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Abstract: 
Motion blur greatly impairs visual quality and diminishes the performance of subsequent computer vision tasks. 

This paper introduces a real-time selective motion deblurring system that adaptively detects and recovers solely 

motion-blurred areas in an image while keeping previously sharp areas intact. The system utilizes a hybrid motion 

blur detection module that combines Laplacian variance, FFT-based frequency analysis, and edge density 

estimation to produce a blur probability map. This image is divided with SLIC superpixels and post-processed 

using guided filtering. A Swin Transformer with an edge-preserving attention mechanism modifies a Swin 

Transformer to produce better restoration on object boundaries, and the deblurring network is a lightweight 

MIMO-UNet with pruning and quantization for efficient optimization. Both perceptual and structural fidelity are 

ensured by a hybrid loss function that includes L1, perceptual, and edge-preserving terms. Experimental results 

show that the proposed approach outperforms state-of-the-art methods in terms of PSNR and SSIM, while 

enjoying real-time performance on high-end GPUs and embedded systems. 
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I. Introduction 
Motion deblurring is a core problem in computer vision that consists of recovering sharp images from 

motion-blurred frames. Most existing deblurring models tend to use global restoration methods that alter even the 

sharp areas, leading to loss of fine details and introduction of artifacts. While recent deep learning techniques, 

particularly those built upon convolutional and transformer architectures, have boosted deblurring quality, most 

models treat the whole image indiscriminately, which results in high computational expense and sometimes over-

smoothing. By contrast, the method proposed here selectively deblurs the degraded area. By integrating an 

adaptive spatial filter with an edge-preserving attention mechanism, we produce high-quality restoration with 

minimal computational load, making the system appropriate for real-time use in surveillance, autonomous 

navigation, and medical imaging. 

 

II. Literature Review 
Deblurring in motion has proven to be a difficult task in image deblurring, particularly under dynamic 

motion and non-uniform blur conditions. Blind deconvolution, a common traditional method, tried estimating the 

blur kernels to recover sharp images from an individual defocused frame, but these were problematic with poor 

real‐world generalizability and ill‐posed in nature [1]. The development of deep learning made it fashionable to 

utilize convolutional neural networks (CNNs) for end-to-end full deblurring, with Nah et al. [2] presenting a 

multi-scale CNN that is capable of effectively learning the transformation from a blurred image to a sharp one. 

Subsequently, attention mechanisms further enriched the area; for instance, EDVR utilized deformable 

convolutions and temporal attention to boost video deblurring by emphasizing informative motion features [3], 

whereas Transformer models like EAVT utilized axial attention to learn long-range dependencies, thus enhancing 

deblurring quality [4]. 

Current research has been inclined to overcome the constraints of full-frame deblurring by investigating 

region-based and selective modeling frameworks. Zhang and Yang [5] introduced Degradation-Aware Networks 

that effectively identify blurry regions and adapt the deblurring process in response, although these techniques 

sometimes have difficulties in maintaining structural details. To compensate for this, edge-aware techniques were 

developed: Chen et al. [6] introduced a self-aligned transformer model in an attempt to better maintain structural 

edges, and Liu et al. [7] incorporated edge priors into attention mechanisms to produce sharp and realistic 
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reconstruction. In parallel to this, Bao et al. [8] highlighted the construction of light-weight models suitable for 

real-time processing through the creation of efficient encoder-decoder networks using pruning and quantization 

techniques, and Zhou et al. [9] took these ideas a step further by incorporating guided filtering into a region-aware 

deblurring model. 

Despite such improvements, most previous models process the full image uniformly, leading to 

redundant computation on non-blurred parts and potential artifacts. By contrast, our method selectively deblurs 

the blurred regions selectively with adaptive spatial filters and edge-preserving attention blocks. The proposed 

method takes inspiration from region-aware approaches in [5] and [9], edge-guided methods in [6] and [7], and 

efficiency-focused innovations in [8] and [10]. Our work also presents a new loss function combining L1, 

perceptual, and edge-preserving terms that enhance both structural detail and perceptual quality. 

 

III. Methodology 
The suggested pipeline is a six-step pipeline in restoring motion-blurred images selectively processing 

only degraded areas while avoiding processing unaffected areas. 

 

A. Motion Blur Detection 

The initial step utilizes a hybrid approach merging spatial and frequency domain analysis. Sharpness is 

measured using Laplacian Variance (LV): 

LV(I) = (1/N) Σ₍ᵢ₌₁₎ⁿ (∇² I(i))² 

 

where ∇² is the Laplacian operator and N is the number of pixels. Lower LV is indicative of more blur. 

In addition to LV, the Fast Fourier Transform (FFT) is used to evaluate the suppression of high-frequency detail: 

F(u, v) = Σ₍ₓ₌₀₎^(M−1) Σ₍ᵧ₌₀₎^(N−1) I(x, y) exp[–j·2π·(ux/M + vy/N)], 

 

and a sharpness measure S_F is calculated as the ratio of high-frequency to low-frequency energy: 

S_F = [Σ_{(u,v) ∈ H} |F(u, v)|] / [Σ_{(u,v) ∈ L} |F(u, v)|]. 

 

Besides, edge density is also measured by Sobel and Canny edge detectors; areas with less edge are 

labeled as blurred. The results are combined to produce a blur probability map, which is then improved using 

guided filtering to provide spatial consistency [1], [2], [3]. 

 

B. Adaptive Spatial Filtering 

In order to maximize computational efficiency, the image is partitioned into superpixels based on the 

Simple Linear Iterative Clustering (SLIC) algorithm. The superpixel formation distance metric is provided by: 

D = √(d_c² + (d_s² / S²) · m²), 

 

where d_c is color distance, d_s is spatial distance, S is inter-center distance, and m is compactness 

parameter. The initial blur map is updated through a Guided Filter provided by: 

q(x) = a · p(x) + b, 

 

where p(x) is the input blur map and a, b are local linear coefficients, hence preserving edge data while 

smoothing the map [5], [9]. 

 

C. Edge-Preserving Attention Mechanism 

A Swin Transformer is modified and incorporated to support edge-preserving attention. Edge features 

are obtained using a Structural Tensor: 

J(x) = [ Σ Iₓ²  Σ (Iₓ Iᵧ); Σ (Iₓ Iᵧ)  Σ Iᵧ² ], 

 

where Iₓ and Iᵧ are horizontal and vertical gradients. Attention weights are calculated as: 

A(x) = σ(W_a · f(x) + b_a) + λ · E(x), 

with f(x) as feature map, W_a and b_a as trainable parameters, σ as sigmoid activation, and E(x) as edge 

map. This makes the model concentrate on re-establishing details in the deblurred region without jeopardizing 

the structure [6], [7], [12]. 

 

D. Image Deblurring using MIMO-UNet 

The deblurring module is based on a residual learning and multi-scale feature extraction based Multi-

Input Multi-Output UNet (MIMO-UNet) architecture for spatially varying blur [2], [8]. Lightweight CNN 

building blocks and multi-scale fusion are used to fuse global context and local detail to efficiently restore with 

the original image resolution and structural consistency [10]. 
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E. Hybrid Loss Optimization 

The network is end-to-end trained with a hybrid loss function: 

L_total = α · L₁ + β · L_perc + γ · L_edge 

 

where L₁ is mean absolute error between deblurred output and ground truth, L_perc is perceptual loss 

computed using VGG-19 feature maps to ensure high-level similarity, and L_edge is edge-preserving loss as 

difference between image gradients of sharp and deblurred images. Empirical weighting parameters α, β, and γ 

are employed to strike a balance between pixel precision, perceived quality, and edge preservation [11]. 

 

F. Real-Time Model Optimization 

For inference utilization, the network is further optimized by model pruning and quantization. The counts 

of parameters are reduced by pruning redundant filters and attention heads and quantizing weights to 8-bit integers 

using TorchScript and TensorRT. This optimizes the computation load and memory usage, enabling speedy 

inference on high-end GPUs and even on embedded platforms [4], [10]. 

 

IV. Result 
A. Dataset and Preprocessing 

The approach is evaluated on a hybrid dataset containing real and synthetic blurred images. The primary 

dataset used is the GoPro dataset [2], providing paired sharp and blurred images cropped from high-speed videos. 

Additional generalization comes from adding the REDS dataset [3], as well as synthetically blurred images 

generated through random motion blur kernel application [5]. Resized images to 256×256 pixels and normalized 

by ImageNet statistics. The dataset is divided into 80% training, 10% validation, and 10% test for training and 

model testing facilitation. 

 

B. Motion Blur Detection Performance 

Efficiency of the blur detection module is gauged in terms of precision, recall, and F1-score. As evident 

from Table 1, the hybrid method (Laplacian Variance + FFT + Edge Detection) gives an F1-score of 90.2%, 

which is better than individual methods like Laplacian Variance (81.3%) and Wavelet Transform-based detection 

(83.3%). 

 

Table no 1: Motion Blur Detection Accuracy. 
Method Precision Recall F1-Score 

Laplacian Variance 84.2% 78.6% 81.3% 

Wavelet Transform 86.7% 80.2% 83.3% 

Proposed (Hybrid) 92.1% 88.4% 90.2% 

 

C. Adaptive Spatial Filtering Performance 

With SLIC superpixel segmentation and guided filtering, the adaptive filtering performance is measured 

through Mean Absolute Error (MAE) and Structural Similarity (SSIM). Table 2 indicates that the proposed guided 

filtering method minimizes MAE to 0.0457 and maximizes SSIM to 0.864 compared to 0.0845 MAE and 0.773 

SSIM without filtering. 

 

Table no 2: Adaptive Filtering Performance. 
Method MAE (↓) SSIM (↑) 

No Filtering 0.0845 0.773 

Bilateral Filtering 0.0613 0.812 

Guided Filtering (Proposed) 0.0457 0.864 

 

D. Image Deblurring Performance 

The MIMO-UNet with edge-preserving attention is tested in terms of deblurring performance using 

PSNR and SSIM. Our approach is compared with existing state-of-the-art methods such as EDVR [3], DASNet 

[5], and EAVT [4] in Table 3. The proposed technique is achieved with a PSNR of 31.5 dB and an SSIM of 0.94, 

in 150 ms—showing better restoration and efficiency. 

 

Table no 3: Image Deblurring Performance (Higher is Better). 
Method PSNR (dB) SSIM Inference Time (ms) 

EDVR [3] 29.1 0.89 240 

DASNet [5] 30.3 0.91 220 

EAVT [4] 30.8 0.92 190 

Proposed (MIMO-UNet + EPA) 31.5 0.94 150 
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E. Effect of Hybrid Loss Function 

An ablation study demonstrates the impact of the hybrid loss function. As shown in Table 4, combining 

L1, perceptual, and edge-preserving losses yields the highest PSNR (31.5 dB) and SSIM (0.94). 

 

Table no 4: Loss Function Effects. 
Loss Configuration PSNR (dB) SSIM 

L1 Loss Only 28.2 0.85 

L1 + Perceptual Loss 30.1 0.91 

L1 + Perceptual + Edge-Preserving Loss 31.5 0.94 

 

F. Real-Time Optimization and Model Efficiency 

The final model is optimized for real-time performance through pruning and quantization. Table 5 shows 

that our optimized model has 22 million parameters and 180 GFLOPs, achieving 25 FPS on an RTX 3090 and 12 

FPS on a Jetson Xavier—significantly faster than competing methods. 

 

Table no 5: Model Efficiency and Real-Time Performance. 

Model Parameters GFLOPs 
FPS (RTX 

3090) 

FPS (Jetson 

Xavier) 

EDVR [3] 40M 350 15 6 

DASNet [5] 34M 290 18 8 

EAVT [4] 42M 420 12 5 

Proposed (MIMO-UNet + 

Pruned EPA) 
22M 180 25 

12 

 

G. Visual Comparisons 

Figure 1 demonstrates example deblurring results: the Part A is a blur input image, the Part B is the 

corresponding ground truth, and the Part C is the output of the proposed algorithm. Qualitative comparisons show 

that our method well restores fine details and preserves edge sharpness while eliminating motion blur. 

 

Figure 1: (A) Blur Image, (B) Ground Truth, (C) Deblurred Image. 

 
Part A: Blur Image                                                                Part B: Ground Truth 

 

 
Part C: Deblurred Image 

 

V. Conclusion 
This work introduced a new selective motion deblurring model that incorporates adaptive spatial filtering 

with an edge-preserving attention mechanism within a MIMO-UNet architecture. By separating blurred areas 

using a combined detection method and enhancing them using guided filtering and transformer-based attention, 

the proposed method attains better restoration results without introducing superfluous computation. Experimental 
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findings prove that the method outperforms traditional deblurring models in PSNR, SSIM, and inference rate, 

thus offering a viable and efficient solution for practical usage. Future research will be aimed at improving 

robustness with extreme blur and investigating self-supervised training to continue with generalizability 

improvements. 
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