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Abstract: 
In this paper we suggest and proposed a new conceptual method layout of image super resolution (SR) 

restoration with SRCNN and Opencv combination. The objective of (SR) super resolution is to recuperate from 

a low-resolution input a high resolution image. We will also use the Library of Open Source Computer Vision. 

Open CV. Originally developed by Intel, Opencv is used for many applications for real time computer vision. (In 

this specific project, were going to use it to pre-and post our images). We must transform our images between 

the RGB frequently, BGR and the color spaces of Ycrcb. This is important due to the training of the SRCNN 

network in the Ycrcb color space on the luminance (Y) channel. 
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I. Introduction 
In this research paper, a (SRCNN) was applied and evaluated using the post processing approach, 

(which is the use for enhancing image resolution emerging with deep learning super resolution method and 

SRCNN using the training data collection, because the SRCNN was trained. The proficient SRCNN was used to 

recreate a high-resolution image of a low resolution image, which was taken from the original image of the test. 

Two image quality parameters are calculated for quantitative analysis and contrasted with techniques of 

traditional linear interpolation. The reliability of the SRCNN image restoration process was suggestively 

advanced than methods of linear interpolation. The high-resolution picture recovered by the SRCNN system has 

been fully preserved and, in fact, equivalent to the initial reference image for a magnification of roughly x2. 

These results suggest that the SRCNN system outperforms the linear method to increase image resolution 

significantly and the results suggest that SRCNN can be used to create standard images to high resolution 

images.  

The SRCNN authors depict their network and display the corresponding sparse-coding method4 of 

their method, a commonly used program of picture SR learning.  

An essential and informative feature of their work because it demonstrates how examples can be 

applied to popular models of CNN. 

The SR super resolution objective is to retrieve a low-resolution input a high resolution image. As 

indicated by the name, the SRCNN is a profound neural network capable of mapping low resolution to high 

resolution images from one end to the next. This allows us to use the image of low resolution images to improve 

their quality. We use three image quality metrics: the maximum noise signal ratio (PSNR); the mean squared 

error (MSE), and the structural semblance (SSIM) indices to evaluate the performance of this network. 

There are the following operations of the SRCNN: 

1. Preprocessing; upscale the image is of low resolution to the desired high resolution. 

2. Extract function; Extracts from an up scaled LR image a set of feature maps. 

3. Nonlinear mapping; Maps of low resolution to high resolution patches feature maps. 

4. Reconstruction; Proceeds from high resolution image from high resolution patches. 

 

As we implies the title, the SRCNN is an advanced neural network that knows how to model low 

resolution objects at high-resolution end-to-end. It helps us to use it to enhance the image quality of pictures that 

are of low resolution. To measure this network's efficiency, we will use three performance indicators: 

PSNR (peak signal to noise ratio), MSE (mean squared error) and SSIM (Structural Similarity Index). 

In contrast, we will use three quality metrics. In short, we can get better quality of a larger image with a better 

SR approach even if we get a little image at first [1][2]. 
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Fig 1. Degraded to reconstructed image 

 

II. Network For SRCNN 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Restoration of better quality of a larger image with a better SR approach (Image source SRCNN by 

Chao Dong et al) 

 

III. Collection Of Libraries And Packages 
The Initially, we will import and print out version numbers of the libraries and packages we will use 

in this project. This is a significant step in ensuring that everyone are on the same page.  

Allowing others to replicate the results we get.[ 2]  

#check package versions  

import sys 

importkeras 

import cv2 

importnumpy 

importmatplotlib 

importskimage 

print (“Python: {}”. Format(sys. version)) 

print(Keras: ['format(keras._version_J) 

Import the necessary packages 

fromkeras.models import Sequential 

fromkeras.layers import Conv2D 

fromkeras.optimizers import Adam 

fromskimage.measure import compare_ssim as ssim 

frommatplotlib import pyplot as plt 

 

import cv2 

importnumpy as np 

import math 

importos 

# python magic function, displays pyplot figures in the        notebook 

%matplotlib inline 
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IV. Metrics Of Image Quality 
Let’s describe a few functions to measure SSIM. PSNR and MSE in order to start with, we imported 

the Structural Similarity (SSIM) index directly from the Science Kit Image library but we will have to define 

our own PSNR and MSE functions. In addition, these three metrics are wrapped in a single function we will 

manage further. 

# define a function for peak signal-to-noise ratio (PSNR) 

defpsnr(target, ref):      

    # assume RGB image 

target_data = target.astype(float) 

ref_data = ref.astype(float) 

diff = ref_data - target_data 

diff = diff.flatten('C') 

rmse = math.sqrt(np.mean(diff ** 2.)) 

return 20 * math.log10(255. / rmse) 

# define function for mean squared error (MSE) 

defmse(target, ref): 

 # the MSE between the two images is the sum of the squared difference  

err = np.sum((target.astype('float') - ref.astype('float')) ** 2) 

err /= float(target.shape[0] * target.shape[1]) 

return err 

# define function that combines all three image quality metrics 

defcompare_images(target, ref): 

scores = [] 

scores.append(psnr(target, ref)) 

scores.append(mse(target, ref)) 

scores.append(ssim(target, ref, multichannel =True)) 

return scores 

 

V. Image Restoration And Preparation With SRCNN 
Use Keras to deploy (SRCNN) 

The SRCNN is a deeply convolutionary network of neural that learn to end-to-end low resolution 

images to high resolution. In this method that the quality of images of low resolution images can be improved. 

Use image quality measurements to measure the performance of this network with:[3][5] 

 PSNR, (peak signal to noise ratio. 

 MSE, (mean squared error). 

 SSIM, (structural similarity index) 

 Using Opencv for process images. 

 Converting images among the Ycrcb color spaces, RGB and BGR. 

 Prepare image with SRCNN network in Keras. 

 SRCNN network, evaluate and deploying 

We will also, pre-process and post our pictures using OpenCV. 

Our images are also converted back and forth frequently between the color spaces RGB, BGR and 

Ycrcb. The SRCNN network was trained in the color area of the Ycrcb on the luminance(Y) channel.[ 3] 

 

VI. Method 
First we preparing degraded pictures by introducing excellence alterations by resize rise and depressed 

new degraded images are of equal resolution to the images of base. By resizing the image, we save the original 

pixel information in minor areas so that the information was lost when the image was sized. This has been 

accomplished using Opencv"cv2 library" as it is designed for a computer vision application in real time. The 

despoiled images are placed in the foundation directory [4]. 

SRCNN Model Construction: 

# define the SRCNN model 

def model(): 

    # define model type 

    SRCNN = Sequential() 

    # add model layers 

SRCNN.add(Conv2D(filters=128,kernel_size=(9,9),kernel_initializer='glorot_uniform',activation='rel

u', padding='valid',use_bias=True,input_shape=(None,None,1)))        
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SRCNN.add(Conv2D(filters=64,kernel_size=(3,3),      

kernel_initializer='glorot_uniform',activation='relu',padding='same', use_bias=True)) 

SRCNN.add(Conv2D(filters=1,kernel_size=(5,5),kernel_initializer='glorot_uniform',activation='linea

r',padding='vali d', use_bias=True)) 

    # define optimizer 

adam = Adam(lr=0.0003) 

    # compile model 

SRCNN.compile(optimizer=adam, loss='mean_squared_error', metrics=['mean_squared_error']) 

return SRCNN 

 

VII. Image Processing 
This will include processing conversions for cropping and color pace weight the reference and 

degraded images: in opencv, images will be loaded as channels of BGR modcrop(BGR): # necessary because 

when we run images through SRCNN based on kernel sizes and convolutional layers, some of these external 

pixels will be lost, the images will become smaller and that’s why it is.Pre-processing the images: This 

processing will include cropping and color space conversions, load the degraded and reference images, in 

opencv, images are loaded as BGR channels [5][6].Modcrop(): #necessary because when we run images through 

SRCNN based on the kernel sizes and convolutional lavers, we are going to lose some of these outside pixels, 

the images are going to get smaller and that' s why it is necessary to have a divisible image size,ie, divisible by 

scale by cropping the Images size.shave(): crop offs the border size from all sides of the image load(deploy)the 

SRCNN: To save us the time it takes to train a deep neural network, we will be loading pre-trained weights for 

the SRCNN.midcrop(): # required because if we run SRCNN images based on kernel sizes and convolutional 

lavers Well lose some of these visible pixels the images will be smaller and that is why it is important to have a 

divisible image size, that is, divisible by scale by the width of the image. 

Shave(): crop offsets the image boundaries on all sides SRCNN load deploy: Save us time to train a 

deep neural network we're going to load pre-trained SRCNN weights 

My execution differs from the original paper, including: 

• Using Adam algorithm with a learning rate of 0.0003 for  all lavers for optimization. 

• The openev library, not the matlab library, should be used to produce the training data and the tested 

data. 

• I didn't set different learning rates in different layers, but it still worked. 

Ycrcb has also some variations in colors on Matlab and Opencv. So you can use the code written 

with matlab if you wish to compare your results with research articles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Result training for epochs on images with upscaling factor 

Model testing: Once we've checked our network on all our input images, we can perform a single 

image super resolution. In addition, we can measure the MSE, SSIM and PSNR, on the Images we generate 

after processing. Convert the Ycrcb image "image 3 channel-Y channel srcnn trained”. Produce object 

standardize and slice because SRCNN works on 3D depth inputs I one-channel inputs or one-dimensional 

inputs. 

Implement the srcnn super resolution: 

The prediction image back to its range after the system output normalized (0-255) 

The prediction channel, Socopy Y, canal is back to image and converted to BGR only exists in the prediction 

image.Remove the border from the reference and degraded image so that all our images are of the same size (ref 

degraded, (low, res), and output, (high, res)) [7][8]. 
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VIII. Calculation Of Image Quality Metrics 
All metrics of image quality have improved. PSNR, improved MSE, destroyed and SSIM, increased 

from deteriomted image to restored image save to the output directory new high-resolution images, and save the 

reconstructed, high resolution images to folder. [8] 

Other than books, capitalize only the first word in a paper title, except for proper nouns and element 

symbols. For papers published in translation journals, please give the English citation first, followed by the 

original foreign-language citation See the end of this document for formats and examples of common 

references. For a complete discussion of references and their formats, see the IEEE style manual at 

www.ieee.org/authortools. 

We now have some image, we want to create versions of these same images in low resolution. We can 

do this by redimensioning the images, Use Opecv both downwards and upwards. There are many methods of 

interpolation for resizing images; we’ Il use bilinear interpolation, however. 

Formerly we have produced these images with low resolution we can save it in a new directory 

[9]. 

# prepare degraded images by introducing quality distortions via resizing 

defprepare_images(path, factor): 

    # loop through the files in the directory 

for file in os.listdir(path):  

        # open the file 

img = cv2.imread(path + '/' + file) 

        # find old and new image dimensions 

h, w, _ = img.shape 

new_height = h / factor 

 

new_width = w / factor 

        # resize the image - down 

img = cv2.resize(img, (new_width,      new_height), interpolation = cv2.INTER_LINEAR) 

        # resize the image - up 

img = cv2.resize(img, (w, h), interpolation = cv2.INTER_LINEAR) 

        # save the image 

print('Saving {}'.format(file)) 

cv2.imwrite('images/{}'.format(file), img)prepare_images('source/', 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. With a few training iterations, the proposed SRCNN exceeds the bicubic baseline, and performs with 

moderate training the SC, sparse coding based method. With more training iterations, the performance can 

be further improved. 

 

http://www.ieee.org/authortools
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IX. Check Images With Low Resolution 
To make sure image quality measurements are accurately measured and images are degraded, let’s 

compare between our reference images. PSNR. MSE and SSIM and the degraded images we've just produced. 

To ensure that our image quality metrics are being calculated correctly and that the images were effectively 

degraded, lets calculate the SSIM PSNR and MSE and between our reference images and the degraded images 

that we just prepared. 

# test the generated images using the image quality metrics 

for file in os.listdir('images/'): 

# open target and reference images 

target=cv2.imread('images/{}'.format(file)) 

ref=cv2.imread('source/{}'.format(file)) 

# calculate score 

scores = compare_images(target, ref)  

# print all three scores with new line characters (\n)  

print('{}\nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(file, scores[0],scores[1], scores[2])) 

 

 

When our network has been checked, on all our input images we can perform a single image super 

resolution. In addition, we can measure the SSIM. PSNR and MSE and on the images we generate after 

processing. These images can be saved directly or sub-plots created to view side by side the actual low 

resolution and high resolution images. [10] 

# define necessary image processing functions 

defmodcrop(img, scale): 

tmpsz = img.shape 

sz = tmpsz[0:2] 

sz = sz - np.mod(sz, scale) 

img = img[0:sz[0], 1:sz[1]] 

returnimg 

def shave(image, border): 

img = image[border: -border, border: -border] 

returnimg# define main prediction function 

def predict(image_path): 

    # load the srcnn model with weights 

srcnn = model() 

srcnn.load_weights('3051crop_weight_200.h5') 

    # load the degraded and reference images 

path, file = os.path.split(image_path) 

degraded = cv2.imread(image_path) 

ref=cv2.imread('source/{}'.format(file)) 

    # preprocess the image with modcrop 

ref = modcrop(ref, 3) 

degraded = modcrop(degraded, 3) 

    # convert the image to YCrCb - (srcnn trained on Y channel) 

temp = cv2.cvtColor(degraded, cv2.COLOR_BGR2YCrCb) 

    # create image slice and normalize   

    Y = numpy.zeros((1, temp.shape[0], temp.shape[1], 1), dtype=float) 

    Y[0, :, :,0]=temp[:, :,0].astype(float) / 255 

    # perform super-resolution with srcnn 

pre = srcnn.predict(Y, batch_size=1) 

    # post-process output 

pre *= 255 

pre[pre[:] > 255] = 255 

pre[pre[:] < 0] = 0 

pre = pre.astype(np.uint8) 

    # copy Y channel back to image and convert to BGR 

temp = shave(temp, 6) 

temp[:, :, 0] = pre[0, :, :, 0] 

output = cv2.cvtColor(temp, cv2.COLOR_YCrCb2BGR) 

    # remove border from reference and degraged image 
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ref = shave(ref.astype(np.uint8), 6) 

degraded = shave(degraded.astype(np.uint8), 6) 

    # image quality calculations 

scores = [] 

scores.append(compare_images(degraded, ref)) 

scores.append(compare_images(output, ref)) 

    # return images and scores 

return ref, degraded, output, scoresref, degraded, output, scores = predict('images/flowers.bmp') 

 

# print all scores for all images 

print('Degraded Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[0][0], scores[0][1], 

scores[0][2])) 

 

print('Reconstructed Image: \nPSNR: {}\nMSE: {}\nSSIM: {}\n'.format(scores[1][0], 

scores[1][1], scores[1][2])) 

# display images as subplots 

fig, axs = plt.subplots(1, 3, figsize=(20, 8)) 

axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB)) 

axs[0].set_title('Original') 

axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB)) 

axs[1].set_title('Degraded') 

axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) 

axs[2].set_title('SRCNN') 

 

# remove the x and y ticks 

for ax in axs: 

ax.set_xticks([]) 

ax.set_yticks([]) 

Degraded Image: 

PSNR:27.2486864596 

MSE:367.564000474 

SSIM:0.86906220246 

Reconstructed Image: 

PSNR:29.6675381755 

MSE:210.594874985 

SSIM:0.899043290319 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig5. Output result of LR to HR image 

for file in os.listdir('images'): 

    # perform super-resolution 

ref,degraded,output,scores=predict('images/{}'.format(file)) 

    # display images as subplots 

fig, axs = plt.subplots(1, 3, figsize=(20, 8)) 

axs[0].imshow(cv2.cvtColor(ref, cv2.COLOR_BGR2RGB)) 

axs[0].set_title('Original') 
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axs[1].imshow(cv2.cvtColor(degraded, cv2.COLOR_BGR2RGB)) 

axs[1].set_title('Degraded') 

axs[1].set(xlabel = 'PSNR: {}\nMSE: {} \nSSIM: {}'.format(scores[0][0], scores[0][1], 

scores[0][2])) 

axs[2].imshow(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) 

 

axs[2].set_title('SRCNN') 

 

axs[2].set(xlabel = 'PSNR: {} \nMSE: {} \nSSIM: {}'.format(scores[1][0], scores[1][1], 

scores[1][2])) 

    # remove the x and y ticks 

for ax in axs: 

ax.set_xticks([]) 

ax.set_yticks([]) 

print('Saving {}'.format(file)) 

fig.savefig('output/{}.png'.format(os.path.splitext(file)[0]))  

plt.close() 

 

X. Conclusion 
Microgrid becomes an important aspect of the smart grid of the future, featuring great flexibility in 

operation, improved quality and enhanced reliability of power. Network implementation and energy 

management techniques are important aspects of the microgrid, this helps the microgrid to work well in both 

and stand alone and grid connected mode. This research provides an overview of technologies for micro 1 id 

energy management and grid integration strategies. 

This shows that the recent trend in research on the DG interface converter focuses on small size, 

improved efficiency, modular sign and multi-port design. A hybrid mix of contact-free and communication 

energy management technologies could be a good balance of process optimum operation, resilience and 

efficiency for the energy management strategy. This paper also the interfacing converter control schemes and 

shows that VCM-based methods are gaining more attention because of their ability to mimic a synchronous 

generators behavior. This paper fully addresses DGs ancillary services. The auxiliary facility develops a talented 

topic for advance supporting grid control improving the feature of grid power and at the same time improving 

the cost effectiveness of DGs and microgrids based on electronic power. 
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