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Abstract: In this paper, a new framework for clustering interval data has been proposed. In this frame work, 
each cluster is represented by a representative which is a fuzzy set. First, we define the interval data and its 

cluster representative as the uniform fuzzy set representation. Next, we consider a data set with single attribute 

of interval data type for the sake of defining similarity and distance functions for interval data and then propose 

a way of handling this attribute in the process of clustering. It is assumed that the underlying domain of the 

attribute is a discrete, totally ordered bounded domain. Also,     all intervals are assumed to be closed intervals. 

We suggest measures to calculate the distance/similarity between two interval data, an interval data and a 

cluster representative and two cluster representatives of interval data. Using these concepts, interval data 

clustering may also be implemented with any existing representative based or summary based clustering 
algorithm.  
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I. Introduction  

There are many phenomena we have been facing with in reality that cannot be explained with the help 

of single-valued variables. Consequently, they have to be kept in a dataset with interval attributes. This type of 

data is a different one in the sense that, instead of representing a single value it may takes a range of continuous 

values for the variables. They are referred to as interval data also known as symbolic interval data [1]. Study of 

the interval valued data or simply interval data are most common and used in different fields of study. Some of 
the examples of this type are: daily weather temperature, weekly price variations of fish, record of blood 

pressure of a patient, etc. thus, a given data d is defined as a closed and bounded interval [1] and are often 

applied to represent quantity which may differ between an upper and a lower bounds. It comprises a range of 

continuous values for the variables. Most of the data in statistical analysis lie within some specified intervals. 

Interval data clustering is comparatively a new field of study in the field of data mining, particularly in case of 

clustering, and very limited work have been done so far. The most important point is how to define a suitable 

distance or similarity measure that may be efficiently implemented to determine the distance or similarity 

between two interval data. Two well known measures are Hausdorff and City Block distance measures which 

are calculated on the basis of only the upper and the lower bounds of the intervals. In another measure viz., 

OLID, a relationship has been established between the upper and the lower bounds and the overlapped areas of 

the two intervals and hence the distance between two interval data is defined. For any two intervals I1 = [x1, y1] 
and I2 = [x2, y2], the City Block and Hausdorff distance measures are defined as follows on the basis of their 

boundary values. 

                                          City Block distance: (L1) = І x1- x2І + Іy1- y2І 

                Hausdorff distance: (dH) = max (І x1- x2І , Іy1- y2І) 

     In this paper, we have extended the idea of clustering categorical data of the paper [2] for interval 

data. The uniform fuzzy set representation of a categorical data point and a cluster representative, as proposed in 

[2], is also applied for interval data. On the basis of this, next we are trying to define similarity and distance 

functions for interval data. For this purpose we consider a categorical data set whose only attribute is of interval 

type or a data set with single attribute that takes values of interval data type and then suggest a way of handling 

this attribute in the clustering process. However, the same idea may be extended to a data set with more 

attributes of interval type. We assume the underlying domain of the attribute to be a discrete totally ordered 

bounded domain. Also we assume that all intervals are closed intervals, i.e., if x Є [a, b] then a ≤ x ≤ b. Size of 
an interval [a, b] is defined as the cardinality of the set consisting of all elements in the interval [a, b]. For 

example, if the underlying domain is the set of integers, then        [2, 8]  = 7.  

Here, we propose measures to determine the distance/similarity between two interval data , an interval 

data and a cluster representative and two cluster representatives of interval data.  In this paper, some important 

concepts on interval data have been defined and a framework has been provided so that the genetic algorithm 
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based categorical data clustering algorithm proposed in [3] can be implemented for interval data. The remainder 

of this paper is organized as follows.  

In the next section, a brief review on the interval data clustering has been made. In section 3 and its 
sub-section we visualize an interval as a set of discrete unit intervals. ‘Spread’ of a cluster, the concept of 

‘membership value’, and set superimposition, three terms that are being used by us are defined next. Then in 

section-4, we describe the way of constructing a cluster representative. Next, we propose methods for measuring 

distances between two intervals and between a cluster representative and an interval considering both the 

aspects of overlapping and disjoint case separately. We also define a measure to find distance between two 

cluster representatives in section-7. A common generalized formula for measuring distance is proposed in 

section- 8 and finally the chapter is concluded in section-9. 

 

II. Review of related works 
The traditional data analysis methods of interval data have taken into consideration only the 

representative of the intervals viz. center or mean ignoring the detail structure of intervals. A modified method 

of dissimilarity measure of interval data for the purpose of handling the problem of clustering is proposed in [4] 

where various approaches of distance / dissimilarity measure between interval data are presented, showing 

relations among them. Also a comprehensive experimental study based on the proposed measure in clustering 

the interval data is made on various data sets and shows how their approach results better performance over the 

traditional ones in terms of producing more meaningful and explanatory result. A two stage-approach of 

clustering interval data is proposed there observing the fact of existence of natural two-level hierarchical 

representation viz., the representative of interval data and the fine representation that also shows its structure 

information.  In the first stage, they consider the representative level / coarse level representation of interval data 

for obtaining a rough partition of the data and in the next stage, final clustering is made by refining the results of 
the first stage using the fine representation. Experimentally it has been proved that this two stage approach 

maintains clustering quality and reduces the computation cost.  A novel fuzzy clustering method for interval 

valued data is proposed in [5] with an adaptable variable selection and found to be useful for three reasons. First, 

in the classification of interval data with high dimension and low sample-size, results poor quality because of 

the presence of noise occurring from irrelevant and redundant variables (dimensions), an adaptable variable 

selection is to be done to reduce or summarize variables. Second, fuzzy clustering results clusters with uncertain 

boundaries which is well adjusted with the uncertainty situations of classification to data and thereby give more 

robust result when compared to hard clustering, for the noise of data. Third, by using this adaptable 

representation of interval data, the original data can be transformed into a more manageable data for the purpose 

of avoiding curse of dimensionality. A novel proximity measure for intervals called Overlapped Interval 

Divergence (OLID) is proposed in [6] which considers the relationship between intervals and their overlapped 

areas and thus extends the existing distance measures where only the upper and the lower bounds of intervals 
take part. Genetic algorithm has been used in [7] to propose an automatic interval data clustering algorithm 

where the number of clusters is suitably determined applying the overlapped distance between intervals. The 

Davies and Bouldin index are modified there for the sake of optimizing clustering results and improving the 

operators of the original genetic algorithm viz., crossover, mutation and selection. The algorithm has been tested 

on data sets with different characteristics and proved to be more advantageous in comparison to the existing 

ones.  

 

III. Important Concepts 
The concepts of cluster representative and similarity measure that were used for categorical data in [2] 

and [3] have been extended to the case of interval data. In addition to them, few more concepts relevant to this 

paper are described in this section. 

 

3.1 Visualization of intervals as set. 

      Although it is known that every interval is a set, we reemphasis this here since our aim is to extend the 

definition of a cluster representative that was for categorical data in [2] and [3] to interval data. We consider an 

interval as a set of discrete unit intervals. This is possible since we have assumed that our underlying domain is 

discrete. For example, if the domain is I, the set of integers, then the interval [4, 7] is considered as set 

{[4],[5],[6],[7]}. This is done in order to define cluster representatives using the concept that we have used for 

categorical data.  

 
3.2    Spread of a Cluster. 

     If a cluster is formed with the intervals I1= [a1, b1], I2= [a2, b2],……………………, In= [an, bn] then we 

define the spread of the cluster as another interval [a, b], where a = min { a1, a2,……., an} and b = max { b1, 

b2,…….bn}.  For a cluster consisting of a single interval data spread is equal to the interval itself.  
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3.3   Membership Value. 

The membership value, in case of an interval data, is defined for each discrete unit interval as well as 

for its spread as its contribution in forming the cluster. So we may consider a cluster either having only a single 
interval or more than one interval data for the purpose of defining membership value. Membership value 

calculation is important from the cluster representative construction point of view. 

In case of cluster representative formed with more than one interval either of overlapped or disjoint or 

of both types, the membership value of each discrete unit interval within the spread of the representatives may 

be any number m, (1 ≤ m ≤ 0). A ‘1’ as the membership value for a discrete unit interval say a i implies that ai is 

present in all the intervals which form the cluster.  

     Example 1 : (Membership Value & Spread) 

     Let, f  and g are the two interval data which form a cluster.  

     Now,  

        Case1. They are Disjoint   Say, f = [2, 5] and g = [8, 12] 

 

 
Figure no 1 : Disjoint data 

 

Membership value of the interval [2, 5] = 1/2; [6, 7] is 0; and that of [8, 12] = 1/2;  

Spread of the cluster is [2, 12]. 

              Case2.  They are Overlapped:   Say, f= [2, 7] and g = [5, 12] 
 

 
Figure no 2 : Overlapped data 

 

 Membership value of the interval [2, 4] = 1/2;  [5, 7] is 1; and that of [8, 12] = 1/2;  

Spread of the cluster is [2, 12]. 

 

3.4 Set superimposition. 

The concept of set superimposition proposed in [9] is also used here for the purpose of constructing a cluster 
representative. We can define the term with an example. 

Let us consider the same interval data or sets as shown in Fig. 2. So f ∩ g i.e. [2,7] ∩ [5,12] = [5,7]  ≠ ϕ. 

Now, using the symbol “S” for superimposition as in [9], f (S) g will be consisting of the superimposed intervals 

[2,4]1/2 , [5,7]1 and [8-12] ½  Fig. 3, where the membership of [5,7] is 1 due to double representation. 

 

 

 

 

 

 

 
                               Figure no 3: Set superimposition 

 

IV. Construction of a Cluster Representative 
The cluster representative has been formed with the idea as was done in [2] and [3] in categorical data 

clustering.  At any point of time, a cluster may have data intervals which are overlapped and / or disjoint in 

nature and the cluster is represented by its representative. So, a cluster representative is formed with the 

1    2   3   4    5    6    7    8    9    10  11  12 13 14  15   16 

2 

1 
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membership values of the discrete / consecutive intervals obtained by superimposing the intervals [8],[9] present 

in the clusters.  

     For example, considering a cluster  C1 consisting of the following seven interval data- 
(1). 4 ― 8,     (2). 6 ― 10,   (3). 5 ― 9,  (4). 12 ― 15,   (5). 10 ― 14,    (6). 16 ― 19  and  (7).  22 ― 25 

the cluster representative for C1 as shown in the fig. 4, is defined as: 

CR1={ [4,4]:  ; [5,5]: 6,8] :  ; [9,10]:  ; [11]: 0;  [12, 14] : ; [15,19]:  ; [20,21] : 0;  [22,25]: }  

 

 
  Figure no 4: Cluster Representative for Cluster C1 obtained by superimposing the interval data. 

 

Here, each fraction indicates the membership values of the corresponding subintervals. The union of 

the subintervals is the spread of the cluster. A cluster representative is actually a partition of the spread of the 

cluster where membership values are associated with the individual members of the partition. It is also true that 

the membership value of a partition lies between 0 and 1, both inclusive. 

 

V. Distance between two Intervals 
Here, we are trying to define the distance between two interval data considering both the disjoint and overlapped 

cases separately with examples. 
Let f = [fl , fu ] and g = [gl , gu ] are two interval data, where fl and gl are the lower ends and fu , gu are the upper 

ends . In defining the distance between two such interval data, we consider an interval as a set of discrete unit 

intervals as already stated in section 3.1.  

 

5.1. Disjoint Intervals (NOL) 

 If the two intervals f and g are disjoint, then distance between them is  measured as the modulus of difference 

between their mean, i.e. 

dNOL(f, g) =   mean(f) – mean (g) , where, mean of an interval data x = [xl , xu]  is calculated as :  (xl +xu )/2 

Alternatively, it can also be calculated as:         [xl +xl+1+….…+xu ]/ [[xu-xl]+1] 

        

Example 2:  Distance between two disjoint intervals. 
            Let, f = [2, 6 ] and g = [8, 12], as shown in the figure 4 

 
 Figure no 5 :  Two disjoint Intervals 

                

 Now, d (f, g) =  [(2+6)/2 – (8+12)/2]     = 6  

                   Alternatively,  [(2+3+…..+6)] / [(6 - 2+1] – [(8+9+…..+12)  / [(12-8)+1]   

                                            =  4 – 10  ;  = 6  

 

5.2. Overlapping intervals (OL) 

In case of overlapping intervals we define the similarity between them using Jaccard coefficient defined as: 

                    Sim (f, g) =   

Here, intersection and union of f and g are defined by considering them as  sets of discrete intervals as described 

in 3.1.  

For example, in case of the interval f= [f1, fn], the set of discrete intervals is [f1, f2, ………… fn-1,fn],    if  f1≤ f2≤ 

…… ≤ fn. 

Then distance is defined as:  dOL(f, g) = 1- sim (f, g) ;    Here, 0 ≤ d ≤ 1 .  
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If the intervals are same, then their similarity value is 1, i.e.,  dOL(f, g) = 0     

 

Example 3: Distance between two overlapping intervals.  
              Considering the integer domain, let f = [2 , 8] and g= [4 , 12], as shown in the fig. 6. 

              Now, sim (f, g) =    ;    

                                    =     = 0.455      and  d(f, g) = 1 – 0.455 ;  = 0.545 

 
Figure no. 6 : Two Overlapping Intervals 

 

VI. Distance between an interval data and a Cluster representative 
To define the distance between an interval data and a cluster representative we first calculate the 

weighted mean of the cluster representative. As we have seen in the previous section that the data belong to a 

cluster which form the representative are distributed not in a uniform manner throughout the spread of the 

representative. In other words, membership values of each discrete interval may be different. For this reason, it 

would not be appropriate to define the distance between an interval data and a cluster representative simply 

considering the mean of the representative.   Weighted mean of the cluster representative is calculated by adding 

the product of the numbers of data (weights) belong to each unit/discrete interval (or that share/overlap each 

discrete interval) and their corresponding interval unit number (ordered) and then dividing it by the sum of the 
number of data of the each discrete/contiguous interval within the spread. Thus, the weighted mean (W.mean) 

for the cluster representative of CR1 would be:  

W.mean = (4*1+5*2+(6+7+8)*3+(9+10)*2+11*1+(12+13+14)*2+(15+16+17 

                   +18+19)*1+ (22+23+24+25)*1 / (1+2+9+4+1+6+5+4)     

 = 11.97 

     Now we are in a position to define the distance measures for the following cases that are very much essential 

for the purpose of implementing our proposed clustering algorithm. 

     Case1. The interval data is disjoint from the spread of the representative. (NOL) 

The distance between a cluster representative ‘CR1’ and a data ‘f’, whose interval/spread is different 

from the spread   of   the representative i.e.  (spread  of  the  CR1  ⋂  spread of f ) = ф,  is calculated by   

obtaining   the difference  between the mean  of the data and the weighted mean of the  representative. 

Thus, d NOL(f,CR1) =    mean(f) – W.mean(CR1)   

Case2 . The interval data is overlapping with the spread of the representative. (OL) 

In case of determining distance between an interval data ‘f’ and a Cluster representative CR1, where (spread of 

the CR1⋂ spread of f ) ≠ф, we first calculate the similarity between them as has been done in case of two 

overlapping data, as follows: 

                                   sim (f, CR1) =  ;   

     Where, union, intersection and cardinality of intervals are straight forward extension of the corresponding 

definitions in fuzzy set theory.  It is possible to bring the fuzzy set  operations  into picture because the partitions 

of the spread of a cluster representative have membership values between 0 and 1,  both  inclusive  as  stated  in  

section 3.3. In case  of an  interval  this membership  value is 1. 

      Then distance is defined as:    d OL(f, CR1) = 1- sim (f, CR1) ; 

 

VII. Distance between two Cluster representatives 
In this section, we define a measure to find distance between two cluster representatives taking into 

consideration of their both overlapped and disjoint spreads.  

Let CR1 and CR2 are the two cluster representatives, and then distance between them is defined again separately 

depending on whether they are overlapping or disjoint.  

Case 1.  Spread of the two representatives are disjoint from each other. (NOL) 

In this case, distance between them is calculated as the modulus of difference between their weighted mean        
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     as given below: 

             d NOL(CR1,CR2) =   W.mean(CR1) – W.mean(CR2)     
Case 2.  Spread of the two representatives are  Overlapping with each other. (OL) 

When the spreads of the two cluster representatives are overlapping, we first calculate their similarities using       

the Jaccard coefficient as was used for two overlapped intervals. To obtain the distance we then subtract   

similarity value from 1 . The Jaccard coefficient in this case is defined as:  

                             sim (CR1, CR2) =  ;   

          Thus distance is defined as:    d OL( CR1, CR2) = 1- sim (CR1, CR2); 

 

 

VIII. Common formula (Generalized) for Measuring Distance 
After defining the distance measures separately for each case, now we are in a position to propose a Common 

Generalized formula to measure distance between two interval data or a data and a representative, considering 

both the cases of disjoint and overlapped interval. 
     Let I1= [a, b] and I2= [c, d] are two interval data, now we define a factor NOVERLAP (I1, I2), as follows.  

          NOVERLAP (I1, I2) = 0 ;  if either a≤ c≤ b≤ d or c≤ a≤ d≤ b ,    i.e., the intervals are not disjoint. 

    =1;   otherwise. 

When distance between a cluster representative and an interval data is to be calculated then the spread of the 

cluster is taken, which is an interval. 

     Now, d (I1, I2) = dOL (I1, I2) + NOVERLAP (I1, I2) * dNOL (I1, I2)   

     It is to be noted that dOL (I1, I2) = 0, if I1 and  I2 are disjoint.  

 

IX. Conclusion 

In this paper, we have mentioned the importance of interval data in different field of study. Interval 

data clustering is relatively a new field of study. Distance measures commonly used are based only on the upper 

and lower bounds of the intervals except the measures in [6],[7]. We have considered here the importance of 

overlapping portion along with the two bounds in defining a common distance measure applicable for both 

overlapped and disjoint data. In doing so, we have first defined some important concepts relevant to our study 

and on the basis of these we propose methods for measuring distances between two intervals, between a cluster 

representative and an interval, and between two cluster representatives considering both the aspects of 

overlapping and disjoint case separately.  Thus, the same ideas applied to categorical data clustering in [2], have 

applied in creating a frame work for implementing our GA based clustering algorithm proposed in [3] for 

interval data. 
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