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Abstract:Neuronal outgrowth assessment is useful to understand the development of peripheral or central 

neurons and their regeneration after wounding. It consists in the determination of the length of the cell 

extensions (neurite length) using photos of neuron cultures. As the manual determination of neurite length is 

time-consuming and operator-dependent, many semi- or fully-automated methods have been developed. Most of 

them have been designed to analyze fluorescence microscopy images which allow clear delineation of cell 

bodies and neurites from the background. In this paper, we propose a new easy-to-use fully automated computer 

vision methodbased on denoising, background subtraction, edge and envelope detection, and designed to 

analyze compressed images (JPEG format) of non-fluorescent living neurons. A statistical tool was also 

integrated in the program to provide turnkey data to biologists. The reliability of our program was tested using 

images of differentiated PC-12 cell culture. Statistical analysis showed non-significant difference between the 

manual determination and our automated method. 

Keywords:Light microscopy, image processing, living sensory neurons, neurite length, automatic processing, 

statistical analysis tool. 
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I. Introduction 
Neuronal growth assessment may be helpful in all neurobiology fields, such as the central nervous 

system development and the connectome understanding, or for the study of the sensory neuron development and 

regeneration after wounding. In the skin nerve endings permit the perception of temperature, pain, 

pruritusandtouchand take part in skin homeostasis [1].Theymay be responsible for abnormal 

sensations(paresthesia) occurring in various conditions when they are altered(sensitive skin, wound healing, 

etc.)[2, 3].Therefore, there is a growing interest in the protection of these sensory neurons and in the 

development of products to alleviate the symptoms of paresthesia. In that context, neuritogenesis assays have 

been developed to assess the neuronal outgrowth in the absence or in the presence of cosmetic and 

pharmaceutical ingredients, growth factors,and neurotoxic agents. 

Differentiated PC-12 cells and primary neurons are frequently used as neuron models of 

neuritogenesis[4, 5].At the end of the in vitro culture of those cells, photos are usually taken to determine the 

neurite length using software such as ImageJ [6-9]. The major difficulty of this manual image analysis method 

lies in the laborious neurite detection and tracing within the whole neuron network visible on each picture. 

Furthermore, neurites are often ramified and the total length is much harder to assess. As a consequence, the 

manual determination of neurite length is very time-consuming and operator-dependent while an automated 

method quickly produces reproducible results. 

A number of approaches to measuring neurite outgrowth have been designed [10-14], most of them 

work with fluorescence microscopy images: a previous fluorescent DNA labelling by DAPI or Hoechst 

associated with a specific cytoskeletonimmunolabeling helps to respectively delineate the nucleus and the 

cytoplasm from the background [9, 13-18]. Other methods also use images acquired through phase-contrast 

microscopes [19-21].All of these methods yield reliable results and overall, were designed with friendly and 

easy-to-use graphical user interfaces (GUI) for biologists. Nevertheless, these methods have the disadvantage of 

using fixed (killed) neurons to allow fluorescent detection, inducing additional costs, especially in the case of 

kinetic assays.To overcome these constraints, we developed a new program designed to work with images 
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acquired using light microscopy and JPEG lossy image format, still frequently used in biology. Our program is 

centered around an interface geared towards batch processing, outputting measurements in comma-separated 

values (csv) files to maximize automatization. It also includes a statistical analysis tool that ensures the data 

follows a normal distribution before making comparisons. 

To validate our fully-automated method for the assessment of neurite length, we worked with 

differentiated PC-12 cells previously cultured with and without sulfated exopolysaccharides. The algorithmic 

results were compared to those obtained using the manual measuring method. This article is organized as 

follows: first we present the experimental conditions and the manual measure technique, we then delve into the 

steps that form the computer vision based method for measuring neurites. We conclude with statistical analysis 

of the two methods and discuss the results. 

 

II. Image Acquisition & Manual Determination 
2.1 PC-12 cell culture  

Proliferating PC-12 cells (ATCC, Teddington, United Kingdom) were seeded at 7.9.10
3
 cells per cm² in 

12-well microplates and maintained at 37°C in a humidified atmosphere containing 5% CO2. They were 

cultured for the first day in Dulbecco’s Minimum Essential Medium F-12 (DMEM-F12, LONZA, Basel, 

Switzerland). Then, the medium was removed and replaced by DMEM-F12 supplemented with HC, NGF to 

induce the neuronal differentiation of the PC-12 cells. Two days later, this medium was renewed and an EPS 

dilution or an equal volume of phosphate-buffered saline (PBS) was added to each well. Each culture condition 

was performed in duplicate. 

 

2.2 Exopolysaccharides 

Two lyophilized exopolysaccharides (EPS) provided by Polymaris Biotechnology (Brest, France) were 

tested: EPS 15 and EPS 268. They were dissolved at 1% w/v in sterile water to perform stock solutions. Each 

EPS was added to differentiated PC-12 cells at a final concentration of 100 µg/mL or 10 µg/mL. The effect of 

EPS on the neurite outgrowth was evaluated after a 2-day incubation. 

 

2.3Neurite outgrowth assessment and acquisition 

Differentiated living PC-12 cells were observed and photographed using a DLSR camera fitted on an 

inverted optical microscope (respectively E-510 and CKX41, Olympus, Tokyo, Japan). About eight to eleven 

photos were randomly taken per well, depending on the PC-12 cells distribution and the proportion of isolated 

neurites. Photos were 1600x1200 pixels JPEG images with an RGB color profile. They were analyzed with the 

ImageJ image processing program (NIH, Bethesda, MD, USA): segmented lines were traced following up the 

path of isolated neurites and their lengths were measured in pixel count to assess the neurite lengths. If 

applicable, the total length of ramifications was added to that of the corresponding neurites. Results were 

exported to a csv file for data analysis. 

 

2.4 Automated method for neurite outgrowth assessment  

The PC-12 cell culture images used to develop this method were those taken to carry out the previous 

manual determination.Each color channel, separately or combined, does not provide more information than the 

black and white conversion of the image; this is why all the treatment in the algorithm is done to the black and 

white version of the images. The successive steps of the method are described in the following section. 

 

III. Computer Vision Based Method 
3.1 Image preprocessing 

Given the variability in image quality and background content (noise and defects, figure 1.a), the first 

treatment step consists of optimizing the photograph’s contrast and filtering part of the noise. This is done for 

two reasons: to allow for better edge detection and to have accurate thresholds for binarizing the images. 

First, a local contrast adjustmentis performed, followed by local Gaussian filtering(local Laplacian 

filter [22]) to increase contrast and smooth the background (effectively removing most of the defects) while 

keeping the edges intact (figure 1.b).This step is necessary to increase the number of detections in the edge 

processing part of the algorithm, additionally, if the defects (parasite streaks and grooves in the background) are 

not removed, they are detected as neurites. 
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Figure 1 -Denoising and edge detection 

 

To find an appropriate threshold for each image (an intensity value with which to binarize the image), 

images need to have a consistent intensity throughout. This problem becomes apparent with images showing the 

edges of the culture wells: dark circular areas form and throw off the mean intensity values (figure 2.a), 

meaning a part of the image would be ignored if simple thresholding was applied. In addition, either the image 

has what we consider a normal aspect, or it is too bright, with neurites and cell bodies showingopposite color 

intensities and contrasts. To palliate both problems, we extract the picture’s background through approximation 

and Gaussian smoothing (figure 2.b) and we balance the original image with the result. For bright images, the 

background is completely subtracted,for “normal” images, 25% of the background is subtracted (figure 2.c). 

 

 
Figure 2 - Background estimation and subtraction 

 
3.2 Edge detection 

Once the images are enhanced and present less noise, the different items of interest may be isolated. To 

detect the neurites and the cell bodies, Canny’s edge detection method is used [23, 24] because it outputs 

continuous lines and, in our case, provides better detection results than Sobel or Prewitt methods. This produces 

lines describing most of the shapes in the image: the neurites, cell bodies and some background noise (figure 

1.c). With this technique, several lines are generated for a single edge and additional lines wrap and overlap in 

the cell bodies. To eliminate the noise detected after the Canny process, pixel clusters with a small (empirical) 

number of elements are removed. Results are filtered once more to discard the lines presenting a high 

eccentricity factor (curvature), thus removing only cell bodies (figure 1.d). 

 

3.3 Envelope detection 
To isolate and completely erase the cell bodies from the image, leaving only the neurites (figure 4.a), 

thebinarized version of the photograph is used (figure 3.a). A threshold is computed from mean intensities so as 

to keep only the cell bodies (in the images used, neurites are dark and cell bodies have a white “glow” around 

them). To smooth and close the gaps in the shapes, the convex hull of each cell body is calculated [25], 

providing an envelope around the detected areas; the resulting shape is then dilated to ensure that the whole 

region is appropriately covered (figure 3.b). If the whole cell body region is not removed from the edge-

detected image, lines that do not represent neurites will be processed andwill inadequately contribute to the 

length measurements. 
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Figure 3 - Thresholding and dilation to isolate cell bodies 

 

3.4 Edge Processing 
Once edge detection has been applied and cell bodies have been removed from the image, the 

remaining lines can be processed (figure 4.a). To identify individual neurites, neighboring lines are grouped 

with an 8-pixel range (an empirical range suited to the image definition and neuron density of the culture wells). 

Connected and adjoining lines are given a label (a number from 0 to the maximum number of grouped shapes), 

these can then be displayed with a color gradient for debug and development purposes. Removing the cell 

bodies from the edge-detected imagecuts part of the lines, producing small bundles of parasite pixels. These are 

filtered out by removing labels containing a small number of elements. 

Afterwards, labeled lines are thickened to form continuous blobs, tripled or quadrupled contiguous 

lines become one. These expanded shapes are skeletonized [26] with the aim of reducing them to single lines 

describing the neurites. The presence of multiple sets of labeled lines offsets the skeletonization process and 

produces up to two roughly parallel lines. Another operation of dilation and skeletonization yields the expected 

results. Effectively, two iterations of the dilation and skeletonization process are applied to reach the final result 

(figure 4.b). Each detected neurite, with its ramifications, is measured by summing the white pixels contained in 

the associated label. These results are tallied in a matrix and exported in a csv (comma-separated values) file 

compatible with software like Microsoft Excel or MATLAB. In addition, the calculated lines are superimposed 

on the original photograph and shown next to the program interface; photos in a batch treatment stack up, 

allowing the operator to check the results once the process is completed (figure 4.c). 

 

 
Figure 4 - Neurite skeletonization process 

 

IV. Theory  
To allow the program to make meaningful comparisons between samples and to produce accurate 

statistical results, the sets of measures from the csv files (with populations well over 100 elements) 

shouldapproximately follow a normal distribution. To find out if our samples follow such a distribution, a chi-

square test with 5% risk [27]is used. Manual counts as well as automated countsfor our culture well images all 

failed the tests (figure 5.a), meaning the null hypothesis that the datasets follow a normal distribution was 

rejected with 5% risk.  To use relevant tests such as Student/Welch tests, it is therefore necessary to classify 

(segment) the data in every set (figure 5.b). Segmentation is automatically performed if the program concludes 

that the datasets do not follow a normal distribution. Segmented sets all pass the chi-square test with 5% risk. 

 



Image processing methods for the automated assessmentof neuronal outgrowth 

 

DOI: 10.9790/0661-2102044955                                  www.iosrjournals.org                                            53 | Page 

 
Figure 5 - Data normalization 

 

On the newly-obtained datasets (which follow a distribution that can be approximated to a normal 

distribution thanksto the high sample population), length means need to be compared to assess the substances’ 

impact on neuron development. To compare sample means, Student tests are usually conducted; however, such 

a test requires sample sizes and variances to be equal, which is not the case for our datasets. This is why 

Welch’s t-tests (with 5% risk) are used to judge of mean equality. Mean neurite length differences may tell us 

whether the global growth was affected or not.  

 

V. Results 
5.1 Experimental results 

This sub-section reports the results that allow us to conclude vis-à-vis the efficiency of our automated 

method. Firstly, the potential discrepancies between duplicate culture wells need to be assessed for each 

chemical. A significant difference between duplicates suggests an experimental error.Once the duplicate 

compliances are validated, their measurements can be pooled together to form denser datasets for statistical 

analysis. 

The average neurite length and the statistical analysis results for the manual method and for the 

computer vision method of assessment are summarized in table 1(a and b). Culture well 1 is tested against well 

2 with Welch t-tests. The resulting p-value may be used to draw a conclusion concerning mean equality. For our 

purposes, with a 5% risk, we conclude that all means are equal throughout the tests.The computer vision based 

results allow us to reach the same conclusions as the manual method when comparing mean length for the 

control PBS and the EPS. The mean length measures from the operator stand around 80 pixels while the means 

from the algorithm are in the vicinity of 50 pixels, consistently lower throughout the tests. This can be due to the 

fact that neurite bases are cropped when the algorithm discards cell bodies from the image. 

 

5.2 Discussion 

The assessment of neuronal outgrowth is essential in in vitro experiments using peripheral or central 

neuron cultures. In the skin, the development of sensory neurons is necessary to achieve proper development of 

the whole organ, and a loss in epidermal nerve fibers decreases the epidermal thickness [1]. Thus, the cosmetic 

and pharmaceutical industries show a growing interest for the protection and the regeneration of the epidermal 

nerve endings. The determination of the protective or the soothing effects of ingredients is assessed by culturing 

neurons with the molecules of interest and determining the neurite lengths, which reflects neuronal health. 

The manual determination of the neurite lengths is quite robust but highly time-consuming. Given the 

significant number of candidate molecules and the multiple dose-response assays required for each one, the 

development of automated determination methods is needed. Although many methods have been developed, we 

propose a new one based on the automatic recognition and measurement of neurites from neuron culture JPEG 

photos without prior fluorescent staining to delineate the cell bodies and the nerve fibers from the background. 

One of its advantages is that it requires no user setup prior to use, there are no extra skills that the operator needs 

to acquire in order to properly use the software. In addition, manual neurite counts are extremely operator-

dependent, the strength of the algorithm lies in the reproducibility of the results it gives and the speed at which it 

gives them. The program we developed takes about 30 seconds per image depending on neurite density. Thus, 

the operator can now simply check the resulting images once the process is over.The recorded measurements are 

then ready to be imported in software such as Microsoft Excel for further analysis. Alternatively, a statistical 

analysis feature is available on the graphical user interface (GUI), allowing on one hand to pool together 

duplicate culture wells if necessary and on the other hand, to automatically classify (normalize) and test datasets 

for mean and variancedifferences, offering a complete set of tools for assessing neuronal development.  
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The program developed here is aimed at processing compressed and noisy (background defects) images 

taken without expensive equipment. Software such as HCA-Vision [17], FluoroSNNAP [28], and NeuriteTracer 

[13] for ImageJ offer automated solutions for measuring neurites. The results they give are usually very accurate 

but their detection methods are based on fluorescent photography. Complete packages can be found in products 

like BioTek’s Lionheart FX, proposing fluorescent microscopy coupled with image analysis. Fluorescent images 

are ideal for image processing, allowing to clearly distinguish areas of interest, but it is an expensive technique 

that requires fixing (therefore killing) the cells. Software using phase contrast microscope images [19-21]for 

automated neurite counts exist but require equipment that labs may not have. One very versatile program allows 

its users to treat light microscopy images: CellProfiler [29], but it appears that it was not designed to measure 

neurites. 

Because of the JPEG compression, background noise and the geometry of the culture wells (giving rise 

to edge effects darkening the photos), image optimization (preprocessing) is an unavoidable step and adds to the 

total runtime of the program. Neurite shape is quite inconsistent, rendering line detection techniques like 

Hough’s [30]ineffective; the tests we conducted with this method yielded unreliable and impracticalresults. 

Frequency analysis of the images such as edge detection through high frequencies was equally inconclusive 

because of the JPEG compression and noise. Edge detection with Canny algorithms (providing edges with 

continuous lines) is still the most appropriate for our problem [23, 24]and gave more accurate results compared 

to Sobel or Prewitt methods. Neurites are detected in a satisfying way in the first phase of the program, but in 

the cell body detection phase, part of the growth cones are cropped out to suppress surrounding noise. Since this 

is done throughout all the images, length proportion remains similar. It is also worth noting that our algorithm 

was tailored to detect neurites for PC12-cell cultures seeded at a 7.9.10
3
 cells per cm² density. 

 

VI. Conclusion 
We have taken advantage of MATLAB’s computing power to obtain an adaptable code able to deal 

with images presenting background noise and inhomogeneous light exposure as well as a variety of neurite and 

cell body shapes. This algorithm should reduce the time biologists spend measuring neurites in culture wells. 

With a 2012 2.3 GHz Intel i7 processor, the total treatment of a 5-photo batch takes around 140 seconds (an 

implementation with libraries such as OpenCV would significantly reduce the processing time).Photos may 

come from experiments with non-fluorescent living neurons and standard visible-light cameras; no additional 

investment is required from the lab. 
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