategies. Consequently, some notable work has placed these strategies into three 

identifiable subsets, namely; 

(i) Block-replacement policy: This group of components are fixed
9
 in the sense that their maintenance 

arrangement has joint trajectory where control limit indices are to be deployed. 

(ii) Indirect grouping policy: This policy defines all the range of grouping of components for which average 

attribute determines the possible optimal policy
10

 

(iii) Grouping by economic value dependence: This identifiable group of components rely on their economic 

values to the process. Which implies that if the component does not have comparative advantage to the entire 

process, its maintenance may not be within the range of well-articulated maintenance programs. Components 

 in this range have been adequately summarized into stationary and dynamic grouping models
11

. 

In view of the foregoing arguments, it should be noted that under multi-components maintenance analysis, these 

grouping make relative sense. However, where multi-machine interface is the issue these maintenance models 

may not be appropriate. This implies that under situations of a downtime of a particular machine, in the array of 

machines, independent isolation of such a machine possess significant constraint on the operation of the entire 

system. 
 

II. The Proposed Approach 
 This study thus proposes a combinatorial approach to maintenance on multi-machine situations, by 

advancing the idea that combined preventive and corrective maintenancepolicy as an opportunistic strategy for 

multi-machine arrangement would better support modern manufacturing systems design and application. 

It should further be stated that the combinatorial maintenance arrangement proposed in this paper shall be 

discussed under the structural functionality of multi-machines operational conditions, considered as follows: 
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a)Multi-Machines Functionality by Structured Alignments 
 Machine functionality in modern manufacturing draws from the idea of dependency and operability by 

inter-relativity. In this regard, certain processes and machines are designed to loop into each other such that their 

operational independence is not feasible on account of their shared energy resources, process control strategy and 

many other crucial design contemplations. Be that as it may,the operational performance of these machines can 

be represented by a random variable Xi. Where Xi = 1, an individual machine in the loop has performed within its 

operational limit, at the specified time. However,in cases where performance of the machine is outside the limit 

but within the noted time; the process value and behavior of Xi = 0. 

The foregoing implies that the random variable,Xiis a binary component of the machine performance and it is 

defined as; 

 Xi =  

 

 

 

In the foregoing case where Xi is definable within binary contemplations, the operability of the machines as a 

joint system is determined by the binary random variable ϕ(X1,X2,X3….Xn)which are operational states of the 

machine and defined as; 

 

 

          ………… (1) 

 
 

 It should be noted that the quantity, ϕ is referred to as the structure function of the system and is 

definitively connotative of the n-machines random selection variable. In this regard, the operation of the 

manufacturing template under consideration is a function of itsn-machines and characteristic operations under 

binary codes of 1 when the individual machine operates optimally and 0, when it does not. Under this 

consideration, it should be noted that the structure function ϕ is contemplative of a 2
n
 value, where the points 

within the value is either 1 where operation is optimal and 0, where it is not. The foregoing thus imply that 

manufacturing capabilities do not under this condition entail a passive activity situation of near optimality since it 

is either a yes or no situation. 

 

b) Multi-variate Operability Functions of Multi-Machines Strategy 
 It should be noted that modern manufacturing entails advanced application of interactive technologies 

such as CAD, CAM and CIM. The import of these products and production enhancement technologies is the 

automation of the production process, which has been defined as the technology concerned with the application 

of complex mechanical, electronic and computer-based systems in the operation and control of production
12

. 

Thus, where high technology content is used to define the manufacturing program, then maintenance strategy for 

such infrastructure should also come within the ambit of such technology. The implication of this view, is that 

manufacturing strategies determine the nature and character of maintenance policies and conditions. 

 

III. Multi-Machines Configurationin Series and their Reliability Determinants 
 Although many configurations have been discussed in available literatures, this paper shall evaluate and 

advance the proposed computational simulation approach under series multi-machines manufacturing conditions. 

It is important to note that where manufacturing plants or machines are arranged under series configuration as 

shown below, such machines are placed ahead or below each other in terms of their structural logic of 

functionality. 

 

 
Figure1.Cyclic reversible process machines in series configuration 

 

{1, if machine ioperates satisfactorily within time [0, t] 

{0, if machine ifails to operate within time [0, t] 

 

ϕ(X1,X2,X3….Xn) ={1, if machine ioperates satisfactorily within time [0, t] 

{0, if machine ifails to operate within time [0, t] 
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 In this type of configuration as shown in Fig 1 above, where a machine fails, the entire interconnected 

system also fails. This implies that the manufacturing system performs optimally where all integrated machines 

perform under this condition. Relatedly, an integrated manufacturing strategy that adopts series configuration can 

be interactively analyzed as; 

 

 ϕ (X1, X2 …. Xn) = X1, X2 …. Xn = min {X1, X2….Xn}   ….…….….. (2)  

 

 Thus, equation (2) is relevant to the discussion on the basis that Xi is either 1 or 0. This makes the 

structure function assume the position of 1 if each machine Xi equals 1. In this line of argument assuming two 

machines are placed in series such that one is the engine (i.e. forcing function) and the other is the force 

transmission as shown in Fig 2 below. 

 

 
Fig. 2 Series configuration of ϕ(X1, X2) 

 

 The foregoing Fig. 2 implies that the manufacturing strategy deploying machines or plants will perform 

satisfactorily or optimally if and only if, the machines in the assembly perform optimally. Thus, the failure of one 

is the failure of the entire manufacturing assembly. Implying that; 

 

 ϕ (X1, X2) = ϕ (X1) + ϕ (X2)      ...………….(3) 

 

Which means that; if the performance of the function is guaranteed,  

 

ϕ(x1, x2) = X1 X2        .…………… (4) 

 

and; 

 

ϕ (1,1) =1, ϕ (1,0) = ϕ (0,1) = ϕ (0,0) = 0     .……………(5) 

 

 It should be noted that equations (3), (4) and (5) forms the programmable kernel for automatic failure 

data acquisition agents. These agents are integrated as read-able sensors, relays and actuators designed to collect 

and store data in the most convenient manner for retrieval and processing when the machine satisfy state equation 

(4) and (5). Accordingly, this paper observesthat in advancedoperations and maintenance integrated systems, 

alarms are not triggered when the integrated machines perform optimally
13

. Consequently, this study finds that 
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when sensor encodings indicate a deviation from pre-set configurations, alarms are triggered on for preventive 

maintenance decision and necessary action.  

 

 
 

IV. Multi-Machines Configuration in Parallel and their Reliability Determinants 
 It should be noted that parallel machines configurations of n-components could be defined as a system 

that fails if all components fail. Conversely, this definition also applies where a system performs satisfactorily 

with all machines operating simultaneously. Thus, parallel machines configuration utilizes the practice of 

redundancy where some machines are designed or incorporated into the manufacturing system to enable it 

operate optimally in situations where an important machine fails. In view of the foregoing. The computational 

structure function for a simulation of parallel configuration of an integrated machine network could be 

programmed and coded in response to the following expression:  

 

ϕ(X1, X2 …, Xn) = 1 – (1-X1) (1- X2) …. (1-Xn) = max {X1, X2 … Xn}   …………….6 

 

 Accordingly, it has been observed that equation (6) is a complimentary redundancy expression 

indicative of the fact that each machine Xiis either 1 or 0 and thus connotes a sense of inter-related buffer 

production system. Thus, under this redundancy regime, the computational structure function assumes the 

definitive value of 1, if at least one of the machine Xi equals 1, due to a pre-programmed operational syntax, for 

preventive maintenance data acquisition
14

. Thus, in view of equation (6) two parallel machines placed by each 

other as shown in Fig 3 below; 

 
Fig. 3. Two Parallel Machines (One redundant) 

 

As shown in Fig. 3above, an integrated system of two Machines A & Bthat have parallel configuration imply that 

although both are in operation at the same time, both simultaneously serve as a redundant machine to each other 

under the following programmable simulation syntax;  

 

ϕ(X1, X2) = 1 – (1-X1) (1-X2) = X1 + X2 – X1 X2,           …………7  

and 

ϕ (1,1) = ϕ(1,0) = ϕ (0, 1) = 1, ϕ (0,0) = 0            …………8 

 

In view of the foregoing, equations (7) and (8) proposes an automated data acquisition initiator that support a 

predictive syntax for a failure proofed manufacturing situation. Thus, data acquired during the machines optimal 

operational phase are also processed and stored in a proper retrievable manner. Thus, where this parallel system 

is in place, the efficiency of the system resulting improvement in the processes and functional capability of the 

integrated network of machines is significantly guaranteed under the redundancy regime of the configuration. As 

it can be seen in Fig. 2, the central control agent or valve can be activated on the event of failure of either of the 

machines, without necessarily shutting down of entire the system for maintenance. 

 

V. CombinatorialMachine Coherency Configuration and their Reliability Determinants 
 This studyfurther proposes a network of systems utilizing a combination of parallel and series machines 

configurations. Under this system, the integrated machines operatean aout of q sequence, whereby the series 
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configuration component is held as kout of n, and this applies for all instances where k=n; and the parallel 

combination is also akout of n sequence, where k = 1. 

The cumulative simulation syntax of the foregoing combined system indicates that if it is a k out of n system, 

then can it can be programmed to follow the syntax in equation (9)in an iterative manner; 

 

ϕ(X1, X2 ……, Xn) =          …………9 

 

 

 

 

 

 

 A Crucial view of the foregoing equation (9) indicate that it is expected that optimal performance of 

such integrated system defined by this equation would be dependent on the performance of one or more 

machines. Thus, general performance is coherently dependent on the combination strategy, such that the 

performance of one or more machines results an improved performance of the entire machines in that network. 

Mathematically it could be assumed that if Xi≤yi for i = 1, 2, 3, ….. n then their structural function becomes; 

ϕ (y1, y2 y3 ……. yn) > ϕ (x1, x2, x3 ……. xn)         …………..10 

 It is important to note that machines integrated under combinatorial coherency are more expensive but 

arelong term investment friendly due to their low operational downtimes
13

. 

 

VI. Simulation of Performance by Reliability Determination of Series Configuration 
 This study has observed that the structure function of an integrated system of n-machines could be 

assumed to be a binary random variable in the assumed values of 1or 0. Consequently, reliability of such as 

system can be expressed as; 

 

R = P{ϕ (X1, X2, X3 ……. Xn) = 1         ………….11 

  

where P, connotes a cumulative probability as an operational value dependent on the structural function 

of the individual machines probabilities.  

Further, where an integrated system of machines is placed in series, the reliability of such systems may be seen as 

either dependent or independent. However,if such a configuration is under series arrangement, the reliability of 

such a system could be stated as; 

 

R = P{X1 X2…… Xn = 1} = P{X1 = 1, X2 = 1 ………… Xn = 1}  ..………....12 

It should be noted that equation (12) could be simulated under conditional probability of dependent or 

independent variables; in that case equation (12) assumes some cryptographic characteristics that can be 

programmed and coded under the following syntax; 

 

R= P{X1=1} P{X2=1|X1=1}P (X3=1|X1=1,X2=1… P {Xn=1|X1=1…. Xn-1=1………13 

 a            b  c  

 

 

 A careful perusal of equation (13) indicate that the variables under “a” possess a reliability which 

depends on the probability that machine X1performance≤ 1. While the variables under “b”indicate that an inter-

relationship exist between machine X1 and machine X2 such that the functioningcan both affect each other due to 

interdependency. Thus, it implies that machine,X2 will perform optimally if and only if machine, X1also 

performanceoptimally. Assume that machine X2 is not well clamped on a horizontal base, the vibration 

conditionsensuing from the operation of machine,X2can result a low performance on machine X1. This same 

situation holds true for machines X3 in relation to machine X1 in the “c” term of equation (13). 

 It should be noted that in all three cases mentioned above, the analysis of evaluation of their conditional 

probabilities assumes very unconventional dimensions and as such difficult to be ascertained under this study. 

However, where these integrated machines do not affect each other’s performances, they could be said to be 

independent of each other and this narrows the reliability of such integrated machines to; 

 

R = P {X1 = 1} P {X2 = 1} P {X3 = 1} …… P { Xn = 1}       …..……..14 

 

1, 𝑖𝑓 𝑋𝑖 ≥ 𝑘

𝑛

𝑖=1

 

0, 𝑖𝑓 𝑋𝑖 < 𝑘,

𝑛

𝑖=1
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Based on the foregoing expression in equation (14), the integration ofmachinesX1, X2 and X3 are independent of 

each other’s performance, in which ease their reliability is a function of the probability distribution of the random 

variables Xi which can be established as; 

P {Xi = 1} = Pi         ……………15 

and  

P {Xi= 0} = 1- Pi        …………….16 

 

In view of a system of integrated machines under independent performance regime, the reliability of such 

integrated system becomes a function of its probability distribution, such that; 

 

R = R (P1, P2………. Pn)       ……………17 

 

VII. Reliability Based Performance Predictive Simulation 
 Under this section of the study, we shall depict some reliability based performance simulation, centered 

on the machines integrated configuration under discussion. Further, reliability prediction simulation under series 

configuration as stated earlier, reliability of integrated machines under independent series configuration can be 

expressed as; 

R(P1, P2, P3……, Pn) = P{ϕ (X1,X2, X3…….,Xn) = 1}   …………18 

 = P{ (X1X2X3…….,Xn = 1} 

 = P{ (X1=1, X2=1, X3=1,…….,Xn=1} 

 = P{X1=1} P{X2-1}…….. P{Xn=1} 

 = P1P2P3 ………Pn     …………..19 

 The reliability equation (18) and its probability resultant equation (19), can be used to computationally 

simulate an integrated machine performance over a period of time where standard probability P of specific 

performance is determinable. In order to prove the operability of this proposed simulation, let’sassume that five 

machines are configured in series with predetermined individual reliability values of X1=0.98, X2=0.97, X3=0.95, 

X4=0.93 and X5=0.92 respectively. Assuming these machines were designed to depreciate at an annual rate of 

X1=0.02, X2=0.03, X3=0.04, X4=0.03 and X5=0.05 respectively. Thus, a reliability simulation in consonant with 

equation (19) for the determination of the system’s reliability value after 5 years of optimal operational 

performance will produce table 1 below. 

 

Table 1 Computational reliability prediction from machines depreciation rate 
Machines Year 

 

Reliability 

1 2 3 4 5 Depreciation 
Rate 

X1 0.98 0.015 0.030 0.045 0.060 0.075 0.02 

X2 0.97 0.022 0.045 0.067 0.089 0.112 0.03 

X3 0.95 0.029 0.058 0.087 0.117 0.146 0.04 

X4 0.93 0.021 0.043 0.064 0.086 0.107 0.03 

X5 0.92 0.035 0.070 0.106 0.141 0.177 0.05 

Cumulative depreciation  0.122 0.246 0.369 0.493 0.617  
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In view of the foregoing, the iterative simulative computation syntax forTable 1 is as follows: 

let,R=P1P2P3P4P5 

 

Where P=individual probability =0.98x0.97x0.95x0.93x0.92=0.77 

  

This implies that thejoint or cumulative reliability of the machines which makes the system available for 

the sixth year operation is based on the probability of individual reliabilities of the machines under series 

configuration over the five years of consideration, i.e. R = 0.77after five years of deployment. 

Consequently, using equation (19) to determine the reliability of each of the machines in the series configuration, 

we have the simulation syntax as; 

 

Rint
.
Rind

.
R

.
Y         ..…………20 

 

where,  

Rint- reliability of all integrated machines in series configuration 

Rind- reliability of individual machines 

R  -rate of depreciation per annum 

Y  -the year under consideration 

 

Thus, cumulative deprecation,could be resolved by using the expression,  

 

Dc =  𝑅 X1 + X2……Xn 5
𝑦=1        ………….(21) 

 

where,Xn =5 

then,  

 

Dc= 0.122 + 0.246 + 0.0369 + 0.493 + 0.617 = 1.85%  

 

Therefore, the cumulative depreciation, Dc = 1.85% of the original value of the configuration or 98.15% is the 

new value of the reliability of the machine, which is available for the sixth year deployment. 

 

VIII. Discussions on the Model 
In view of the foregoing, it can be established that 1.85% of the original reliability value of the machine 

have depreciated after five years of active optimal performance. The importance of this predictive model is that it 

can be performed manually by direct computation of the parameters defined in the various simulation equations 

and can also be programmed by writing coded computer programs and software that will interpret interface 

results from real-time recording implantsactivated with embedded data acquisition sensors and relays. 

 

As could be seen from Table 2 and its consequent graph, increase in depreciation arising from machine 

wear and tear results lowering reliability factor and low availability of the machine for subsequent deployment. 

This means that machine availability reduces as depreciation negatively influences the reliability of the system. 

Further, from Table 3 and its resultant graph, it could be seen that increasing cumulative depreciation maintained 

a single line trajectory indicative of machine to machine interactions and shared reliability. This imply that 

individualistic reliability could have indicated an upward trajectory instead of a line trajectory as shown. It should 

consequently be pointed that reduction in reliability (as could be read from the graph) is as a result of the 
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increasing cumulative depreciation which went down to the finding of 1.85% in five years of in-service 

simulation modelling. 

The beneficial purpose of this model is that it is relevant in modern manufacturing conditions and can be 

used for facility scoping for determination of financial or economic value or worth of a current manufacturing 

concern. Further, in addition to supporting financial and investment decision making, this model can also 

enhance the manufacturing executive’s machine deployment planning with respect to yearly production turn out 

in line with machine aging performance capacity.  

Finally, this simulation model gives the maintenance engineer the sense of the internal condition of the 

machines, thereby enabling situations of statistical predictive maintenance on the ground that a perusal of Table 

1, can quickly result an appropriate predictive maintenance decision in concrete terms of non-probable reliability 

values.  
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