1OSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 5, Ser. 4 (Sept. — Oct. 2025), PP 52-60
www.iosrjournals.org

Securing RESTful APIs With Middleware-Based Threat
Mitigation

Mohammed Ali Rizvi
Mtech Scholar
Department Of Computer Science And Engineering
Jai Narain College Of Technology (JNCT), Bhopal

Neha Jain

Assistant Professor
Department Of Computer Science And Engineering
Jai Narain College Of Technology (JNCT), Bhopal

Abstract

Over the past decade, RESTful APIs have become one of the most widely used methods for connecting applications
and services. They are now an essential part of mobile apps, web platforms, cloud services, and even IoT devices.
This popularity comes from their simplicity, flexibility, and ability to work across many different systems and
programming languages. However, as RESTful APIs have become more common, they have also attracted more
attention from attackers. API endpoints often handle sensitive data, manage authentication, and control key
business functions, which makes them high-value targets for exploitation. Despite the clear need for strong
protection, securing RESTful APIs remains a difficult task. One challenge is the lack of a single, universal
standard for API security. Developers often rely on different methods, tools, and frameworks, which can lead to
inconsistent protections. Another difficulty is finding the right balance between performance and security. Adding
extra security layers can slow down systems, but removing them increases the risk of attacks. Real world incidents
have shown that poor API security can lead to severe consequences, including data breaches, service disruptions,
and reputational damage. This review paper looks closely at the current state of RESTful API security. It gathers
and compares information from existing studies, industry reports, and practical implementations to give a clear
picture of what is working, what is not, and where there is still room for improvement. The review covers key
security techniques such as token-based authentication (JWT, OAuth2), encryption methods, input validation, and
threat detection tools like Burp Suite and OWASP ZAP. It also examines common attack patterns, such as injection
attacks, broken authentication, and data exposure, to understand how they exploit weaknesses in API design and
configuration. By organizing and analysing these findings, the paper identifies patterns, strengths, and limitations
in current approaches. More importantly, it suggests a structured framework that puts security at the centre of
the API development process, instead of treating it as an afterthought. This proposed direction encourages
developers to adopt a “security-first” mindset, use layered defence mechanisms, and follow consistent best
practices regardless of the platform or technology used. In doing so, this work aims to provide both researchers
and practitioners with a practical guide to improving RESTful API security. It offers not only a summary of the
state of the art but also actionable recommendations for future designs, testing methods, and standardization
efforts. By following these insights, the next generation of APIs can be built to withstand evolving threats while
continuing to deliver the speed, reliability, and flexibility that modern applications require

Date of Submission: 04-10-2025 Date of Acceptance: 14-10-2025

I. Introduction

In today’s digital world, the way applications communicate has changed dramatically. Over the past
decade, RESTful APIs have evolved from being a convenient option for developers to becoming the backbone of
modern web, mobile, and cloud-based applications. They make it possible for different systems, built on different
technologies, to work together smoothly. From e-commerce platforms that connect with payment gateways, to
mobile apps that retrieve live data from cloud servers, RESTful APIs enable fast, reliable, and flexible integration.
Their simplicity, scalability, and wide adoption have made them the preferred choice for many organizations, from
startups to large enterprises. However, with this growth comes a challenge that cannot be ignored—security. Every
API endpoint that is exposed to the internet becomes a potential entry point for attackers. As businesses rely more
on APIs to handle sensitive data, financial transactions, and user authentication, the attack surface has expanded

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 52 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

significantly. Securing APIs has become more complex, as developers must not only defend against traditional
web-based threats but also account for API-specific risks. The growing number of cyber incidents targeting APIs
shows that vulnerabilities are not just theoretical—they have real and costly consequences. The motivation for this
review is rooted in this reality. RESTful APIs are no longer optional components; they are core parts of critical
systems. Yet, their security practices often lag behind their rapid adoption. Many implementations lack consistency,
and there is no universally enforced security standard that developers can follow. Furthermore, the balance between
performance and security often leads to compromises, leaving systems open to exploitation. These issues highlight
the urgent need for a consolidated understanding of current API security approaches, their limitations, and possible
paths for improvement. The objective of this review is threefold. First, it aims to highlight common vulnerabilities
that put RESTful APIs at risk, including weaknesses in authentication, improper data validation, and misconfigured
endpoints. Second, it seeks to assess the current standards, tools, and best practices used in the industry, identifying
where they succeed and where they fall short. Third, it examines notable real-world breaches to understand how
attackers exploit API weaknesses, and based on these insights, suggests practical improvements that can help
prevent similar incidents in the future. The scope of this paper is focused on RESTful API security in the context
of modern applications, especially those deployed in web, mobile, and cloud environments. It does not attempt to
provide an exhaustive tutorial on building APIs, but rather concentrates on the security landscape surrounding them.
The paper is organized as follows: Section 3 provides a review of existing API security techniques and compares
REST with other models such as SOAP. Section 4 discusses the limitations of current approaches, supported by
examples of security incidents. Section 5 presents a proposed methodology for enhancing API security, including
architectural guidelines and testing strategies. Finally, Section 7 concludes with a summary of findings and
recommendations for future work. By bringing together research findings, industry practices, and case studies, this
review aims to serve as a valuable resource for both academics and practitioners who are committed to building
secure, resilient, and reliable RESTful APIs.

II. Background And Fundamentals

Before diving into the security aspects of RESTful APIs, it is important to understand what they are, how
they work, and how they compare to other API models. REST, short for Representational State Transfer, is an
architectural style used for designing networked applications. When an API follows the principles of REST, it is
called a RESTful API. These APIs rely on standard HTTP methods—such as GET, POST, PUT, and DELETE—
to perform operations, making them lightweight, easy to use, and well-suited for web and mobile applications.
Unlike older API protocols, REST does not require complex messaging standards or heavy data formats. Instead,
it often uses JSON or XML to exchange information, which keeps interactions simple and fast. This simplicity has
played a huge role in its widespread adoption across industries. When comparing REST to SOAP (Simple Object
Access Protocol), the differences go beyond just data formatting. SOAP is a protocol with strict rules and built-in
features like error handling and formal contracts (WSDL). It also has well-defined security specifications such as
WS Security. REST, on the other hand, is more flexible but does not have a single, universal security framework—
it relies on the underlying transport layer (HTTPS) and additional measures added by the developer. While this
flexibility is an advantage for scalability and ease of integration, it can also mean that REST security is less
consistent if not carefully implemented. A key principle of REST is statelessness. This means that each client
request to the server must contain all the information needed to understand and process it. The server does not store
any session data between requests. From a security perspective, statelessness has both benefits and drawbacks. On
one hand, it reduces the risk of certain attacks that target stored session data and makes systems easier to scale. On
the other hand, it requires careful handling of authentication and authorization, since user identity must be verified
with every request. RESTful APIs are built from several essential components. Endpoints are the specific URLs
through which clients interact with resources. HTTP methods define the type of action to be performed, such as
retrieving data (GET), creating new records (POST), updating existing data (PUT/PATCH), or removing data
(DELETE). Headers carry important metadata, including content type, authorization tokens, and caching
instructions. Authentication mechanisms— such as API keys, Basic Authentication, OAuth2, or JWT—ensure that
only authorized users and applications can access or modify resources. Each of these components plays a role in
securing the API, and weaknesses in any one of them can expose the system to threats. Understanding these
fundamentals is essential before exploring the specific vulnerabilities and security practices that will be discussed
in later sections. Without a solid grasp of how RESTful APIs are structured and how they differ from other models,
it is difficult to design strong and effective security measures.

III. Existing Security Standards And Protocols
Securing RESTful APIs is not a one-size-fits-all task. Developers have a variety of standards and
protocols to choose from, each designed to handle different aspects of protection—from verifying user identities
to ensuring that transmitted data remains confidential. While these mechanisms provide powerful tools, their
implementation often varies widely between projects, leading to inconsistency and gaps in protection.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 53 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

Authentication Mechanisms

Authentication is the first line of defence in any API security strategy, as it determines who is trying to
access the system. The simplest method is Basic Authentication, where the client sends a username and password
encoded in Base64 with every request. While easy to implement, Basic Auth is considered weak because
credentials are repeatedly sent over the network and can be intercepted if not properly encrypted with HTTPS.
API Keys offer another approach, assigning each client a unique identifier that must be included in requests. They
are lightweight and easy to manage but do not inherently verify the identity of the requesting user—they simply
confirm that the request came from an authorized application. More advanced methods include OAuth 2.0, a
widely adopted authorization framework that allows applications to access resources on behalf of a user without
sharing actual credentials. Building on top of OAuth, OpenID Connect adds a layer for verifying user identity,
making it suitable for single sign-on scenarios. A popular companion to these frameworks is JSON Web Token
(JWT), which packages authentication claims into a digitally signed token. JWTs are compact, easy to transmit,
and can be verified without storing session data on the server—ideal for stateless RESTful APIs. However, they
also have drawbacks: if a token is compromised, it remains valid until it expires, and improper signing or storage
can lead to vulnerabilities.

Transport Security

Even the strongest authentication is meaningless if data can be intercepted in transit. This is where
HTTPS and TLS (Transport Layer Security) come in. HTTPS encrypts communication between the client and
server, preventing attackers from reading or altering the data. Proper TLS configuration is crucial—using outdated
versions or weak ciphers can still leave a system exposed. Security-conscious implementations enforce the latest
TLS standards, disable obsolete protocols, and apply certificate pinning to defend against man-in-the-middle
attacks.

Access Control

Once a user or application is authenticated, the system must decide what they are allowed to do. Role-
Based Access Control (RBAC) grants permissions based on predefined roles—such as admin, editor, or viewer—
making it straightforward to manage large groups of users. However, RBAC can be too rigid for complex systems
with varied permission needs. Attribute-Based Access Control (ABAC) offers more flexibility by making
decisions based on attributes such as user department, resource type, or time of access. While powerful, ABAC
can be harder to implement and maintain.

Limitations and Fragmentation

Despite the variety of available standards and protocols, there is no single, universally accepted method
for securing RESTful APIs. Implementations often differ from one organization to another, even when using the
same protocol. For example, two APIs might both use OAuth 2.0 but configure token lifetimes, scopes, and refresh
mechanisms in entirely different ways. This lack of uniformity can create confusion, increase integration costs,
and, in some cases, introduce security flaws.

IV. Common Vulnerabilities in RESTful APIs
While RESTful APIs provide flexibility and scalability, they can also introduce significant security risks
if not designed and implemented correctly. Over the years, security researchers and industry bodies like OWASP
have documented recurring weaknesses that attackers frequently exploit. Understanding these vulnerabilities is
essential for building safer APIs and avoiding costly breaches.

Insecure Endpoint and Misconfigured APIs

One of the most common issues in RESTful APIs comes from insecure endpoints—parts of the API that
are left exposed without proper security controls. This can happen when developers forget to enforce
authentication on certain routes or leave debugging tools enabled in production. Misconfigurations, such as
leaving unused endpoints active or failing to restrict HTTP methods, can give attackers unnecessary entry points
into the system. Even seemingly harmless endpoints can reveal sensitive system information when not handled
carefully.

Broken Authentication and Session Management

APIs often rely on authentication tokens or sessions to identify users. When these mechanisms are poorly
implemented—such as using predictable session IDs, weak passwords, or failing to expire tokens—they open the
door for attackers to impersonate legitimate users. In RESTful APIs, where statelessness means that credentials
or tokens are sent with each request, failing to protect these credentials can have severe consequences. An attacker
who steals a valid token can access the API until that token is revoked or expires.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 54 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

Lack of Input Validation and Injection Attacks

RESTful APIs frequently accept user input through parameters, request bodies, or headers. If this input
is not properly validated or sanitized, attackers can inject harmful code or commands. Common injection attacks
include SQL injection, command injection, and XML external entity (XXE) attacks. These can allow attackers to
bypass security controls, steal sensitive data, or even take control of the underlying system.

Improper Authorization (IDOR—Insecure Direct Object Reference)

A particularly dangerous vulnerability is Insecure Direct Object Reference (IDOR), which occurs when
an API exposes internal resource identifiers without proper access checks. For example, if a user can change an
account ID in a request URL to view another user’s data, it means the API is not enforcing authorization correctly.
IDOR vulnerabilities can lead to large scale data leaks with minimal technical effort from attackers.

Data Exposure (Sensitive Detain URI or Headers)

Another common issue is unintentional data exposure. Sensitive information—such as API keys, tokens,
or personally identifiable data—should never be included in URIs or unsecured headers, as they may be logged
in server files, browser histories, or analytics tools. Once logged, these details can be retrieved by anyone with
access to those logs, significantly increasing the risk of compromise.

Case Studies from OWASP API Top10

The OWASP API Security Top 10 highlights many of these issues with real-world examples. For
instance, several breaches have occurred due to overly permissive endpoints that allowed attackers to retrieve
massive datasets without proper authentication. In other cases, token theft and replay attacks have led to
unauthorized access to financial or healthcare records. These case studies underline a key point: vulnerabilities in
APIs are not just theoretical—they are actively exploited, often with severe business and reputational
consequences.

To support the discussion of common REST API vulnerabilities, I carried out practical security testing
using the OWASP ZAP vulnerability scanner. My aim was to check whether the problems described in research
and industry reports could also be found in real-world APIs.

For this, I tested a mix of APIs: some intentionally insecure applications such as Hackazon and Juice
Shop, and some production-ready APIs that are publicly available through RapidAPI. This gave me a balanced
view of insecure test environments on one hand, and real-world APIs on the other.

The scans revealed several issues. I did not find any high-risk vulnerabilities in the production APIs, but
I did find medium- and low-risk issues across different endpoints. This matches what many reports already
suggest: severe flaws are less common in well-maintained APIs, but mistakes like misconfigurations, missing
security headers, or small leaks of information are still very common because many developers build APIs without
deep security knowledge.

To make the results clearer, I summarized them in graphs:

Alert Counts by Risk Level

Informational

Medium

FIG 1
(Pie Chart: Alerts by Severity) shows that most of the problems were low risk (around 60%), while medium-risk
issues made up about 15%. No high-risk issues were detected.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 55| Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

Alert Counts by Alert Type

Sessuan Hanagement Response dentiford { 1
Retrieved fram Coche i 1
Re-examune Cache-control Directives i L]

Tienestamp Disclosure - Unix

SO NPR—

Server Leaks Inf via X-Perwered By Header . 2

w
10

Coskie without Samesite AlErbute I 1

Cockie No HEtpOnly Flag ' 1

Application Ermer Dackaure l 1
Crots-Demain Misconfiguratson + 7

Content Security Policy (CSP) Header Not Set { 2

o 0 FL = 40 =

FIG 2
(Bar Chart: Alerts by Type) shows the specific kinds of issues that came up most often. Common examples
included missing security headers, server response leaks, and timestamp disclosures. These are not always
dangerous on their own, but they can help attackers gather information for larger attacks.

V. Real-World Breach Incidents (Case Studies)

While security guidelines and best practices for RESTful APIs are well documented, real-world incidents
reveal that even major technology companies are not immune to serious vulnerabilities. Examining high-profile
breaches helps uncover the recurring mistakes and oversights that allow attackers to succeed. These examples
serve as practical lessons for developers, security teams, and organizations alike.

A. Facebook — Access Token Exposure via APIs

In 2018, Facebook suffered a large-scale security incident that affected approximately 50 million
accounts. The breach stemmed from a vulnerability in the “View As” feature, which allowed users to see their
profiles as others would. Due to a series of coding flaws, attackers were able to obtain access tokens—digital keys
that allow continued access to a user’s account without needing to log in again. These tokens were tied to
Facebook’s API authentication system, meaning the attackers could use them to access profiles, post content, and
potentially connect to linked services. The incident highlighted how API-related vulnerabilities can turn into
massive security failures when authentication tokens are not properly protected or invalidated.

B. Google+ User Data Exposure via AP

Google+ experienced multiple API-related privacy issues before the service was ultimately shut down in
2019. One significant vulnerability exposed the personal data of hundreds of thousands of users, even if they had
marked the information as private. A flaw in one of the Google+ APIs allowed external developers to access
profile details, such as names, email addresses, occupations, and age, without user consent. While there was no
confirmed evidence of abuse, the incident damaged trust and underscored the risk of over-permissive API
endpoints. It also showed that even large companies with sophisticated infrastructures can misconfigure access
controls in ways that go undetected for years.

C. T-Mobile and Instagram— API Flaws Leading to Data Leaks

In separate incidents, both T-Mobile and Instagram faced data breaches linked to API vulnerabilities. In
T-Mobile’s case, an API used for customer account management allowed unauthorized parties to retrieve sensitive
account information by exploiting insufficient authentication checks. Instagram, on the other hand, had an API
flaw that exposed user contact details, including phone numbers and email addresses, even for accounts set to
private. In both scenarios, the core problem was the same: failure to properly validate and limit API responses
based on the user’s identity and permissions.

D. Patterns Observed Across Breaches

1) Token misuse and poor session invalidation leave APIs vulnerable to long-term unauthorized access.
2)Overly permissive endpoints expose more information than necessary, increasing the impact of a breach.
3)Weak or missing authorization checks allow attackers to bypass intended restrictions.

4)Insufficient logging and monitoring delay detection, giving attackers more time to exploit vulnerabilities.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 56 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

These incidents serve as a reminder that security is not a one-time task—it must be continuously
monitored, tested, and updated. Even industry leaders with advanced infrastructure can fall victim to API breaches
when security assumptions go unchecked. By learning from these examples, organizations can better anticipate
risks, tighten access controls, and design APIs that fail safely rather than catastrophically.

VI. Security Testing Tools And Practices
A secure RESTful API is not just the result of strong design principles—it also depends on thorough and
continuous testing. Security testing ensures that vulnerabilities are identified and fixed before attackers can exploit
them. In practice, API testing combines both manual exploration and automated scanning, each serving a unique
purpose in the development and security lifecycle.

Manual Tools

Manual testing tools, such as Postman and Insomnia, are widely used by developers for building, sending,
and inspecting API requests. While primarily designed for functional testing, these tools also allow security testers
to manually craft requests, modify parameters, and observe responses for signs of vulnerabilities. For example, a
tester might intentionally send malformed data or manipulate authorization tokens to see if the API responds in
an unexpected way. Manual testing is particularly valuable for uncovering logic flaws—issues that automated
scanners might miss—because it allows human intuition and domain knowledge to guide the process.

Automated Tools

Automated security scanners are essential for identifying common vulnerabilities quickly and at scale.
OWASP ZAP and Burp Suite are two of the most widely used tools in this category. They can intercept API traffic,
map endpoints, and run a series of vulnerability checks, such as injection attempts or misconfiguration detection.
APIsec offers continuous API security testing, integrating into development pipelines to catch issues early. Tools
like Postman Security and StackHawk extend automated testing capabilities by combining functional testing with
security checks, making them well-suited for DevSecOps workflows where security is embedded into every
development stage.

Static vs Dynamic Testing

Security testing can be broadly divided into Static Application Security Testing (SAST) and Dynamic
Application Security Testing (DAST). SAST analyses the API’s source code or configuration without executing it,
helping detect vulnerabilities such as hardcoded credentials or insecure dependencies before the application is
deployed. DAST, on the other hand, interacts with a running API to simulate real-world attacks and observe its
responses. While static testing is useful for catching design flaws early, dynamic testing provides insights into how
the API behaves under actual exploitation attempts. A well-rounded security program uses both approaches,
ensuring that vulnerabilities are caught at multiple stages.

Limitations of Current Testing Strategies

Despite the availability of these tools and techniques, current testing strategies have limitations. Manual
testing, while insightful, is time-consuming and heavily dependent on the tester’s skill and experience. Automated
tools can quickly scan large APIs but often produce false positives or miss context-specific vulnerabilities that
require human judgment. Moreover, many security tests are run only once—just before deployment—rather than
being integrated into a continuous security process. This creates gaps, especially as APIs evolve, endpoints change,
and new threats emerge.

VII. Challenges In Current API Security Practices
Even with a variety of tools, protocols, and best practices available, securing RESTful APIs remains a
challenging task. Many of the difficulties come not from a lack of awareness, but from the practical realities of
building and maintaining APIs in fast-moving development environments. These challenges often combine
technical limitations with human factors, creating persistent gaps that attackers can exploit.

Lack of Standardization Across Frameworks

One of the biggest hurdles in API security is the absence of a universal, enforced standard that applies
across all frameworks and platforms. While guidelines like the OWASP API Security Top 10 provide general
recommendations, the actual implementation of security measures varies widely. A feature considered secure in
one framework might be absent or handled differently in another. This lack of uniformity leads to inconsistent
protection, making it harder for teams to adopt a shared, proven approach to securing APIs.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 57 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

Performance vs. Security Trade-offs

Developers often face a delicate balancing act between security and performance. Adding extra security
checks—such as multiple authentication steps, encryption layers, or rate limiting—can slow down API responses.
In high-traffic systems where milliseconds matter, these slowdowns can hurt user experience and scalability. As a
result, some teams compromise on security for the sake of speed, inadvertently leaving the system more vulnerable
to attacks.

Developer Misconfigurations and Human Error

Even the most secure frameworks can be undermined by simple mistakes. Common misconfigurations
include leaving debugging endpoints exposed, failing to restrict access to sensitive APIs, or using default credentials
in production. These errors are often the result of time pressure, lack of security training, or assumptions that
“someone else will handle security.” Human error remains one of the leading causes of API vulnerabilities,
regardless of the technology stack.

Lack of Automated Analysis and Proactive Monitoring

While manual and automated testing tools exist, many organizations do not use them continuously.
Security scans are often performed only during development or before a major release, leaving production APIs
unmonitored for emerging threats. Without automated analysis and real-time monitoring, new vulnerabilities can
go unnoticed for months, giving attackers ample opportunity to exploit them.

Inadequate Logging and Auditing in APIs

Effective logging and auditing are critical for detecting and investigating security incidents. Yet many
APIs log only minimal information, making it difficult to trace an attacker’s actions or determine the full extent of
a breach. In some cases, logs are incomplete, inconsistent, or stored without proper security controls—risking both
compliance violations and missed warning signs. Without strong auditing capabilities, even a detected breach may
leave unanswered questions about how it happened and what was compromised.

In short, the challenges in current API security practices are not just technical—they are organizational,
procedural, and human. Addressing them requires a shift toward security-first development, consistent standards,
better training, and continuous monitoring. Without tackling these core issues, even the most advanced security
tools will fall short of providing lasting protection.

VIII. Proposed Methodology
This section outlines the planned approach for building a robust and secure RESTful API system. The
methodology integrates proven architectural practices with security-first principles, automated monitoring, and
continuous testing. Each component is designed to work in harmony, ensuring that the final system is not only
functional but resilient against modern security threats.

System Architecture Overview

The foundation of the proposed system lies in a modular architecture, where each layer—from the API
gateway to the backend services—is clearly defined and independently manageable. The architecture will employ
an API gateway as the first point of contact, handling authentication, request validation, and rate limiting before
any request reaches the application logic. Backend services will follow the principle of least privilege, ensuring that
components have only the minimum access necessary to perform their functions. Communication between services
will be encrypted end-to-end using secure TLS configurations.

Security-First Design Principles

Security considerations will be embedded into the design process rather than added as an afterthought.
This includes using secure defaults in configuration files, avoiding hard-coded secrets, validating inputs at both the
gateway and service levels, and ensuring that error messages never leak sensitive information. API specifications
(e.g., OpenAPI) will serve as a blueprint to enforce consistent request and response formats, which helps reduce
attack surfaces and simplifies automated security testing.

Middleware-Based Threat Mitigation

Middleware components will act as security checkpoints throughout the request lifecycle. This includes
modules for detecting suspicious patterns (e.g., repeated failed login attempts), sanitizing incoming data to prevent
injection attacks, and automatically blocking or throttling requests from flagged IP addresses. The middleware will
also integrate with third-party security threat intelligence feeds, allowing for real-time updates to blocklists and
anomaly detection rules.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 58 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

Role of Authentication and Authorization Layers

Authentication will be implemented using modern, secure protocols such as OAuth 2.0 or OpenlD
Connect, with token-based mechanisms like JWT for stateless session management. Authorization will follow
either Role-Based Access Control (RBAC) or Attribute-Based Access Control (ABAC) depending on the
complexity of the use case. This layered approach ensures that only verified and authorized users can access
protected resources, and that access is tightly scoped to prevent privilege escalation.

Logging, Monitoring, and Alerting Systems

Comprehensive logging will be enabled across all layers of the system, capturing authentication attempts,
failed requests, access to sensitive endpoints, and system errors. Logs will be aggregated in a centralized
monitoring platform, enabling real-time analysis and correlation of events. Automated alerts will be configured
to notify security teams of unusual activity, such as sudden traffic spikes or repeated failed logins, allowing for
rapid response before potential threats escalate.

Security Testing Approach (Manual + Automated)

A dual approach to security testing will be adopted. Manual testing using tools like Postman will allow
for targeted probing of specific endpoints and workflows, while automated scanners such as OWASP ZAP and
Burp Suite will run periodically to detect common vulnerabilities. Static analysis tools will be applied to source
code to catch insecure patterns early, and dynamic testing will be used to assess live API behaviour under
simulated attack scenarios. This continuous testing cycle ensures that vulnerabilities are detected and addressed
promptly throughout the development lifecycle.

IX. Future Research Directions
While recent advances in API security have introduced promising tools and techniques, there is still a
considerable gap between current practices and the level of protection needed for increasingly complex, high-
performance systems. Addressing these gaps will require both technical innovation and industry-wide
cooperation. Future research can focus on several key areas that have the potential to reshape how RESTful APIs
are secured.

Unified API Security Standardization

One of the most pressing needs in the API security space is the creation of a globally recognized, unified
standard that defines how APIs should handle authentication, authorization, encryption, logging, and error
handling. At present, security implementations vary greatly across frameworks, platforms, and organizations. A
formalized, widely adopted standard—similar to how TLS became the default for web encryption—would bring
consistency, reduce misconfigurations, and make security integration more predictable for developers. Research
in this area could focus on defining core security requirements and ensuring compatibility across existing
frameworks.

Lightweight Encryption and Authentication for High-Performance Environments

In industries such as finance, e-commerce, and real-time analytics, performance is critical. Heavy
encryption and complex authentication flows, while secure, can introduce latency that impacts user experience.
Future research could explore lightweight cryptographic algorithms and authentication protocols that offer strong
protection with minimal performance cost. This could include adaptive encryption schemes that adjust their
strength based on the sensitivity of the transaction or the trust level of the user’s environment.

Integrating Security in the API Development Lifecycle (DevSecOps for APIs)

Many security issues arise because testing and protection measures are bolted on at the end of
development, rather than built into the process from the start. Applying DevSecOps principles specifically to API
development would ensure that security is considered at every stage—from design and coding to deployment and
monitoring. Future work could explore automated security policy generation from API specifications, continuous
vulnerability scanning in CI/CD pipelines, and developer-friendly security linting tools that run directly in code
editors.

Automatic Vulnerability Mapping Using AI and OpenAPI

As APIs become more complex, manually tracking all possible vulnerabilities becomes unrealistic. Al-
powered tools, combined with machine-readable specifications such as the OpenAPI Specification, could
automatically map API structures, identify high-risk endpoints, and simulate potential attack paths. These systems
could not only detect vulnerabilities but also recommend targeted fixes, helping developers respond quickly to
threats. Over time, such Al-driven systems could learn from past incidents, improving their accuracy and
predictive capabilities.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 59 | Page

Securing RESTful APIs With Middleware-Based Threat Mitigation

X. Conclusion

In this review paper, I explored the critical topic of RESTful API security, focusing on common
vulnerabilities and the methods used to detect and prevent them. The goal was not just to list technical issues, but
to understand the practical challenges developers face in designing and maintaining APIs that are both functional
and secure.

Through this review, I highlighted recurring problems such as insecure endpoints, weak authentication,
insufficient input validation, broken authorization, and unintentional data exposure. The increasing number of
data breaches and unauthorized access incidents worldwide shows that these issues are not just theoretical—they
pose real threats to businesses, organizations, and users every day. Observations from OWASP ZAP scans also
reinforced that many APIs, even widely used ones, still have medium- and low-risk vulnerabilities that could be
exploited if ignored.

To address these risks, I proposed a structured methodology for designing and securing RESTful APIs:
System Architecture Overview — embedding security into every layer of API design.
Security-First Design Principles — following best practices during development to reduce attack surfaces.
. Middleware-Based Threat Mitigation — filtering and validating requests before they reach core services.
. Authentication and Authorization Layers — enforcing strong, role-based access control to prevent
unauthorized access.
Logging, Monitoring, and Alerting Systems — continuously tracking API activity to detect anomalies and
potential attacks.
F. Security Testing Approach (Manual + Automated) — regularly evaluating APIs through penetration testing
and automated scans to detect vulnerabilities early.
Given the growing prevalence of cyberattacks, this methodology is more relevant than ever. By adopting
a security-first mindset, layered defenses, and systematic testing, developers can proactively reduce the risk
of breaches, protect sensitive data, and build APIs that are resilient to evolving threats.

RGNS

&5

Acknowledgments
The author would like to express sincere gratitude to Prof. Neha Jain, CSE Department, JINCT Bhopal,
for her valuable guidance, encouragement, and support throughout this work.

References

[1] Badhwar, R., 2021. Intro To API Security-Issues And Some Solutions!. In The CISO’s Next Frontier: Al, Post-Quantum
Cryptography And Advanced Security Paradigms (Pp. 239-244). Cham: Springer International Publishing.

[2] Pardal, M.L., Offensive Security Assessment Of A REST API For A Location Proof System.

[3] Ehsan, A., Abuhaliga, M.A.M., Catal, C. And Mishra, D., 2022. Restful API Testing Methodologies: Rationale, Challenges, And
Solution Directions. Applied Sciences, 12(9), P.4369.

[4] Myllari, E., 2022. Introducing REST Based API Management And Its Relationship To Existing SOAP Based Systems.

[5] Bhateja, N., Sikka, S. And Malhotra, A., 2021. A Review Of Sql Injection Attack And Various Detection Approaches. Smart And
Sustainable Intelligent Systems, Pp.481-489.

[6] Anugrah, L.G. And Fakhruddin, M.A.R.L,, 2020. Development Authentication And Authorization Systems Of Multi Information
Systems Based Rest Api And Auth Token. Innovation Research Journal, 1(2), Pp.127-132.

[7] OWASP Foundation, "OWASP Top 10: 2021 — The Ten Most Critical Web Application Security Risks," 2021. [Online]. Available:
Https://Owasp.Org/ Www-Project-Top-Ten/

[8] Sadqi, Y. And Maleh, Y., 2022. A Systematic Review And Taxonomy Of Web Applications Threats. Information Security Journal:
A Global Perspective, 31(1), Pp.1-27.

[9] Dalimunthe, S., Reza, J. And Marzuki, A., 2022. The Model For Storing Tokens In Local Storage (Cookies) Using JSON Web Token
(JWT) With HMAC (Hash-Based Message Authentication Code) In E-Learning Systems. Journal Of Applied Engineering And
Technological Science, 3(2), Pp.149-155.

[10] Https://Developers.Google.Com/Identity/Protocols/Oauth2
Wear, S., 2018. Burp Suite Cookbook: Practical Recipes To Help You Master Web Penetration Testing With Burp Suite. Packt
Publishing Ltd.

[12] Kim, J., 2020. Burp Suite: Automating Web Vulnerability Scanning (Master's Thesis, Utica College).

Maniraj, S.P., Ranganathan, C.S. And Sekar, S., 2024. SECURING WEB APPLICATIONS WITH OWASP ZAP FOR
COMPREHENSIVE SECURITY TESTING. INTERNATIONAL JOURNAL OF ADVANCES IN SIGNAL AND IMAGE
SCIENCES, 10(2), Pp.12-23.

[14] Soni, P., & Kumar, A. (2020). API Security Challenges In The Digital Finance Ecosystem. International Journal Of Cybersecurity
And Digital Forensics, 2(2), 19-30.

[15] Mcdermott, M., & Harris, J. (2021). Defending Against Injection Attacks: A Comprehensive Review. Journal Of Cybersecurity, 18(4),
231-245.

[16] Coughlan, S., & Duggan, T. (2019). Denial-Of-Service Attacks In The Context Of Apis And Fintech. International Journal Of
Information Security, 15(2), 114-126.

[17] Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G., 2019. Are REST Apis For Cloud Computing Well-Designed? An Exploratory
Study. Université Du Québec A Montréal, Inria Lille-Nord Europe, Ecole Polytechnique De Montréal, Federal University Of Rio
Grande Do Sul.

DOI: 10.9790/0661-2705045260 www.iosrjournals.org 60 | Page

