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Abstract: 
Accurate detection of moving objects is a fundamental challenge in computer vision with wide-ranging 

applications in surveillance, traffic monitoring, anomaly detection, and human activity analysis. Traditional 

background subtraction techniques based on Gaussian Mixture Models (GMM) often suffer from limitations in 

dynamic environments, such as illumination changes, shadows, and complex backgrounds. This paper proposes 

a hybrid motion detection approach that integrates a Modified Gaussian Mixture Model (GMM) with a K-Nearest 

Neighbor (KNN)-based background subtraction method to improve robustness and precision. The system models 

each pixel as a mixture of Gaussians for statistical adaptability, while leveraging KNN’s non-parametric 

classification to handle rapidly changing scenes. Experiments were conducted on multiple video datasets under 

diverse conditions, including normal lighting, shadow interference, night scenes, and adverse weather. 

Comparative evaluations against conventional GMM and standalone KNN approaches demonstrate that the 

proposed hybrid model achieves higher accuracy (95.2%), improved precision (74.1%), and superior F1-scores 

(68.7%), with significant reductions in false positives and false negatives. These results confirm that the 

integration of parametric and non-parametric methods enhances motion detection reliability in real-time 

applications. The proposed framework offers a scalable and efficient solution for intelligent video surveillance 

and related vision-based monitoring systems. 

Key Words: Motion detection, Background Subtraction Technique, Object recognition, Video surveillance, 

Gaussian Mixture Model (GMM), Contour Analysis. 
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I. Introduction & Literature Review 
The increasing need for automated detection systems across personal, commercial, industrial, and military 

domains has spurred the           development of Video Analytics, promising to simplify lives and equip us to stay 

competitive amidst evolving technologies [1]. However, this trend also necessitates an examination of the 

challenges inherent in automated video surveillance scenarios. Despite humans' remarkable decision-making 

abilities, sustaining concentration levels proves challenging, with studies indicating that up to     90% of displayed 

information is overlooked after just 20 minutes of monitoring [5]. As Closed-Circuit Television (CCTV) systems 

proliferate, individuals may find themselves tasked with continuously monitoring feeds from numerous cameras 

around the clock. This underscores the necessity for automatic systems capable of analyzing and archiving video 

footage from multiple cameras and sensors, seamlessly detecting ongoing events and facilitating data navigation 

through sophisticated user interfaces—a concept commonly referred to as Video Analytics [3, 7]. 

Recent advancements in computer vision underscore a heightened focus on developing systems for 

monitoring and detecting human activity [8]. Such innovations hold significant promise across personal, industrial, 

commercial, and military spheres, empowering us to stay abreast of emerging technologies and tackle the 

complexities inherent in automated video surveillance. Video surveillance endeavors to detect, classify, and track 

objects across image sequences, aiding human operators in understanding and characterizing object behavior. 

These systems play a critical role in monitoring sensitive areas such as airports, banks, parking lots, and national 

borders. 

The operational framework of automated video surveillance systems encompasses stages such as object 

detection, classification, and tracking, with motion detection serving as a foundational step. Motion detection aims 

to segment regions of interest corresponding to moving objects from the background, laying the groundwork for 

subsequent processes. Various techniques including frame differencing, adaptive median filtering, and 

background subtraction are employed to extract objects from stationary backgrounds, with the latter being the 

most widely utilized approach. Background subtraction involves crucial steps such as background modeling and 

foreground detection; wherein statistical descriptions of the background scene are used as reference frames to 

extract objects from video frames. However, in scenarios featuring quasi-stationary backgrounds, such as swaying 

trees, flags, or water bodies, accurately detecting moving objects poses challenges. In such instances, traditional 
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single-model background frames may prove insufficient, necessitating the adoption of adaptive background 

modeling techniques for precise object detection amidst dynamic backgrounds [9, 14]. Motion-based object 

detection is a fundamental approach in computer vision and video analysis that focuses on identifying and 

localizing objects in a scene based on their movement characteristics. This technique leverages the concept that 

moving objects              stand out against a relatively static background, making motion a key indicator for detecting and 

tracking objects [2].  Researchers have proposed many methods, and background subtraction has gradually 

become the dominant solution for moving object detection. There are three main types of methods for moving 

object detection, Background Subtraction, Frame Differencing and Optical Flow. The first method, Background 

Subtraction such the identification of moving individuals within video footage captured by stationary cameras is 

frequently accomplished through background subtraction techniques. This methodology revolves around isolating 

moving objects by analyzing the contrast between   t       h    e    current frame and a reference frame known as the 

"background frame" [4]. The background image serves as a static representation of the scene devoid of any 

dynamic elements and requires regular updates to accommodate changes in lighting and spatial configurations. 

Advanced models have expanded the scope of "background subtraction" beyond its literal interpretation. 

Background subtraction is the prevailing technique for motion detection, leveraging disparities between the 

present image and a stored background image to pinpoint areas of motion and providing pertinent object-related 

data [6]. The efficacy of this method hinges upon the accurate initialization and continuous updating of the 

background image, both of which profoundly influence the precision of test outcomes. Consequently, this study 

employs a robust approach to initialize and dynamically update the background image. 

 

 
Fig.1 Foreground mask generated after background subtraction. 

 

The second one is Frame differencing which involves determining the presence of moving objects by 

computing the disparity between two consecutive images [10]. Its computational simplicity and ease of 

implementation make it suitable for a wide range of dynamic environments. However, it often fails to provide 

comprehensive information about moving objects, leading to phenomena such as empty frames and consequently 

reducing the accuracy of object detection. The method, Optical flow refers to the visual pattern of object motion 

in a scene resulting from the relative movement between the scene and a camera (or observer). The optical flow 

method is employed in various applications such as enhancing video compression, segmenting images for object 

tracking, and estimating motion vectors for moving objects [11]. In motion detection using optical flow, the 

approach involves calculating the optical flow field within an image or video frame. This field represents the 

displacement of pixels over time, allowing the detection of moving objects based on the flow vectors. Despite its 

effectiveness, optical flow methods are typically 

computationally intensive and time-consuming. Optical flow techniques can stabilize the background 

plane by modeling background motion, making it feasible to detect motion even in scenarios involving a moving 

camera and dynamic background. However, many optical flow methods require significant computational 

resources and are not suitable for real-time applications without specialized hardware[12]. 

 

II. Background Subtraction Algorithm 
A fundamental stage in the background subtraction (BS) process involves background modeling, a crucial 

step wherein a fixed image is chosen to serve as the backdrop, excluding all moving elements. 

 

 
Fig.2 Foreground Mask (Ft) after background subtraction, 
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The absolute difference (Dt) between the current frame (It) and the static image is computed for every 

frame in the video sequence. This static image, often referred to as the reference background or background 

model, is denoted as Bt-1. Consequently, the disparity image (Dt) is obtained through the following equation: 

Dt = |It — Bt—1|    (1) 

A foreground mask (Ft) is generated through the application of a threshold to a different image. 

𝐹𝑡 =  {
1, 𝐷𝑡 > 𝑇ℎ

0, 𝑒𝑙𝑠𝑒
                (2) 

 

Illustrated in Fig.2 is an instance of the background subtraction procedure. To accommodate alterations within 

the scene over time, ensuring adaptability of the background model is imperative. The algorithm governing this 

learning phase necessitates gradual and online execution. Employing a straightforward recursive technique, all pixels 

are updated utilizing an Infinite Impulse Response (IIR) filter. 

Bt = (1 — α) Bt—1 + αIt   (3) 
where α is learning rate which is a constant in the range [0, 1]. Bt—1 and It are background and current 

image at time t-1 and t, respectively. ( It Bt-1 Ft). 

Background subtraction algorithms can be mainly divided into three groups of learning: Unsupervised 

background subtraction, supervised background subtraction based on deep learning and semi-supervised 

background subtraction. Unsupervised methods focus on studying the internal mechanism of foreground detection 

and segmentation using a robust model that adapts to complex situations to represent it and constantly updates 

the model over time. The accuracy of a method is related to the strategy for establishing the background model, 

as well as the updating strategy. Clustering is a fundamental concept in unsupervised machine learning, where 

the goal is to group similar data points based on their inherent characteristics, without the need for labeled training 

data. Two popular clustering algorithms: K-Means and Gaussian Mixture Models (GMM). 

 

Background Modeling Using K-Means 

Background modeling using k-means clustering is a technique employed in computer vision to separate 

foreground objects from t                            h                         e background in video sequences. The process involves representing each pixel as a data 

point and applying k-means clustering to     group similar pixels into clusters [15]. The cluster representing the most 

frequently occurring pixel values across frames is considered as the background model. This model is then used to 

identify and extract foreground objects by subtracting the background from each frame. K-means clustering offers 

a straightforward and computationally efficient approach to segmenting pixels based on their characteristics, 

making it suitable for real-time applications such as surveillance, motion detection, and video analytics[16]. However, 

challenges such as handling dynamic backgrounds and selecting appropriate parameters for clustering require 

careful consideration to ensure accurate and robust background modeling. 

 

Background Modeling Using GMM 

Gaussian Mixture Models (GMMs) are employed for background modeling in video sequences by 

representing pixel intensities as a blend of Gaussian distributions, with each distribution representing a potential 

background appearance. Throughout the modeling process, GMMs dynamically learn and update the statistical 

properties of the background by adjusting the parameters (mean and covariance) of the Gaussian components 

over time [24]. This adaptive learning allows the model to adapt to gradual changes in the background scene. 

When processing a new frame, pixels that substantially diverge from the learned background model in terms of 

intensity distribution are classified as foreground, indicating the presence of moving objects or anomalies. GMM-

based background modeling is effective for detecting and segmenting moving objects in video surveillance and 

related applications [27], leveraging the probabilistic nature of GMMs to capture complex background variations 

and foreground dynamics [17]. 

 

A: Building the Mathematical Model of the GMM: In the mathematical framework of Gaussian Mixture 

Models (GMM), several key components are defined to facilitate the understanding       and estimation of complex 

data distributions. 

 

The Probability Density Function (PDF) of a Gaussian distribution: serves as a fundamental building block. It 

encapsulates the likelihood of observing a specific data point within the distribution parameters        such as the mean 

(μ) and variance (σ^2) characterize this PDF Fig. 3, influencing the shape and spread of the distribution. To get the 

PDF of the GMM we will start with the exponential function and try to manipulate and modify it until we get the 

multivariate Gaussian component which is the building block of the GMM. Where  𝑒𝑥   increases rapidly on the 

positive side, while  𝑒−𝑥  decreases rapidly on the negative side. The squared input value 𝑒𝑥2  results in two 

characteristics: it imparts symmetry to the function and accelerates the growth of the function's output even more 

rapidly. On the other hand, the reversed squared input value 𝑒−𝑥2  where we get the familiar bell-shaped curve, 

https://csmtiedu-my.sharepoint.com/personal/shahd_94047_cs_mti_edu_eg/Documents/final%20project%20(1)%20(1)%20(1).docx
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however, this does not conform to the normal distribution, and several additional elements must be incorporated 

to achieve it which are: 

▪ The Mean µ (we want to change the center) we can do this by shifting the x-axis by a value equal to the µ 

(𝑒−(𝑥−𝑢)2
). 

▪ Variance ơ (we want to control the width) we can do this by controlling the strength of the input value by 

multiplying it with a constant known as standard deviation or sigma  𝑒
−(ơ𝑥−𝑢)2

 

 

Mixture model: GMM represents the background scene as a composite of multiple Gaussian distributions, where e 

a c h distribution, or component, is defined by its mean vector and covariance matrix. These components are weighed 

by mixing coefficients that determine their relative contributions to the overall background model [23]. The GMM 

is a probabilistic model that captures the underlying variability and complexity of the background by blending 

different Gaussian patterns Fig. 3. This mixture modeling approach is commonly used in tasks like background 

subtraction and anomaly detection in computer vision and image processing applications [25], providing a 

versatile framework for modeling and understanding diverse background scenes based on observed data 

distributions. 

 

B: Initializing the GMM Parameters: The initialization of parameters for GMM based background modeling 

involves several key decisions. First, the number of Gaussian components (K) needs to be determined, reflecting 

the complexity of the background scene. This value is typically selected based on empirical analysis of the scene's 

variability and the desired granularity of the model. Secondly, the learning rate (α) dictates the speed of adaptation 

to changes in the scene; a smaller α results in slower updates, allowing for more stable background modeling, 

whereas a larger α facilitates quicker adaptation to dynamic scenes. The threshold (τ) is crucial for pixel 

classification, where pixels are categorized as background or foreground based on their likelihoods under the 

learned background model; choosing an appropriate threshold is vital for accurate foreground detection. Lastly, 

selecting the covariance type (e.g., diagonal or full covariance matrices) for each Gaussian component impacts 

the flexibility and complexity of the model in capturing the background's statistical characteristics [26]. These 

initialization choices play a critical role in the effectiveness and performance of GMM-based background 

modeling algorithms, influencing how well the model adapts to scene variations and distinguishes moving 

foreground objects from the static background [18,19,20]. 

 

C: Modeling Pixels: GMM assumes that the observed data is generated from a mixture of multiple Gaussian 

distributions, each with its own set of parameters (mean and covariance matrix) and a weight representing its 

contribution to the overall distribution. 

 

 
Fig. 3 Probability Density Function (PDF) of a Gaussian distribution 

 

Initialization: Initialize the Gaussian mixture parameters (mean, covariance, and weight) for each component. 

Estimation: Update the parameters iteratively as new observations are made. This involves updating the mean, 

covariance, and weight of each component based on the current pixel value and the learning rate. 

Likelihood Calculation: the goal is to compute the probability or the likelihood of the observed pixel value given 

or each Gaussian components of the model. Each pixel in the current frame is evaluated against each Gaussian 

component (distribution) to determine how likely it is that the pixel belongs to each distribution. For a pixel value 

𝑥, and a Gaussian component 𝑗 with mean μ𝑗, covariance matrix 𝛴𝑗,  and weight 𝜔𝑗, the likelihood P (x | j) is given 

by the Gaussian probability density function (PDF): 

𝑃(𝑋|𝑗)  =  
1

(2𝜋)
𝑑
2(∑𝑗)

1
2

𝑒𝑥𝑝(−
1

2
(𝑋 − 𝜇𝑗)𝑇 ∑ (𝑋 −−1

𝑗 𝜇𝑗))           (4) 

 

where 𝑑 is the dimensionality of the feature vector (typically, 𝑑 = 1 d=1 for grayscale pixel values and 𝑑 

= 3 for RGB color values) [30]. The overall likelihood of the pixel value under the mixture model is the weighted 

sum of the likelihoods for each Gaussian component: 

𝑝(𝜒)  =  ∑ 𝑤𝑗𝑃(𝜒|𝑗)𝑘
𝑗−1            (5) 
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where 𝐾 is the number of Gaussian components. 

Background Modeling: Classify the pixel as background if its likelihood under the background model exceeds a 

predefined threshold. Otherwise, consider it as part of the foreground. 

History: The history parameter determines the number of past frames (history) that are used to initialize this 

background model. 

1. Initialization and Accumulation of History 

2. If the history buffer is not yet full, new frames are added to it. 

3. Else If the history buffer is full, the oldest frame is removed, and the new frame is added. 

Background_history[𝑖]  =  𝑓𝑟𝑎𝑚𝑒 

 

Background Model Update: 

1. Start with the first frame in history as the initial background model. 

2. Update the background model by blending each historical frame with the current background model using the  

learning rate 𝛼. 

 

Background_model = 𝛼. ℎ𝑖𝑠𝑡_𝑓𝑟𝑎𝑚𝑒 +  (1 − 𝛼) . 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑚𝑜𝑑𝑒𝑙 
Background_model = background_history[0] 
 

III. Proposed System (Modified GMM& KNN-Based Background Subtraction) 
Foundation 

In the realm of traffic surveillance systems, Friedman and Russell [1,7] introduced a method to 

characterize background pixels by employing a blend of three Gaussian distributions representing distinct 

elements: the road, vehicles, and shadows. They initialized this model using an Expectation-Maximization (EM) 

technique [6]. Subsequently, they manually assigned labels to these Gaussians based on a heuristic approach: the 

darkest Gaussian component was designated as representing shadows, while the remaining two components were 

identified as representing the road and vehicles, respectively, with the vehicle component determined by the 

largest variance. This configuration remained constant throughout the system's operation. Each pixel underwent 

comparison with these Gaussians to determine foreground detection, with classification based on the closest 

matching Gaussian. Maintenance of this model was achieved through the utilization of an incremental EM 

technique to enable real-time adaptation [1,7]. Stauffer and Grimson [1] further developed this concept by 

incorporating recent color property variations of each   pixel into their Gaussian model. 

 

Pixel processes and parameters initialization 

At any time t, we have a history of a particular pixel (X0, Y0). Models the values of particular pixels as 

a mixture of Gaussians. At any time, t, we have k distributions of Gaussians for each pixel (used 3 Gaussians). 

For each Gaussian, we have: 

 
𝜔𝑖, 𝑡: is an estimated weight of ith Gaussian in the mixture, at time t. initialized with uniform distribution which 

led to: 

1. Equal Starting Point: By initializing the weights uniformly, each Gaussian component starts with an equal 

probability of representing the pixel's value. This prevents any initial bias towards specific components and 

ensures that all components are considered equally likely to begin with. Over time, the weights will adapt based 

on the observed pixel values, allowing the model to accurately represent the pixel distribution. 

2. Stability in Early Iterations: Uniform initialization provides stability in the early stages of the algorithm. Since 

no prior information is available about which Gaussian might be more relevant, giving each component an equal 

weight helps in avoiding any premature convergence to incorrect components. This can help in reducing the 

initial noise and variability in the background model. 

3. Simplified Implementation: Using a uniform distribution simplifies the implementation and initialization 

process. It avoids the need for complex calculations or heuristics to determine initial weights, making the 

algorithm easier to implement and understand. 

4. Fair Competition Among Components: When the weights are initialized uniformly, each Gaussian component 

has an equal chance of representing the observed pixel values. This fair competition ensures that the most 

appropriate Gaussian components will emerge over time as they compete based on their fit to the data. The 

components that best match the observed values will naturally receive higher weights, leading to a more 

accurate and robust background model. 

5. Improved Convergence: Uniform initialization can lead to improved convergence properties. Since all 

components start with equal importance, the algorithm is less likely to get stuck in local minima where certain 

components dominate prematurely. This helps in achieving a more accurate and stable background model as 

the algorithm progresses. 
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𝜇𝑖, 𝑡: is the mean value of ith Gaussian in the mixture, at time t, initialized with vector of zeros which lead to: 

1. The model start with a simple assumption and quickly adapts to the actual data as it processes more frames. 

2. Handling Unknown Initial Conditions: When there is little to no prior knowledge about the data distribution, 

initializing with zeros is a reasonable choice. It allows the algorithm to explore the data and converge to the 

appropriate means based on the observed data rather than being influenced by potentially incorrect initial 

guesses. 

 

Σ𝑖, 𝑡: covariance matrix of ith Gaussian in the mixture, at time t: This ensures that the initial covariance 

is equal in all directions and prevents singularities. A singular covariance matrix leads to degenerate Gaussian 

distributions, affecting the model's ability to represent data distributions accurately. By initializing covariance 

matrices with non-zero values, such as small positive values or an identity matrix, we can prevent singularities 

from occurring. This initialization ensures that the matrix remains invertible and avoids numerical issues during 

computations. For computational reasons, we assumed that the RGB color components are independent and have 

the same variances. So, the  covariance matrix is of the form: 

∑ =  𝜎𝑖,𝑡
2 𝐼𝑖,𝑡               (6) 

Now, the probability of observing the current pixel value is: 

𝑃(𝑋𝑡) =  ∑ 𝜔𝑖,𝑡 . 𝜂(𝑋𝑡 , 𝜇𝑖,𝑡 , Σ𝑖,𝑡)𝐾
𝑖=1              (7) 

 

Where ‘K’ is the number of Gaussian distribution, ω, µ, ∑ as stated previously, and ƞ is the gaussian 

probability density function Eq. (8). 

𝜂(𝑋𝑡,𝜇, Σ)  =  
1

(2𝜋)
𝑛
2 |Σ|

1
2

𝑒𝑥𝑝(−
1

2
(𝑋𝑡 − 𝜇)Σ−1(𝑋𝑡−𝜇))               (8) 

So, each pixel is characterized by a mixture of K Gaussians. Once the background model is defined, the 

different parameters of  the mixture of Gaussians must be initialized. The parameters of the mixture of Gaussians 

model are the number of Gaussians K, the weight 𝜔𝑖, 𝑡, t associated to the 𝑖𝑡ℎ Gaussian at time t, the mean 𝜇𝑖, 𝑡 

and the covariance matrix Σ𝑖, 𝑡. 

Background model estimation: The Gaussians are ordered by the value of ω/σ Then, the first B distributions          

Eq. (9) are chosen as the background model [28], 

B = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏(∑ 𝜔𝑖,𝑡 > 𝑇)𝑏
𝑖=1                   (9) 

where T is a measure of the minimum portion of the data that should be accounted for by the background [29]. 

 

Update the mixture model: Every new pixel value, Xt, is checked against the existing K Gaussian distributions 

until a match is found. A pixel matches a Gaussian distribution if the Mahala Nobis distance Eq. (10). 

sqrt((𝑋𝑡+1 − 𝜇𝑖,𝑡)𝑇 . ∑ (𝑋𝑡+1 − 𝜇𝑖,𝑡)) < 𝑘𝜎𝑖,𝑡
−1
𝑖,𝑡               (10) 

Where K is a constant threshold equal to 2.5, now two cases can occur: 

 

Case 1: A match is found with one of the K Gaussians. In this case, if the Gaussian distribution is identified as a 

background one, the pixel is classified as background else the pixel is classified as foreground. For the matched 

component, the update is done as follows: 

ωi,t 1  (1 α) ωi,t α                (11) 

where α is a constant learning rate. 

μi,t 1 (1 ρ) μi,t  ρ.Xt 1                           (12) 

σ2

i ,t 1 
 (1 ρ) σ2

i,t  ρ(X
t 1  μ

i,t 1
).(X

t 1 μ
i,t 1 )

T    (13) 

where ρ  α.η ( X
t 1

,  μ
i , i) 

For the unmatched components, μ and  are unchanged, only the weight is replaced by 

ωj,t 1  (1 α) ωj,t
                             (14) 

 

Case 2: No match is found with any of the K Gaussians. In this case, the pixel is classified as foreground & 

the least probable distribution k is replaced with a new one with parameters: 

ωk,t 1 Low Prior Weight                        (15) 

μ
k,t 1 

Xt 1                                           (16) 

σ2

 k,t 1    Large Initial Variance             (17) 

Once the maintenance of parameters is made, foreground detection can be made, and so on. Complete 

studies on the signification and   the setting of the parameters can be found in [22, 23]. 

 

Learning rate: 

The alpha parameter in the algorithm has a significant effect on its performance, particularly in terms of how 
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quickly the background model adapts to changes in the scene. Here’s how it works: 

• Low Alpha: When alpha is low, the background model changes slowly over time. This means that the algorithm 

is more resistant to short-term fluctuations or noise in the video frames. However, it may take longer for the 

background model to adapt to significant changes in the scene, such as sudden lighting changes or moving 

objects. 

• High Alpha: Conversely, when alpha is high, the background model adapts quickly to changes in the scene. This 

can help the algorithm respond rapidly to changes like moving objects or changes in lighting conditions. 

However, it may also make the algorithm more sensitive to noise, leading to false detections or instability in the 

background model. 

 

KNN-Model 

The KNN model is implemented through two main steps: Background Decision: This step involves 

classifying each pixel as either background or foreground by comparing it to its historical pixels, History Update: 

This step updates all historical pixels at varying rates [31]. 

 

Background Decision: For each pixel, historical values from previous frames are stored in three different history 

lists: short, medium, and long as shown in Fig. 4. Each history list contains a predefined number of samples, such 

as N=7, where each sample is represented by a structure storing the red, green, and blue channel values (Ri, Gi, 

and Bi) for the i-th sample pixel, xi. Additionally, a flag (Flagi) is used to indicate if xi is a potential background 

pixel (Flagi = 1) or a foreground pixel (Flagi = 0). A potential background pixel is either classified as background 

or likely to be classified as such. When a new pixel, xt, is obtained from the next frame, the algorithm computes 

the Euclidean distance Dis(t,i) in RGB color space between xt and each historical sample xi (i = 1, ..., 3N) in the 

three history lists. 

Dis(t,i) = √(𝑅𝑡 − 𝑅𝑖)2 + (𝐺𝑡 − 𝐺𝑖)2 + (𝐵𝑡 − 𝐵𝑖)2                    (18) 

 

 
FIG. 4. The structure of the histories for a pixel in KNN background subtraction model. (a) Each of the three 

histories contains N samples composed of R, G, B, and a Flag value. (b) The three histories contain the same 

number of samples but cover different 

 

 
FIG. 5. Pseudo code for classifying a pixel xt as background or foreground. 

 

The process of classifying whether the new pixel xt is background or foreground can be described 

algorithm in Fig.5. The algorithm iterates through all 3N historical samples, a counter (CountD) tracks the number 

of distances smaller than a threshold 𝑇ℎ 𝐷. Simultaneously, another counter (CountF) counts the number of samples 

with Flag=1where Dis(t,i) <  𝑇ℎ 𝐷. The values of CountD  and CountF are then compared to a threshold 𝑇𝑐 𝑘 to 
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classify xt as either background or foreground[31]. The pixel xt is immediately classified as background  (value = 

1) if there are more than 𝑇𝑐 𝑘 potential background pixels within the distance threshold 𝑇ℎ𝐷 . Otherwise, xt is 

classified as foreground (value = 0). If CountD exceeds 𝑇𝑐 𝑘, xt can be reclassified as potential background, setting 

its  Flag value to 1. Each frame is processed in this way, resulting in a binary mask image where background pixels 

are labeled as 1 and moving targets as 0. 

 

History Update: The three history lists cover different time ranges, as shown in Fig. 4 . For instance, the 

short history covers frames from 1103 to 1112, the medium history from 1073 to 1112, and the long history 

from 1043 to 1112. 

 

 
FIG. 6. History update. 

 

This indicates that the short history contains only the most recent samples, while the medium and long 

histories include samples from earlier frames with larger intervals between samples. Hence, the three histories are 

updated at different rates according to the following Eq. (19): 

𝑇𝑠ℎ𝑜𝑟𝑡 =  𝑅𝑜𝑢𝑛𝑑(
𝑙𝑜𝑔(0.7

𝑙𝑜𝑔(1 − 𝛼)
+ 1 

𝑇𝑚𝑖𝑑 =  𝑅𝑜𝑢𝑛𝑑(
𝑙𝑜𝑔(0.4)

𝑙𝑜𝑔(1 − 𝛼)
+ 1 −  𝑇𝑠ℎ𝑜𝑟𝑡  

𝑇𝑙𝑜𝑛𝑔 =  𝑅𝑜𝑢𝑛𝑑(
𝑙𝑜𝑔(0.1)

𝑙𝑜𝑔(1−𝛼)
+ 1 − 𝑇𝑚𝑖𝑑  −  𝑇𝑠ℎ𝑜𝑟𝑡                (19) 

 

Here, Round(.) is the rounding function, and α (0 < α < 1.0) is the learning rate, set to 0.02 in this study. 

Once the time ranges are determined, the update ratio Rj is calculated as: Rj=Round (Tj/N)+1 Where 𝑇j represents 

𝑇𝑠ℎ𝑜𝑟𝑡 , 𝑇𝑚𝑖𝑑 and 𝑇𝑙𝑜𝑛𝑔 , and N is the number of samples in each history (e.g., N=7 in Fig. 4). Consequently, the 

short history is updated most frequently, while the long history is updated the least [31]. 

Fig. 6 details the updating process for the three histories. Samples in each history are managed by a queue, 

with the head on the left  and rear on the right. When a new pixel arrives, it is first classified as potential foreground            

(Flag = 1) or background (Flag = 0), then added to the rear of the short history. 

Since the short history only retains N samples, the oldest sample on the left is removed from the queue. For 

updating the medium history, a random sample from the short history is appended to the medium history's rear, and 

the oldest sample is removed from the medium history. Similarly, the long history is updated by selecting a random 

pixel from the medium history. This process ensures that the samples are sorted on time, and the earliest one is 

discarded after updating the short history. When the algorithm iterates from the first frame to the last, the three 

histories are updated at different rates. 

By combining K-Nearest Neighbors (KNN) and Gaussian Mixture Model (GMM), a motion detection 

system can effectively utilize the strengths of both non-parametric and parametric approaches. KNN’s adaptability 

and flexibility enable it to rapidly respond to changes in the environment, capturing complex and dynamic patterns 

in the background. This is particularly useful in situations where the background is constantly changing or contains 

frequent movements. GMM, on the other hand, provides a structured and detailed background model by 

representing the background as a mixture of Gaussian distributions. This parametric approach excels in 

distinguishing between foreground and background elements, even in the presence of subtle changes such as 

lighting variations and shadows. 

By integrating these two methods, the hybrid system achieves a balance between responsiveness and 

stability, significantly enhancing the accuracy, efficiency, and robustness of motion detection. This makes the 

system highly effective across a wide range of environments and conditions, such as in surveillance systems where 

it can accurately detect intruders in both stable and dynamic settings, in traffic monitoring where it can reliably 

identify moving vehicles and pedestrians, and in wildlife monitoring where it can track animals in rapidly changing 

natural habitats. The hybrid approach not only reduces false positives and negatives but also ensures real-time 

performance, making it a versatile and powerful solution for various motion detection applications. 
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Fig. 7. Flow chart for hybrid-modified GMM-KNN based object detection. 

 

IV. Testing & Evaluation Of GMM & Modified GMM 
Experimental setup: A high fixed value for K was selected. Different combinations of α and T were evaluated 

across the dataset to determine the most effective pair for object detection across multiple videos. The Total Error 

(TE), a key performance metric, was introduced to identify the pair of α and T with the lowest TE value, which 

represents the total misclassifications across all videos. The object detection system underwent testing with 

various α and T parameters across a range of background-covering sequences, with emphasis on sequences from 

the four datasets we used. 

 

Training and testing: The dataset provider has outlined comprehensive recommendations for both training and 

testing procedures. Below are concise descriptions of sequences, accompanied by instructions for training and 

testing. 

 

Normal Case (NC): A girl with brown hair and wearing white & black clothes walks confidently across a green 

screen studio. She smiles and makes eye contact with the viewer. 

 

Shadow Case (SC): A girl in a long, flowing, floral clothes and a headscarf walking down a sidewalk. In the 

background is a large building with many windows. The girl’s shadow appears throughout the video while she’s 

walking. 

1. Night Case (NIC): A man walking down a foggy street at night. The street is lit by lampposts that cast pools 

of light on the sidewalk. The man is in the center of the frame,. He is wearing a long coat. 

2. Bad Weather Case (BWC): A man walking down a sidewalk on a snowy street at night and the sky is dark 

and wearing a winter coat and hat, and appears to be trudging through the snow. 

 

Results of GMM & Modified GMM: The performance of the Gaussian Mixture Model (GMM) and our Modified 

GMM is evaluated through a series of metrics. Table 1 displays the core performance metrics for the GMM, 

specifically true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). These metrics 

provide a foundational understanding of the model’s ability to correctly identify motion versus background. Table 
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2, we further analyze the GMM performance through derived key metrics: accuracy, precision, recall, and F1 

score, which offer a more holistic view of the model’s effectiveness in various aspects. Tables 3 and 4 mirror the 

structure of Tables 1 and 2, respectively, but for the Modified GMM. This comparison allows us to evaluate the 

improvements brought by our modifications, demonstrating enhanced performance in motion detection through 

a detailed examination of both basic and derived metrics. 

 

Table 1: Performance parameter evaluation of GMM, KNN and Hybrid Modified GMM & KNN (True 

Positive) 

 
 

 
Fig. 6a. True positive of GMM compared to Modified GMM & KNN based object detection. 

 

 
Fig. 6b. True positive of GMM compared to KNN based object detection. 

 

Table 2: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (True Negative) 
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Fig. 6c. True Negative of GMM compared to Modified GMM & KNN based object detection 

 

 
Fig. 6d. True Negative of GMM compared to KNN based object detection 

 

Table 3: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (False Positive) 
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Fig. 6e. False Positive of GMM compared to Modified GMM & KNN based object detection. 

 

 

 
Fig. 6f. False Positive of GMM compared to KNN based object detection. 

 

Table 4: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (False 

Negative) 
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Fig. 6g. False Negative of GMM compared to Modified GMM & KNN based object detection. 

 

 
Fig. 6h. False Negative of GMM compared to KNN based object detection. 

 

Table 5: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (Accuracy) 
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Fig. 6i. False Negative of GMM compared to Modified GMM & KNN based object detection. 

 

 
Fig. 6j. Accuracy of GMM compared to KNN based object detection. 

 

Table 6: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (Precision) 
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Fig. 6k. Precision of GMM compared to Modified GMM & KNN based object detection. 

 

Table 7: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (Recall) 

 
 

 
Fig. 6l. Precision of GMM compared to KNN based object detection. 
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Fig. 6m. Precision of GMM compared to Modified GMM & KNN based object detection 

 

 
Fig. 6n. Precision of GMM compared to KNN based object detection. 

 

Table 8: Performance parameter evaluation of GMM, KNN & Hybrid Modified GMM & KNN (F1 Score) 
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Fig. 6o. Precision of GMM compared to Modified GMM & KNN based object detection. 

 

 
Fig. 6p. Precision of GMM compared to KNN based object detection. 

 

Finally, the experimental evaluation across diverse datasets including normal lighting, shadow 

interference, night scenes, and adverse weather, demonstrated the superiority of the proposed hybrid Modified 

GMM and KNN approach. Compared to baseline GMM and standalone KNN methods, the hybrid system 

achieved higher overall accuracy (95.2%) shown at Table. 5 and their figures Fig, 6i, Fig. 6j, improved precision 

(74.1%) shown at Table. 6 and their figures Fig, 6k, Fig. 6l, and a stronger F1 score (68.7%) shown at Table. 85 

and their figures   Fig. 6o, Fig. 6p, while significantly reducing false positives and false negatives. These results 

confirm that integrating parametric and non-parametric approaches yields a more reliable framework for motion 

detection in complex environments. The performance improvements were consistent across all tested scenarios, 

underscoring the robustness and adaptability of the proposed model. 

 

V. Conclusion And Comparison 
This study introduced a hybrid motion detection framework that integrates a Modified Gaussian Mixture 

Model with K-Nearest Neighbor background subtraction, addressing key limitations of conventional approaches 

in dynamic and challenging environments. By combining the probabilistic rigor of GMM with the adaptability of 

KNN, the proposed system effectively balances stability and responsiveness, enabling accurate object detection 

under conditions such as illumination changes, shadows, occlusions, and dynamic backgrounds. The results 

highlight not only the enhanced detection performance but also the scalability of the method for real-time 

surveillance and monitoring applications. Importantly, this research contributes to advancing video analytics by 

demonstrating the benefits of hybrid ensemble models for robust motion detection. Future work will focus on 

optimizing computational efficiency, extending the framework to deep learning–based architectures, and 

exploring its applicability in broader domains such as autonomous navigation and intelligent transportation 

systems. 
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