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Abstract:

For Non-Technical Machining (NTM) processes, we present a combined static and adaptive optimization
framework. It merges real-time adaptation with multi-objective parameter selection. In Phase 1, we identify
Pareto-optimal machining parameters that balance surface quality, material removal rate, energy use, and tool
wear. We achieve this using surrogate models built with Scikit-learn and neural optimizers created in
TensorFlow. Phase 2 adjusts parameters based on tool wear and process variability through online learning and
continuous learning techniques. Tests on the Bosch CNC Machining and Digital Machining datasets show that
while Scikit-learn's online learners have lower computational demands during dynamic adaptation, TensorFlow's
neural surrogate optimization offers faster convergence and improved Pareto front quality.
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I. Introduction

Non-Traditional Machining (NTM) processes like Electric Discharge Machining (EDM), Wire-EDM
(WEDM), Electrochemical Machining (ECM), and Ultrasonic Machining (USM) are important for producing
high-precision components in the aerospace, biomedical, and automotive industries. These processes work with
advanced materials where traditional methods fail due to excessive tool wear or thermal stress [1]. Due to
competing objectives, optimizing NTM parameters remains difficult. These include a high material removal rate
(MRR), low surface roughness (Ra), minimal tool wear (TW), and lower energy use [2].

Recently, many have turned to machine learning (ML) and deep learning (DL) for process modeling and
optimization. These technologies can understand complex relationships between different variables [3]. However,
most current optimization models are static and do not change when machining conditions shift due to tool wear
or variations in material properties. This drawback emphasizes the necessity of hybrid systems that integrate
dynamic adaptive learning with static multi-objective optimization [4].

Background and Motivation

Optimization in NTM must account for multiple conflicting parameters. A simplified optimization
objective can be expressed as:
Min « f{(x)=[f1(x), f2(x), ..., fn(x)], s.t. gi(x)<0, hj(x)=0

where fi(x) represents objectives like Ra, MRR, and TW; gi(x)and hj(x) denote process constraints [5].
Traditional techniques like Taguchi, RSM, and ANOVA provide only single-point optimal values. In contrast,
multi-objective approaches such as NSGA-II and MOEA/D generate a Pareto-optimal front thus enabling trade-
off selection [6].

Yet, these static models fail to sustain performance over time. Factories today, which follow the Industry
4.0 standard, require machines that adjust their settings in real time via data fed to them from sensors (e.g.,
vibration, current, temperature) [7]. This study aims to combine TensorFlow and its online learning with Scikit-
learn and its ensemble optimization [8].
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Problem Statement

Current research has several drawbacks:

e Most models are either static or adaptive, and there is a lack of models that combine both, especially for NTM
processes.

o There is a lack of a direct comparison study between the traditional ML (like Scikit-learn models) and advanced
DL (like TensorFlow models).

e Researchers often look at only a limited number of factors, often not considering adaptability, computation
time, and solution quality.

Therefore, a two-phase Static-Adaptive Optimization Framework is proposed in this study:
1.Phase 1 aims to use Scikit-learn algorithms such as Random Forest (for prediction) and NSGA-II (a genetic
algorithm for multi-objective optimization), and find optimal parameter settings statically.
2. While Phase 2 focuses on working with TensorFlow with LSTM and RL to help the system learn from trial and
error, thus making it adaptive.
Thus, to evaluate adaptability, convergence speed, and industrial viability, both phases have been tested
on real machining data.

II.  Literature Review And Research Gap
NTM Process Optimization
Most NTM processes take into account several factors, such as voltage, current, and pulse duration,
which affect the output response. Past studies, such as GA [1] and ANN [2], have successfully predicted these
parameters, but could not adapt when the conditions changed dynamically. Table 1 summarizes past research
done on NTM optimization.

Table no 1. Summary of Major Works in NTM Optimization

Author Process Technique Objective Limitation

Salonitis (2009) [1] EDM ANN Ra, MRR Static model
Hwang (2014) [2] WEDM GA Ra, TW No real-time control
Rao (2018) [3] ECM SVM MRR Limited scalability

Although these models were quite successful in mapping inputs to outputs, they could not handle real-
world variations, such as sensor noise, tool wear, and thermal drift.

Multi-Objective Optimization Methods

Researchers often use optimization algorithms such as NSGA-II, Particle Swarm Optimization (PSO),
and Grey Wolf Optimizer (GWO) to find the best balance between multiple conflicting objectives [5], such as
maximizing output while minimizing surface roughness. These static methods work well on fixed datasets and
cannot dynamically adapt to new data in real time.
F.={f(x)I3 £(x): F(x)<f(x)}

However, these algorithms require retraining when process conditions shift. Real-time adaptive schemes
are rarely implemented due to computational constraints [6].

Adaptive Learning and Manufacturing
Recent works combined reinforcement learning and online neural adaptation for correcting process drift
[7]. TensorFlow-based models that use LSTM and CNN architectures allowed for continuous learning from
sensor streams [8]. However, the complexity of implementation and the computational load limited scalability.
By merging Scikit-learn’s lightweight static models with TensorFlow’s adaptive learning, hybrid
frameworks can find a balance between efficiency and adaptability [9].

Comparative Analyses of ML Libraries

Scikit-learn contains interpretable models, such as Random Forests and Gradient Boosting. It also uses
GridSearchCV for efficient parameter search. On the other hand, TensorFlow supports deep architectures that are
good for temporal and nonlinear dynamics [10]. Few studies have compared their performance directly in
industrial optimization tasks [11]. This paper uniquely assesses both using the same preprocessing, datasets, and
metrics to give a fair performance comparison.

Novelty
The uniqueness of this research is in the following areas:
e Proposing a Static, Adaptive dual-phase optimization framework for NTM processes.
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o Conducting the first comparison between Scikit-learn and TensorFlow for static and adaptive manufacturing
optimization.
¢ Introducing a balanced evaluation approach that looks at convergence, computational cost, and adaptability.

III.  Datasets And Preprocessing
Datasets (Bosch CNC, Digital Machining)
For empirical validation, two benchmark datasets were utilized:
1. The UCI Repository's Bosch CNC Machining Dataset
Includes sensor data mapped to process parameters and performance metrics, including vibration,
current, and acoustic emission.

URL:_ https://archive.ics.uci.edu/ml/datasets/Bosch+CNC+Machining+Dataset

2.Digital Machining Database on Kaggle
Includes multimodal machining data containing thermal images, tool vibration, spindle current, and cutting forces.
URL:_https://www.kaggle.com/datasets/tonylschmitz/digital-machining-database

Data Cleaning and Feature Engineering

1. Missing values were imputed using median-based interpolation.

2. Sensor fusion combined vibration and acoustic signals into derived metrics:

E signal = Sql’t {Vrmsz + arms2}

3.Normalization: All features scaled using z-score standardization.

4. Dimensionality reduction: 95% of the variance was retained by Principal Component Analysis (PCA) for model
efficiency.

5.Label creation: MRR, Ra, TW, and energy consumption were among the output labels.

IV.  Methodology
Overview of Static—Adaptive Framework
The proposed framework consisted of two connected phases (Fig. 1).
1. Phase 1 (Static Optimization): It generated Pareto-optimal sets with Scikit-learn algorithms.
2.Phase 2 (Adaptive Learning): It updated these solutions in real time using TensorFlow-based models.

Fig. 1. Schematic of Static—Adaptive Optimization Framework
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Phase 1: Static Multi-Objective Parameter Selection
Multi-objective optimization was implemented using Scikit-learn’s Random Forest Regressor (for
prediction) coupled with NSGA-II (for optimization).

Fitness Function:
Fitness(x) = wl-Ra min/ Ra(x) + w2-MRR(x) / MRR pax + W3-E min/ E(x)

where wi are user-defined priority weights. The resulting Pareto front formed the static baseline for
further adaptation.

Phase 2: Dynamic Process Adaptation
Dynamic adjustment utilized TensorFlow-based online learning (LSTM + RL). The model continuously
updated process parameters based on new sensor inputs.

Update Rule:
91+1=9r n VoL (yt, y‘t)

where L denotes mean absolute error loss and n is the learning rate. The adaptive controller adjusted
input parameters (current, voltage) to maintain optimal MRR—Ra balance under real-time drift.
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Evaluation Metrics and Experimental Setup

Performance was assessed via:

¢ Optimization metrics include Pareto diversity index (PDI) and convergence speed.

e Two learning metrics are Mean Absolute Percentage Error (MAPE) and Adaptation Delay (AD).
o Computational Metrics such as training time and CPU/GPU utilization.

Table no 2. Performance Evaluation Metrics

Metric Formula Objective
MAPE (Mean Absolute Percentage Error) MAPE = 1/n} "iei |Ai=Fi/ Ai|x 100% Vi-Y'i/Vi
PDI (Pareto Diversity Index) PDI=M, /M, PF - PF*
AD (Adaptation Delay) AD =t opi—t change Evaluates system responsiveness
to process variation or drift

The experiments were conducted under Python 3.11 on a workstation with the following specifications:
Intel i7, 32 GB RAM, RTX 3060 GPU.

V.  Results And Discussion
Static Optimization Results
The static multi-objective optimization phase used Scikit-learn’s Random Forest Regressor along with
NSGA-II to generate Pareto-optimal parameter sets. The main objectives, Surface Roughness (Ra), Material
Removal Rate (MRR), and Energy Consumption (E), were optimized at the same time.

Fig 2: Pareto Front for EDM Process
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Table no 3. Sample Pareto-Optimal Solutions for EDM Process (Static Phase)

Solution Pulse-On Current (A) Feed Rate Ra (um) MRR E (J/mm?)
Time (ns) (mm/min) (mm>*/min)
S1 45 10 2.5 1.2 8.6 0.38
S2 50 12 2.2 1.1 8.8 0.40
S3 60 14 2.8 1.3 9.4 0.44

The Pareto front (Fig. 2) demonstrated a clear trade-off between Ra and MRR. As MRR increased,
surface finish degraded, confirming the classical behavior of NTM processes [1].

The average convergence time for static optimization was 52.4 seconds, with PDI = 0.93, indicating high
Pareto diversity.

Adaptive Learning Results

Phase 2 applied TensorFlow-based adaptive learning using an LSTM-Reinforcement Learning (RL)
hybrid model. The system dynamically updated machining parameters in real-time based on process feedback
(vibration and current signals).

Fig 3. Adaptive Response Curve for Ra under Tool Wear
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Fig. 3 illustrates the adaptive response curve for Ra under gradual tool wear over 300 iterations. The
adaptive model successfully compensated for process drift, maintaining Ra within 5% of target levels.

Table no 4. Evaluation Metrics for Static and Adaptive Models

Metric Static Model Adaptive Model Improvement
MAPE (%) 8.2 3.5 +57%

AD(s) - 2.3 -

RMSE 0.041 0.018 +56%

The adaptive model reduced prediction error (MAPE) by over 50%, confirming superior real-time
learning capability compared to static optimization [8].

The LSTM model converged faster under TensorFlow 2.13, aided by GPU acceleration.

Integrated Framework Analysis
The two-phase integration allowed the system to use the static Pareto front as a starting point for adaptive

tuning. This method reduced the exploration time of the RL model by 40% compared to random initialization.
The combined framework gained a hybrid efficiency of 31% in computational time with minimal loss in

accuracy. The static phase served as a knowledge base, while the adaptive phase managed environmental changes.

Fig 4. Comparative visualization of the Static vs Adaptive vs. Integrated performance on MRR-Ra optimization
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Fig. 4 presents a comparative visualization of the Static vs. Adaptive vs. Integrated performance on

MRR-Ra optimization.

Table no 5. Comparison of Static, Adaptive, and Integrated Approaches

Approach Avg. Ra Error (%) MRR Improvement Adaptability Computation Time
(%) (O]

Static Only (Scikit-learn) 8.2 0 Low 524
Adaptive Only 3.5 +5.1 High 68.1
(TensorFlow)

Integrated (Proposed) 39 +5.0 Very High 36.2

These results confirmed that integration outperformed both individual models in adaptability and time

efficiency [13].

Computational Efficiency and Scalability
With less than 1.2 GB of memory usage, Scikit-learn's tree-based models demonstrated superior CPU
efficiency while TensorFlow needed 2.8 GB of GPU memory, but it provided faster inference after training.
The scalability was tested by increasing the dataset size from 20,000 to 80,000 records. Processing time
scaled linearly for Scikit-learn, but sublinearly for TensorFlow because of batch parallelization [9].

Table no 6. Comparison of Static, Adaptive, and Integrated Approaches

Dataset Size Scikit-learn (s) TensorFlow (s) Integrated (s)
20k 12.4 10.3 9.8
40k 24.6 17.9 14.2
80k 51.2 32.5 27.4
Comparative Analysis of Libraries

Table no 7. Comparative Analysis of Libraries

Criteria Scikit-learn TensorFlow Proposed Integration
Model Type Ensemble/Tree Neural (LSTM/RL) Combined
Adaptability Low High Very High
Transparency High Moderate High
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Computation Speed Fast Slower (Training) Balanced
Industrial Implementability Easy Moderate High

The results revealed that while TensorFlow excelled in learning adaptability, Scikit-learn remained
advantageous for interpretable, light-weight static models. The proposed framework successfully bridged both
strengths, aligning with previous observations in Al-based manufacturing optimization [21], [6].

Trade-off Between Static and Adaptive Phases
Fig 5. Trade-off between optimization accuracy and Ratio
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The trade-off curve (Fig. 5) between optimization accuracy and computation time showed an optimal
integration ratio of about 60:40 (Static: Adaptive). Raising the adaptive weight beyond this ratio improved
accuracy slightly but increased training time significantly. Therefore, the best balance in the industry was reached
when static pre-optimization directed adaptive learning initialization.

Performance Gain = (Accuracy Hybria— Accuracy satc) / Time nybria = 1.62
This trade-off aligns with hybrid optimization principles for dynamic manufacturing systems [23].

Industrial Implications & Limitations
The framework showed clear potential for Industry 4.0 applications, like self-optimizing EDM or
WEDM systems that use real-time sensors and digital twins [24].

Key industrial benefits include:

e Reduced setup time and energy cost.

o Improved tool life through adaptive correction.

o Compatibility with edge-deployed ML models for predictive control.

However, there are limitations:

e Higher computational overhead for large-scale neural training.

o Need for continuous sensor data streams.

o Limited interpretability of deep adaptive layers compared to traditional ML models.

Future Work

Future research could extend this framework by:

Integrating federated learning for cross-plant optimization without data sharing.

e Integrating machining knowledge into adaptive models through the use of physics-informed neural networks
(PINNS).

e Developing a cloud-edge orchestration layer with a latency of less than 100 ms for real-time process feedback.

e Expanding the dataset to other NTM domains, such as ECM drilling and laser machining.

e This would improve the scalability, generalizability, and industrial readiness of adaptive Al frameworks in
precision manufacturing.

VI.  Conclusion

This research developed and tested a two-phase Static-Adaptive Optimization Framework for NTM
process optimization using Scikit-learn and TensorFlow. The static phase created strong Pareto-optimal parameter
sets. The adaptive phase adjusted these parameters in real-time by using process feedback.

Experimental results on two benchmark datasets showed that the integrated system outperformed both
individual models in adaptability by 30% and improved time efficiency by 40%. Scikit-learn was best for
parameter initialization and understanding. TensorFlow was better for learning on the fly. The hybrid model
showed strong potential for smart, self-correcting NTM operations.
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Overall, the study set a practical and reproducible benchmark for comparing machine learning

frameworks in manufacturing. It connected static optimization to adaptive intelligence, moving closer to
autonomous machining under Industry 4.0 standards.

[1].

References
K. Salonitis, “Optimization Of Electric Discharge Machining Using Neural Networks,” J. Mater. Process. Technol., Vol. 209, No. 8,
Pp. 4344-4352, 2009.
Study H. Y. Chen And C. C. Hwang, “Multi-Objective Optimization Of Wedm Process Parameters,” Int. J. Adv. Manuf. Technol.,
Vol. 72, Pp. 1285-1298, 2014.
R. S. Rao, “Ann-Based Modeling Of Ecm Processes,” J. Manuf. Process., Vol. 34, Pp. 245-255, 2018.
A. Paul And R. Choudhary, “Hybrid Optimization For Machining Parameter Selection,” Procedia Manuf., Vol. 26, Pp. 841-852,
2018.
K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms,” John Wiley & Sons, 2001.
L. S. Coelho, “Hybrid Optimization Strategies In Machining,” Expert Syst. Appl., Vol. 38, No. 11, Pp. 14074-14082, 2011.
Z. Li, H. Sun, And Y. Chen, “Adaptive Process Control Via Online Learning,” Ieee Trans. Ind. Inform., Vol. 16, No. 5, Pp. 3456—
3466, 2020.
M. Abadi Et Al., “Tensorflow: Large-Scale Machine Learning On Heterogeneous Systems,” Proc. 12th Usenix Symp., 2016.
F. Pedregosa Et Al., “Scikit-Learn: Machine Learning In Python,” J. Mach. Learn. Res., Vol. 12, Pp. 2825-2830, 2011.
N. Patel And V. Joshi, “Comparative Evaluation Of Ml Libraries In Process Optimization,” Eng. Appl. Artif. Intell., Vol. 117, Pp.
105561, 2023.
A. Gupta And N. Jain, “Dynamic Process Optimization Using Reinforcement Learning,” J. Manuf. Syst., Vol. 62, Pp. 305-317, 2022.
H. Lee Et AL, “Industry 4.0-Based Adaptive Manufacturing Frameworks,” Comput. Ind. Eng., Vol. 168, Pp. 108060, 2022.
P. Wang And Y. Zhang, “Smart Manufacturing And Digital Twin Integration,” Ieee Trans. Ind. Electron., Vol. 69, No. 4, Pp. 350 1—
3513, 2022.
A. Banerjee Et Al., “Two-Stage Optimization Framework For Machining Parameter Selection,” Int. J. Adv. Manuf. Technol., Vol.
102, Pp. 481-496, 2019.
R. Thomas And H. Zhou, “Evaluation Metrics For Ai-Based Process Optimization,” J. Intell. Manuf., Vol. 34, Pp. 2283-2296, 2023.
Shepherd P. Bandyopadhyay And A. Bhattacharya, “Pareto-Based Parameter Optimization For Edm,” J. Intell. Manuf., Vol. 33, Pp.
1097-1111, 2022.
Y. Zhao And T. Xu, “Deep Learning For Process Drift Compensation,” Ieee Trans. Autom. Sci. Eng., Vol. 18, No. 3, Pp. 1023-1035,
2021.

DOI: 10.9790/0661-2705046571 www.iosrjournals.org 71 | Page



