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Abstract 
The rapid growth of digital payment systems has increased financial convenience but simultaneously heightened 

risks of fraud and security breaches. Traditional authentication methods, including passwords and PINs, are 

vulnerable to interception and misuse, underscoring the need for robust alternatives. This study investigates 

multimodal biometric fusion as a secure authentication framework for digital payments, integrating fingerprint, 

face, and voice traits. A dataset of 120 participants was collected, generating over 5,400 multimodal samples. 

Preprocessing pipelines were designed to enhance feature quality—ridge enhancement for fingerprints, alignment 

and normalization for face images, and noise reduction with MFCC extraction for voice. Comparative 

experiments on unimodal systems revealed error rates of 3.2%, 4.7%, and 5.7% for fingerprint, face, and voice 

respectively, with latencies below 120 ms. Fusion strategies were then applied at decision, feature, and score 

levels. Results show that score-level fusion achieved the best balance between security and efficiency (EER = 

1.6%, AUC = 0.985, latency ≈ 140 ms), while a quality-aware score fusion further reduced EER to 1.3% without 

significant computational overhead. Robustness tests confirmed that adaptive fusion effectively maintained 

accuracy under environmental stressors such as low illumination and acoustic noise. These findings establish 

multimodal biometrics—particularly score-based fusion with quality adaptation—as a practical, real-time 

solution for securing financial transactions in digital ecosystems. 

Keywords: Digital payments, biometric authentication, multimodal fusion, fingerprint recognition, face 

recognition, machine learning 

 

I. Introduction 
The digital payment ecosystem has undergone rapid transformation over the last decade. The widespread 

use of e-wallets, online banking, mobile-based payment applications, and contactless transactions has significantly 

increased financial convenience. However, this expansion has also resulted in escalating security risks including 

identity theft, phishing, card skimming, and fraudulent transactions [1]. Conventional authentication methods such 

as passwords, PIN codes, and one-time passwords (OTPs) continue to dominate, but their vulnerability to 

interception, brute-force attacks, and user negligence makes them insufficient for safeguarding high-value 

financial systems [2]. 

Biometric authentication emerged as a natural solution to overcome these shortcomings by leveraging 

unique physiological or behavioral characteristics such as fingerprints, iris patterns, facial geometry, and voice 

signals [3]. Unlike passwords or tokens, biometrics cannot be easily forgotten, guessed, or shared, thus offering 

improved security. For instance, the adoption of fingerprint authentication in smartphones has significantly 

reduced unauthorized access [4]. Despite these advantages, unimodal biometric systems face challenges such as 

non-universality, intra-class variability, spoofing susceptibility, and noisy data acquisition [5]. 

The idea of multimodal biometric fusion has gained momentum as a way to mitigate these shortcomings. 

By integrating more than one biometric trait (e.g., combining face and fingerprint, or voice and iris), the system 

can achieve higher accuracy, better resistance to spoofing, and improved robustness in diverse environments [6]. 

This concept is particularly relevant in the context of secure digital payments, where both speed and security are 

critical. In fact, global payment platforms and financial institutions are increasingly exploring multimodal 

biometrics to reinforce authentication layers beyond traditional credentials [7]. 

Anil Jain et al., (2024): Multimodal biometric systems consolidate the evidence presented by multiple 

biometric sources and typically provides better recognition performance compared to systems based on a single 

biometric modality. Although information fusion in a multimodal system can be performed at various levels, 

integration at the matching score level is the most common approach due to the ease in accessing and combining 
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the scores generated by different matchers. Since the matching scores output by the various modalities are 

heterogeneous, score normalization is needed to transform these scores into a common domain, prior to combining 

them. The author had studied the performance of different normalization techniques and fusion rules in the context 

of a multimodal biometric system based on the face, fingerprint and hand -geometry traits of a user. Experiments 

conducted on a database of 100 users indicate that the application of min–max, z-score, and tanh normalization 

schemes followed by a simple sum of scores fusion method results in better recognition performance compared 

to other methods. However, experiments also reveal that the min–max and z-score normalization techniques are 

sensitive to outliers in the data, highlighting the need for a robust and efficient normalization procedure like the 

tanh normalization. It was also observed that multimodal systems utilizing user-specific weights perform better 

compared to systems that assign the same set of weights to the multiple biometric traits of all users. 

Kresimir Delac and MislavGrgic (2023): Biometric recognition refers to an automatic recognition of 

individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. 

Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or 

determine the identity of an individual. Applications of such a system include computer systems security, secure 

electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using 

biometrics, a person could be identified based on "who she/he is" rather then "what she/he has" (card, token, 

key) or "what she/he knows" (password, PIN). The author had given a brief overview of biometric methods, both 

unimodal and multimodal, and their advantages and disadvantages, are discussed. 

Anil K. Jain and Arun Ross (2004): While biometric systems have their limitations, they have an edge 

over traditional security methods in that they cannot be easily stolen or shared. Besides bolstering security, 

biometric systems also enhance user convenience by alleviating the need to design and remember passwords. 

Moreover, biometrics is one of the few techniques that can be used for negative recognition where the system 

determines whether the person is who he or she denies to be. 

 

II. Methodology 

2.1 Dataset Description 
The effectiveness of any biometric system depends largely on the diversity and representativeness of the 

dataset used for model training and evaluation. To simulate a realistic digital payment environment, a multimodal 

dataset comprising fingerprints, facial images, and voice samples was curated. A total of 120 subjects participated 

in data collection, each providing five sessions recorded on different days. The multi-session design ensured that 

natural intra-class variations—such as different lighting conditions for face capture, varying background noise for 

voice, or slight differences in fingerprint placement—were included in the dataset. 

 

 
Fig. 1 Sample data 
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Fig. 2 Processing steps 

 

For each session, two fingerprint images, three facial images, and four voice recordings were captured. 

This design resulted in approximately 5,400 total samples, with each subject contributing 45 samples across the 

three modalities. The dataset was then partitioned into 70% training, 15% validation, and 15% testing subsets, 

with subject-level disjoint splits to avoid data leakage. This ensured that individuals appearing in the training set 

did not appear in either validation or test sets, maintaining the integrity of evaluation. 

Table 1 provides a summary of dataset statistics, including per-modality sample counts, quality scores, 

and the number of subjects per split. Representative samples from each modality are shown in Figure 1, while the 

preprocessing transformations applied to these raw samples are illustrated in Figure 2. 

 

Table 1 Table summary data sets 

Modality 
Samples per 

Subject 

Total 

Samples 

Avg. Quality 

Score 
Train (70%) 

Validation 

(15%) 
Test (15%) 

Fingerprint 10 1200 0.82 Â± 0.11 840 180 180 

Face 15 1800 0.79 Â± 0.12 1260 270 270 

Voice 20 2400 0.77 Â± 0.14 1680 360 360 

Total 45 5400 0.79 Â± 0.12 3780 810 810 

 

2.2 Preprocessing 
Raw biometric data often contains inconsistencies that can adversely affect feature extraction and 

classification accuracy. Therefore, each modality underwent dedicated preprocessing steps to improve robustness 

and comparability. For fingerprints, ridge patterns were enhanced using Gabor filters, which sharpen ridge-valley 

structures and reduce sensor noise. Segmentation techniques isolated valid fingerprint areas, while spurious 

background pixels were discarded. The final fingerprint representation emphasized minutiae points such as ridge 

endings and bifurcations. 

For facial images, preprocessing began with face detection and alignment using landmark localization to 

ensure consistent orientation. Images were resized to a standard resolution of 224 × 224 pixels and normalized for 

pixel intensity. In addition, histogram equalization was applied in low-light cases to enhance contrast. These steps 

ensured that extracted facial features remained invariant to variations in pose, lighting, and scale. 

For voice samples, preprocessing included noise reduction via spectral subtraction and band-pass 

filtering to remove non-speech artifacts. Voice activity detection (VAD) was performed to discard silent intervals, 
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thereby focusing only on speech-relevant frames. Each preprocessed voice signal was then transformed into log 

Mel-Frequency Cepstral Coefficients (MFCCs), which effectively capture spectral-temporal speech patterns. 

 

2.3 Experimental Setup 
Experiments were conducted in a controlled computational environment. All models were implemented 

in Python using deep learning frameworks such as TensorFlow and PyTorch, alongside scikit-learn for classical 

machine learning models. 

The workstation used for experiments was equipped with an Intel Core i7 CPU, 32 GB RAM, and an 

NVIDIA RTX GPU, ensuring sufficient computational resources for training deep networks. Subject-disjoint five-

fold cross-validation was applied during hyperparameter tuning to prevent overfitting. In deployment simulations, 

the models were tested under real-time constraints to confirm their suitability for integration into digital payment 

platforms. 

 

III. Results and Discussions 

3.1 Unimodal Baselines 
This section established reference performance for the constituent biometric systems—fingerprint, face, 

and voice—trained and evaluated independently on the subject-disjoint partitions defined. Each system followed 

its dedicated preprocessing and feature pipeline and a modality-appropriate classifier, with hyperparameters 

selected on the validation set under a payment-oriented operating objective of low false-acceptance (≈1–2% FAR). 

Metrics were computed on the held-out test subjects only and included FAR, FRR, EER, AUC, and end-to-end 

latency from completion of capture to availability of decision. Confusion matrices at the tuned thresholds were 

summarized for interpretability in Fig. 3. 

For fingerprint recognition, ridge enhancement and segmentation produced clean ridge–valley patterns, 

enabling reliable minutiae extraction. An RBF-SVM operating on minutiae descriptors achieved an EER of 3.2% 

with an AUC of 0.965, and realized FAR ≈ 3.0% and FRR ≈ 3.5% at the validation-selected operating point. The 

measured latency (~120 ms) was dominated by image enhancement and minutiae localization; matching 

contributed comparatively little overhead. Inspection of the fingerprint confusion matrix in Fig. 3 indicated that 

residual false rejects concentrated in partial or low-contrast impressions—consistent with mobile capture 

variability (dry/wet skin, pressure, and pose). The smaller number of false accepts arose from locally similar ridge 

fragments in small overlapping regions, underscoring the benefit of adding complementary cues. 

 

 
Fig. 3 Confusion matrix 
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For face recognition, aligned 224×224 crops yielded 512-D CNN embeddings fine-tuned on the training 

subjects and scored with a calibrated cosine/logistic back end. Under these conditions, the face baseline reached 

an EER of 4.7% and an AUC of 0.945, with FAR ≈ 4.5%, FRR ≈ 5.0%, and latency ~95 ms, showed sensitivity 

to illumination and motion blur, with false rejects clustered in back-lit or low-light scenes and a smaller set of 

false accepts associated with near-frontal impostors under uniform lighting. These patterns motivated reliability 

estimation and adaptive down-weighting of face scores during multimodal fusion when capture quality 

deteriorated. 

For speaker (voice) recognition, MFCC features were processed by a lightweight CNN–LSTM to obtain 

utterance-level embeddings, again scored via a calibrated cosine/logistic back end. Voice exhibited the highest 

baseline error and environmental sensitivity among the three modalities, with EER of 5.7%, AUC of 0.925, FAR 

≈ 6.0%, FRR ≈ 5.5%, and latency ~110 ms. The confusion matrix indicated that false accepts increased at moderate 

SNR, particularly for impostors whose prosodic contours resembled those of the target speaker, while false rejects 

coincided with truncated or low-energy speech after VAD. 

Across modalities, Table 1 confirmed the expected ordering—fingerprint best, face intermediate, voice 

worst—in both EER and AUC, while demonstrating that all three systems satisfied a sub-200 ms responsiveness 

target on commodity hardware. Taken together, the baselines highlighted two design implications for payment 

authentication. First, single-modality systems remained brittle to modality-specific failure modes (smudged or 

partial prints, poor lighting or pose, acoustic noise). Second, because these error modes were only partially 

correlated, multimodal fusion promised error reduction in the low-FAR regime most relevant to financial risk 

without violating real-time constraints. 

 

3.2 Multimodal Fusion (Overall) 
This section quantified the benefit of fusing fingerprint, face, and voice, comparing feature-level, score-

level, and decision-level strategies against the unimodal baselines. Unless stated otherwise, operating points and 

hyperparameters were fixed on the validation split, and all metrics were reported on the held-out test subjects. 

Discrimination across thresholds was visualized with ROC curves (Fig. 4) and DET curves (Fig. 5), while 

aggregate numbers were summarized in Table 1. 

 

Table 2. Fusion statistics 

Fusion EER AUC Latency_ms 

Decision-Level 0.023 0.978 130 

Feature-Level 0.019 0.982 165 

Score-Level 0.016 0.985 140 

Score+Quality 0.013 0.989 148 

 

 
Fig. 4 ROC curves 
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Feature-level fusion concatenated the modality embeddings and reduced dimensionality 

(PCA/autoencoder) before classification. This approach produced a substantial gain over the best unimodal 

system, reaching an EER of 1.9% and AUC of 0.982, compared with fingerprint at 3.2% EER and AUC 0.965. 

Improvements were most pronounced in the low-FAR region of the ROC, where the fused curve remained above 

the unimodal curves and the DET locus shifted down and left. The principal cost was higher compute: latency 

averaged ~165 ms, dominated by the projection step and the classifier over a denser representation. Error 

inspection indicated that samples misclassified by feature fusion commonly involved simultaneous quality 

degradation in two modalities (e.g., low-contrast fingerprint with motion-blurred face), highlighting the residual 

dependency on input quality even when joint features were used. 

Score-level fusion normalized per-modality scores and combined them with fixed weights learned on 

validation data. This configuration achieved the best overall balance between accuracy and efficiency among the 

plain (non-quality-aware) methods, yielding EER of 1.6% and AUC of 0.985 with ~140 ms latency. ROC/DET 

plots showed consistent gains across thresholds and especially strong separation in the FAR ≤ 1% operating 

window. The relative robustness arose from allowing each modality’s classifier to specialize, followed by a light-

weight combination that preserved complementary evidence. Residual errors tended to occur when two modalities 

concurrently produced moderately confident yet incorrect scores, which the fixed weights could not fully suppress. 

 

 
Fig. 5 DET curves 

 

Decision-level fusion combined binary accept/reject outputs via majority vote (and verified with 

AND/OR rules). This method preserved interpretability and minimized integration complexity but sacrificed 

granularity, delivering EER of 2.3% and AUC of 0.978 with ~130 ms latency. Performance trailed score-level 

fusion because hard decisions discarded the calibration information present in continuous scores; in DET space, 

the decision-level curve lay between feature-level and the best unimodal baseline (Fig. 5). Nevertheless, decision-

level fusion still reduced error relative to any single modality and remained attractive where system interfaces 

expose only binary outcomes. 

Comparative interpretation. Across all fusion paradigms, ROC and DET analyses confirmed that 

combining modalities consistently reduced error versus unimodal references, with the largest margins in the risk-

critical low-FAR range. Score-level fusion provided the strongest accuracy-latency trade-off, feature-level fusion 

delivered competitive accuracy at higher cost, and decision-level fusion offered simplicity with moderate gains. 

Pairwise, per-trial comparisons at fixed operating points indicated that score-level fusion significantly reduced 

error over the best unimodal baseline (McNemar test, p < 0.01), supporting the conclusion that complementary 

evidence was effectively integrated. 

These findings established a clear hierarchy for deployment: where implementation flexibility allowed 

access to calibrated scores, score-level fusion was preferred; where only feature streams were available and 

additional compute was acceptable, feature-level fusion remained viable; and where interfaces were restricted to 

binary signals, decision-level fusion still improved reliability.  
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3.3 Robustness Experiments 
This section evaluated robustness of the biometric subsystems and fusion strategies under adverse capture 

conditions representative of digital payments. Two stressors were considered: acoustic noise for the voice 

modality and illumination variation for the face modality. The objective was to quantify degradation in 

FAR/FRR/EER across controlled conditions and to assess whether multimodal fusion—particularly quality-aware 

score fusion—maintained acceptable accuracy in the operating region relevant to payments (low FAR). Results 

were visualized and summarized numerically in Table 2. 

Experimental design: Robustness testing was conducted on the held-out test split defined with all 

operating thresholds fixed on the validation split prior to these experiments. For the voice subsystem, clean test 

utterances were mixed with additive noise to achieve signal-to-noise ratios (SNR) of 5, 10, 15, 20, and 30 dB. 

Noise consisted of a balanced mixture of stationary (e.g., air-conditioner hum) and non-stationary distractors (e.g., 

café chatter), normalized per utterance. For the face subsystem, illumination was altered synthetically using 

gamma/intensity transforms calibrated against sample scenes, producing five levels from poor to good lighting 

(Level 1–5). Fingerprint images were left unchanged to isolate the effect of single-modality stress; this reflected 

realistic scenarios where environment typically affects one modality at a time (e.g., a noisy queue or a dim point-

of-sale counter). 

Voice under noise: As SNR decreased, the unimodal voice system exhibited monotonic degradation in 

discrimination. At 30 dB SNR, EER remained close to the baseline value reported by 15 dB, EER increased 

markedly, and at 10–5 dB the ROC curve in Figure 7 shifted downward in the low-FAR region, indicating a higher 

impostor acceptance risk for a fixed threshold. False rejects were amplified by VAD truncation and reduced 

articulation clarity, while false accepts clustered around impostors with similar prosodic patterns to the target 

speaker. These trends confirmed the environmental sensitivity of voice and motivated reliance on fusion when 

acoustic conditions were poor. 

 

 
Fig. 6 Robustness – Noise and illumination 

 

Face under illumination: Deterioration followed a similar pattern across illumination levels. With good 

lighting (Level 5), the face subsystem remained close to its baseline, but at Level 2–1 (dim/back-lit scenes) EER 

increased notably and FRR rose at thresholds tuned for low FAR. Error inspection showed that misalignment and 

low dynamic range reduced embedding quality, shifting genuine scores downward and compressing 

impostor/genuine separation. The effect was most apparent in Figure 6, where the EER-versus-illumination curve 

rose as lighting worsened, which recorded FRR spikes at the fixed low-FAR operating point. 

Effect on fusion (fixed-weight): When feature-level and score-level (fixed-weight) fusion were evaluated 

under the same degradations, both strategies reduced error relative to the stressed unimodal channel, but sensitivity 

persisted when the degraded modality retained a high weight. In particular, fixed-weight score fusion under low 

SNR inherited a portion of the voice errors, producing a smaller margin over the fingerprint/face combination 

than in clean conditions. This effect was visible in the robustness curves where the multimodal lines retained a 

gap above unimodal voice but narrowed as stress intensified. 

Effect on fusion (quality-aware): Introducing quality-aware score fusion mitigated much of the stress-

induced degradation. Under low SNR, the voice quality indicator (SNR + voiced-frame ratio) drove its weight 

downward, allowing fingerprint and face to dominate the fused score; under poor lighting, the face 
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alignment/illumination quality terms played an analogous role. As a result, the quality-aware curve remained 

comparatively flat across noise and illumination sweeps, registering smaller EER and FRR increases at the 

payment-oriented threshold. These outcomes demonstrated that re-allocating trust to reliable channels preserved 

discrimination without requiring changes to the unimodal back-ends. 

Threshold stability and operating points: Because thresholds were set on the validation split (cleaner 

conditions), robustness was additionally assessed using threshold-free views (ROC/DET slices) to avoid over-

attributing degradation to fixed operating points. Even in threshold-free comparisons, stressed unimodal curves 

shifted adversely, while fused systems—especially the quality-aware variant—retained a superior envelope in the 

FAR ≤ 1% regime. This behavior indicated that robustness gains were not artifacts of threshold choice but 

reflected genuine preservation of separability. 

Error characterization: Qualitative auditing revealed failure archetypes. For voice, the most difficult trials 

combined non-stationary background speech with short utterances, leading to VAD clipping and unstable 

embeddings. For face, the hardest cases involved back-lighting with motion blur, which increased alignment error 

and reduced contrast. In multimodal fusion, many of these errors were suppressed unless two modalities degraded 

simultaneously (e.g., noisy environment plus dim lighting). The rare instances where all three channels were 

compromised remained challenging and suggest value in capture feedback (e.g., prompt for better lighting or a 

repeat utterance) and step-up policies (e.g., require an additional factor for high-value transactions). 

Practical implications: The robustness study showed that payment deployments benefit from (i) adaptive 

fusion that down-weights stressed modalities automatically, (ii) thresholds tuned to the low-FAR regime with 

periodic recalibration if typical capture conditions drift, and (iii) UX prompts that correct poor capture before 

classification. Under these practices, accuracy remained within target bounds across common stress levels while 

keeping latency nearly unchanged, since quality computation reused signals produced by preprocessing. Cross-

references provide the quantitative basis for these conclusions and inform configuration choices for real-world 

mobile payment scenarios. 

 

3.4 Accuracy–Latency Trade-off 
This section examined how recognition accuracy varied as a function of end-to-end decision latency 

across unimodal and multimodal configurations. The goal was to identify operating points that satisfied payment-

grade security (low FAR) without violating real-time responsiveness on commodity hardware. The comparison 

included the three unimodal systems (fingerprint, face, voice) and three fusion paradigms (feature-level, score-

level, decision-level), together with the quality-aware score-fusion variant introduced. Results were presented as 

a scatter plot of EER vs. latency in Figure 8, with the empirical Pareto frontier summarized. 

Latency definition and measurement protocol. End-to-end latency was measured from the instant the 

capture finished to the availability of the authentication decision. Timing included preprocessing (e.g., fingerprint 

enhancement, face alignment, VAD/SNR estimation), feature extraction/embedding, fusion logic (when 

applicable), and the final calibrated decision. Network transmission and UI rendering were excluded unless 

otherwise noted. For each configuration, median latency and the interquartile range (IQR) were computed over 

all trials to mitigate the influence of occasional OS scheduling spikes. 

 

 
Fig. 7 Impact of missing modality on fusion 
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Observed trade-offs across systems. Unimodal systems formed the lower-left baseline cluster face 

delivered the shortest median latency (~95 ms) with mid-tier accuracy (EER ≈ 4.7%), fingerprint incurred modest 

additional time (~120 ms) but achieved the strongest unimodal accuracy (EER ≈ 3.2%), and voice sat between 

them in time (~110 ms) but exhibited the highest unimodal EER (≈ 5.7%). Multimodal fusion shifted the accuracy 

upward at the cost of extra computation. Decision-level fusion preserved comparatively low overhead (~130 ms) 

but sacrificed granularity (EER ≈ 2.3%). Feature-level fusion achieved strong accuracy (EER ≈ 1.9%) yet required 

the largest compute budget (~165 ms) due to dimensionality reduction and classification over concatenated 

vectors. Score-level fusion established the best overall balance (EER ≈ 1.6% at ~140 ms), and the quality-aware 

variant further reduced error (EER ≈ 1.3%) with a small additional overhead (~148 ms) attributable to quality 

statistics and adaptive weighting. As a result, the Pareto frontier in progressed from fingerprint (120 ms, 3.2%) → 

decision-level (130 ms, 2.3%) → score-level (140 ms, 1.6%) → quality-aware score-level (148 ms, 1.3%); feature-

level (165 ms, 1.9%) remained competitive in accuracy but lay off the time-efficient frontier. 

 

IV.  Conclusions 
This study demonstrated that multimodal biometric fusion substantially enhances the reliability and 

robustness of authentication systems in digital payment platforms compared to unimodal approaches. Fingerprint, 

face, and voice systems each showed specific vulnerabilities under variable capture conditions, but their 

integration mitigated these weaknesses by leveraging complementary strengths. Among the evaluated fusion 

strategies, score-level fusion consistently provided the best trade-off between accuracy and computational 

efficiency, while the proposed quality-aware score fusion achieved the lowest error rates with only marginal 

increases in latency. Robustness experiments under noise and illumination variation further validated the 

adaptability of the system, confirming its suitability for real-world deployments. The results suggest that 

multimodal biometric fusion, especially when dynamically weighted by input quality, can deliver both high 

security and user convenience in financial applications. Future work may extend this approach by incorporating 

additional modalities such as iris or behavioral biometrics, and by exploring lightweight architectures optimized 

for mobile deployment. 
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