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Abstract: The operation and management of dehydration systems for the determination of liquid and gas dew 

points is becoming increasingly complex. Several methods for prediction of the liquid and gas dew points have 

been developed by researchers. These methods differ in the available inputs, their classification and the horizon 

of the prediction. In this paper, a nonlinear auto-Regressive with eXogenous (NARX) input model has been 

proposed. The data driven modelling approach was adopted in the proposed model with System Identification 

toolbox in MATLAB software. Implementation and simulation of the model which was achieved by feeding the 

measured input data into the developed model shows that the model is able to reproduce the dew-point 

(measured output) of the dehydrator bed, and hence gives a good prediction of it.  
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I. Introduction 
The operation and management of dehydration systems for the determination of liquid and gas dew 

points is becoming increasingly complex. Several methods for prediction of the liquid and gas dew points exist 

in some literatures. They differ in the available inputs, their classification and the horizon of the prediction. 

Some of these methods are based on linear models such as Linear Regression (LR), Auto-Regressive Moving 

Average (ARMA) and Auto-Regressive (AR) [1]. However, because of the nonlinear behaviour of the liquid 

and gas dew points, researchers propose several nonlinear models based on wavelet-based methods, fuzzy 

models, Adaptive Neural Fuzzy Inference Systems (ANFIS) Random Forests (RF), k-Nearest Neighbours 

(KNN) and Artificial Neural Networks (ANN) [2-4]. In this paper, the work of the actual data driven modelling 

will be carried out with System Identification toolbox in MATLAB program. The dehydrator bed model will be 

developed with the modelling structure of the Non-linear Auto-Regressive with exogenous input (NARX). 

However, several dehydrator bed models were developed for other model structures such as linear Auto-

Regressive with exogenous input (ARX) model, state-space model, Box-Jenkins (BJ) model and Autoregressive 

Moving Average with exogenous inputs model (ARMAX).  

 

II. Molecular Sieve Dehydration Bed Regeneration Process 
Once a molecular sieve dehydrator bed that is on-line completes the dehydration cycle, it immediately 

switches and commences the process of removing the moisture and other heavier components adsorbed by the 

molecular sieve during the process of the natural gas stream dehydration [3,8,10]. 

However, Akpabio and Aimikhe in [1] pointed out that the regeneration process is achieved by flowing 

a hot gas from the bottom to the top of the molecular sieve dehydrator bed which is in an opposite direction to 

the direction of flow of the wet natural gas stream during the dehydration process. More so, the regeneration of 

solid desiccant of which the molecular sieve is a type can be successfully carried out in two ways namely: 

 The thermal swing regeneration and  

 The pressure swing regeneration 

Of the above mentioned ways of carrying out regeneration of the dehydrator beds, the thermal swing 

regeneration is the easiest and more pronounced approach. In a large scale practice when using thermal swing 

approach, the temperature at which the hot gas is introduced into the dehydration bed is determined using the 

properties of the molecular sieve [1]. Furthermore, Barrow and Veldman in [3] clearly state that the temperature 

for the regeneration process of a molecular sieve should be higher than 450 °F and it is usually about 550 °F. 

However, [1] reveals that if the regeneration gas temperature is too high, it will make the dehydration adsorption 
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capacity reduce faster and if the regeneration gas temperature is too low compared to the design, it will cause 

the bed to still have water in the adsorbent at the end of the bed regeneration cycle which can lead to carrying 

over of water into the cryogenic processing plant. The dehydration bed regeneration temperature is very 

important to the operations of the molecular sieve dehydration beds as it can increase or decrease the life span of 

the molecular sieve. The pressure swing regeneration approach as explained in [1] is an alternative to the 

thermal swing approach. It is applied in situations where: 

 Adsorption process is carried out at high pressure 

 Regeneration process is done at a low pressure and 

 Dehydration beds with shorter cycle times owing to the fact that changes in pressure as a process parameter 

occurs faster than changes in the temperature. 

According to [5-7], to achieve the desired and an accurate dew point of the natural gas stream leaving 

the dehydrator prior to the cryogenic process, certain process parameters must be maintained within the 

specified ranges in the natural gas stream to the molecular sieve dehydrator bed. Such parameters include: 

 the feed gas temperature (°F)  

 the feed gas flow-rate (MMscfd) 

 the feed gas pressure (psi) and  

 the pressure drop within the dehydrator beds (psi) 

These parameters are critical to the operation of the molecular sieve dehydration bed in achieving a 

good dew point for the natural gas liquid production.  However, the pressure drop and the feed gas flow-rate 

tends to be the two most critical parameters that require strict monitoring during the operations of the dehydrator 

beds as they have the potential of causing breakdown of the molecular sieve into finer particles, thus affecting 

the water content of the natural gas stream exiting the dehydrator bed. Table 1 shows a typical operating 

parameter of a molecular sieve dehydrator beds as pointed out in [7]. 

 

Table 1: Typical operating conditions for molecular sieve dehydration beds [1] 

Feed Rate 10 - 1500 MMscfd  

Superficial Velocity  Approximately 30 - 35 Ft/Min 

Pressure Drop Approximately 5 psi, not exceeding 10 psi 

Cycle Time  4 - 24 Hours; 8 or a multiple thereof is common  

  Temperatures and Pressures 

 
  Adsorption Temperatures: 50 to 115 °F 

 

Pressures: 0 to 1500 psig 

  Regeneration Temperatures: 400 to 600 °F 

 

Pressures: adsorption pressure or lower 
 

 

 

III. System Modelling Structure 
The choice of model structure is crucial in data-driven modelling as the replication of the plant model 

or process solely depends on it. Considering a simple structure with a static gain K mapping a set of input data 

u(t) to the output data y(t), the output can be expressed as; 

                                                            (1) 

The structure may or may not be able to approximate a complex system such as that of the molecular 

sieve dehydrator bed with a reasonably level of accuracy. Although there are banks of model structures available 

in System Identification, the dew point of natural gas leaving the molecular sieve dehydration bed for natural 

gas liquid production would first be estimated with a Nonlinear Auto-Regressive with exogenous inputs 

(NARX) model as suggested by the advice command. The structure of this model is written as shown in the 

generalized equation; 

        (2) 

Where: 

  is a function that relies on known number of previous input  and output , 

  is the number of past output terms used to predict the current output, 

  is the number of past input terms used to predict the current output and 

  is the delay from the input to the output, specified as the number of samples  
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The Diagram of Nonlinear Auto-Regressive with eXogenous (NARX) input model 

The block diagram of the NARX model is shown in Fig. 1. 

 
Figure 1: block diagram of nonlinear auto-regressive with exogenous (NARX) input model 

 

The NARX model is made up of standard and custom (if specified) regressors, linear and nonlinear 

functions. NARX model first, computes regressors from the current and past input values and past output data. 

Regressors are simply delayed inputs and outputs, and could be written as shown in Fig. 1. Unless it is specified, 

all regressors are inputs to both the linear and the nonlinear function blocks of the nonlinearity estimator. The 

nonlinearity estimator block can either use one of the functions or a combination of nonlinear and linear 

functions for transforming the regressors to the model output. There are several nonlinear estimators such as 

tree-partition or binary tree, wavelet networks, sigmoid networks and multi-layer neural networks.  

In this research, a tree-partition estimator is used for the model estimation and its function is given by the form; 

 

                                                                  (3) 

 

Where:  is a piecewise-linear function of ,  is scalar, and  is a 1-by-m vector of the model regressors. The 

network or binary tree is presented with the equation 

 

                                               (4) 

 

Where: 

  is 1-by-m vector,  is a scalar called output offset, common for all elements of the partition,  is a 1-by-

(m+1) vector and the subscript  represents each node of the tree. 

In further optimization of the NARX model parameters after estimation, the wavelet estimator is use and it 

structure is as shown in (5) 

  

     (5) 

 

Where: 

 is a scaling function, 

  is the wavelet function, 

  and  are m-by-p and m-by-q projection matrices, correspondingly.  

Also,  is a 1-by-m vector and represents the mean value of the regressor vector computed from estimation data, 

while , , , , and  are scalars with the s subscript for scaling parameters, and w subscript for wavelet 

parameters.  is a p-by-1 vector,  and  are 1-by-q vectors. 

 and  are radial functions given as  

 

                                                                (6) 

 

                                                    (7) 

 Model Evaluation Criteria: Models in this project were evaluated based on the following criteria: 

 Fitness (FIT), 

 Loss Function (V), 

 Final Prediction Error (FPE), 
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Fitness Evaluation Criteria: Models are evaluated based on FIT values calculated as follows: 

 

                                      (8) 

 

Where: variable  is the measured output,   is the predicted model output, and  is the mean of the measured 

output . A 100% of fitness depicts that the estimated model perfectly captured the system dynamics, and 0% of 

fitness indicates a very poor fit. 

 

Loss Function Evaluation Criteria: The Loss Function V is well-defined by the following equation: 

 

                                    (9) 

 

Where,  represents the estimated parameters and  is the output error. The model structure with the lowest V 

shows the best model. 

 

Final Prediction Error (FPE) Evaluation Criteria: FPE is written as  

 

                                                 (10) 

 

Where  is the loss function,  is the number of estimated parameters,  and is the number of values in the 

estimation data set. The best model produces the least . 

However, the evaluation criteria are critical and are used in the selection of the Non-linear auto-regressive with 

exogenous input model. 

 

IV.  Selection of NARX Model Orders 
The next step, after selecting a suitable model structure either from expert knowledge of the plant or 

intuition, was to configure the model for estimation. This was done by specifying model orders and delays. In 

research,  denotes number of past output terms used to predict the current output,  denotes number of past 

input terms used to predict the current output and  is delay from input to the output in terms of the number of 

samples. In order to select a suitable model order, the loss function evaluation criteria was used and various 

choices of delays were evaluated. However, the structure with the smallest loss function depicts the best model 

order. Selecting model order of (  = 1:4,  = 1:4) and trying out time delay between 1 and 10, the loss 

function (V) for the various models were calculated. Consequently, several combinations of model orders were 

generated as a 256000 by 7 matrix using the estimation and validation data sets. Amongst these, the best model 

order was found to be [3,4,2,3,2,1,9]; where the first digit being 3 in the row denotes  = 3, the next three digits 

being 4,2 and 3 denotes  = [4 2 3] and the last three digits being 2, 1 and 9 stands for  = [2 1 9].  

Furthermore, the program coding for the model order selection is as shown in Appendix I, lines 151 - 170. 

 

Model Estimation 

In training or estimation of the model for the dew point of the natural gas, half of the obtained and pre-

processed data were used in order to capture the entire attribute present in the data and to replicate a suitable 

representation of the data. Using model order of [3,4,2,3,2,1,9], where  = 3,  = [4 2 3] and  = [2 1 9] as a 

guide, ten model orders were selected by trial and error method. The experiment and estimation of the ten 

NARX models were carried out using tree partitioning as the nonlinear estimator. Fig. 2 Plot of estimated 

Nonlinear Auto-Regressive with eXogenous (NARX) input Models with 1-step a-head prediction and the results 

in a percentage best of fit. 
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Figure 2: plot of estimated nonlinear auto-regressive with exogenous (narx) input models 

 

Model Validation 
It is necessary to examine the models-output plot to see how well the models’ outputs match the 

measured output in the validation data set. The validation of the estimated ten non-linear auto-regressive with 

extra input models were done using a set of program codes. The plot of percentage of fitness of the ten non-

linear auto-regressive with extra input models after validation is as shown in Fig 3. 
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Figure 3: plot of validated nonlinear auto-regressive with exogenous (NARX) input models 
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Model Parameter Estimation and Optimization 

In estimating and optimizing the Nonlinear Auto-Regressive models with exogenous inputs (NARX), 

the MATLAB inbuilt function known as pem was used alongside with the wavelet nonlinear estimator to 

perform parameter estimation and optimization. This function adopts parameters that produce the best fit, by 

minimizing errors between the measured and the modeled outputs as well as the loss function during the 

estimation process. Although, there are several search methods available in System Identification that are used 

for iterative parameter estimation, which include the Grid Search method, Gradient Search method (Steepest 

Descent-Newton, Quasi-Newton, Levenberg-Marquardt) and Random Search method (Bremermann Optimizer), 

this work uses Gradient search method with a Gauss-Newton subspace to estimate and optimize the model 

parameters based on prediction error criteria. The graphs in Figs. 4 and 5 illustrate the level of fitness of the 

models to the measured estimation and validation data.  
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Figure 4: plot of model parameter estimation of NARX input models 
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Figure 5: plot of model parameter validation of NARX input models 
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Simulation and Cross-Validation 
The first step in this regard is to compare the NARX models with linear model structures to verify 

whether the suggestions given by the "advice" command in System Identification toolbox was appropriate. Four 

different models were estimated for this purpose and they include Auto-Regressive with exogenous input (ARX) 

model, state-space model, Box-Jenkins (BJ) model and Autoregressive Moving Average with exogenous inputs 

model (ARMAX). Ten models were estimated for each of these structures. however, the structures of ARX and 

state-space models developed were based on the on the model orders used in developing the NARX models, 

while BJ and ARMAX have slight differences in their parameters and thus, were computed with another set of 

model orders. Furthermore, the BJ has the following parameters: nb, nc, nd, and nf which are orders of the B, C, 

D, and F polynomials, respectively and nk is the input delay, specified as the number of samples. Model one of 

the BJ sets would have a model order specified as  = [1 2 1],  = 2,  = [4 2 1] and  = [0 1 1].  

The respective best fit plots for all the linear models after estimation and validation with one-step 

predicted response are shown in Figs. 6, 7, 8, and 9. 
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Figure 6: linear ARX models estimation 
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Figure 7: linear state-space models estimation 
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Figure 8: linear box-jenkins (bj) models estimation 
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Figure 9: linear ARMAX models estimation 

 

Simulation and cross validation are procedures for testing whether a model is capable of reproducing 

the measured output when driven by the actual input. This simply means computing the model response using 

input data and initial conditions. The difference in initial conditions of estimated model and the actual system 

can affect and cause disparity between the simulated responses and the measured responses. To minimize this 

variation, the initial state values from the data must be estimated and specified the initial states as input 

arguments to the simulation algorithm.  
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V. Conclusion  
In this paper, data driven modelling was carried out with System Identification toolbox in MATLAB 

program. The dehydrator bed model was developed with the modelling structure of the Non-linear Auto-

Regressive with exogenous input (NARX), as its suitability was suggested by the advice command. However, 

several dehydrator bed models were developed for other model structures such as linear Auto-Regressive with 

exogenous input (ARX) model, state-space model, Box-Jenkins (BJ) model and Autoregressive Moving 

Average with exogenous inputs model (ARMAX). The first step in the model development process was to select 

an optimum model order of the NARX model using loss function as the evaluation criteria for both estimation 

and validation data sets, and the best model order indicated the smallest loss function value and was found to be 

[3,4,2,3,2,1,9]. Based on this model order, ten other orders were selected by trial-error approach and used for the 

estimation of the Non-linear Auto-Regressive with exogenous input (NARX) model. Another criterion called 

best fit was used to visually assess the viability of the estimated dehydrator bed model. Equally, the validation 

of the trained model was accomplished using the set of program coding with the validation data set and their 

percentage of fit were plotted. Finally, NARX models was simulated by feeding the measured input data into the 

developed models to see how well they could reproduce the dew-point (measured output) of the dehydrator  bed. 

Plots of the measured output against the simulated output were done for both estimation and validation. 
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