
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 1 (Sep-Oct. 2012), PP 42-50
www.iosrjournals.org

www.iosrjournals.org 42 | Page

An Efficient Biological Sequence Compression Technique Using

LUT and Repeat in the Sequence

Subhankar Roy
1
, Sunirmal Khatua

2
, Sudipta Roy

3
, Prof. Samir K.

Bandyopadhyay
4

1Department of Computer Science & Engineering, GNIT, WBUT, Kolkata, India
2,3,4Department of Computer Science and Engineer, University of Calcutta,

92 A.P.C. Road, Kolkata-700009, India

Abstract. Data compression plays an important role to deal with high volumes of DNA sequences in the

field of Bioinformatics. Again data compression techniques directly affect the alignment of DNA sequences.

So the time needed to decompress a compressed sequence has to be given equal priorities as with

compression ratio. This article contains first introduction then a brief review of different biological

sequence compression after that my proposed work then our two improved Biological sequence

compression algorithms after that result followed by conclusion and discussion, future scope and finally

references. These algorithms gain a very good compression factor with higher saving percentage and less

time for compression and decompression than the previous Biological Sequence compression algorithms.

Keywords: Hash map table, Tandem repeats, compression factor, compression time, saving percentage,

compression, decompression process.

I. Introduction
Compression arises because approximately 139,266,481,398 bases (139.3 billion) from

151,824,421(153 million) reported sequences are there in the GenBank database in April 15, 2012[1] and the

database size getting two or three times bigger annually. Compression required so that large data sequence after

compression can easily be transferred through network channel to analyst. Data compression decrease

communication cost by speed up transmission due to limited bandwidth communication of modern world and

storage cost. This is very useful when processing, storing or transferring a huge file, which needs lots of

resources. It is a well known fact that biological sequence compression is a useful tool to recover information

from biological sequences. It has also been observed that better compression gives better understanding as it is

sent to different station for its observation. Hence, compression of Biological sequences is a need for analyst for
its storage, alignment and analyzing from remote locations and indeed a very challenging task. The Biological

sequence consist of four nucleotide bases {A, C, G, T}, so only two bits are enough to store each base.

Sometimes a special character N appears in some sequence which have equal probability of being A, C, G and T

but it is an exceptional case. Other character like R, Y, W, S, M, K, H, B, V and D may appear in some

sequence but they are very rare cases.

General text compression algorithms do not utilize the specific characteristics of DNA sequences i.e.

more redundant nature of Biological sequences. The standard techniques of text compression do not compress

these sequences; rather they expand the size of file with more than 2 bits per bases. Even though these

compression tools are universal compression algorithms are designed for text compression. The regularities in

Biological sequences are more.

It is known that the compression means mapping between source file and destination file, so our
compression algorithm leads to find those relationship.

The objective of this paper is to build a finite LUT in which the combination of three and four characters of

characters A, C, G, T and N are taken as input and by mapping relationship during compression process output

correspond to ASCII character and then find tandem repeats in the sequence for the first case. We compress the

individual DNA sequences, not the whole genome sequence [2].

II. Brief review
Several compression algorithms specialized for Biological sequences have been developed in the last

decade and some of these are; DNABIT compress tool (DBC) [3], GENBIT compress tool (GBC) [4],
HUFFBIT COMPRESS [5] etc. One knows that all such algorithms take a long time but achieving high speed

and best compression factor remains to be a challenging task. In this article, it has been tried to cope the above

said problem. In this work it has been tried to achieve a better compression factor, saving percentage and runs

significantly faster than existing compression program.

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 43 | Page

Research work has been carried out for developing efficient Biological sequence compression

technique. Some of them use the property similarity of genomic sequence [6], approximate matching [7],

complementary palindrome [8] and cross chromosomal similarities within sequences [9] etc. In present work the

properties tandem repeat in the sequences has been utilized.

III. Proposed work

First step of coding rule is based on LUT.

For algorithm-1, we take all possible three characters combination of characters {A, T, C, G or N}, so total

5^3=125 combinations are formed. Then we mapped those 125 combinations into 125 chosen ASCII character 8

bit each. The generated LUT is given in table 1.Here it has been also observed that any sequence file of

characters a, t, g, c or n and A, T, G, C or N have same meaning. As an example if a line segment

Table 1: Look up table (map 3 to 1)

“AAANNNTTTGGGCCC” appeared in the input text, in the output file, it is represented as “BèhÉª”. The

generated output is become case-sensitive.

For algorithm-2, we take all possible four characters combination of characters {A, T, C and G}, so

total 4^4=256 combinations are formed. Then we mapped those 256 combinations into 256 ASCII character 8

bit each. We have not taken into account character „N‟, because this is an exceptional case. The generated LUT

is shown in table 2.For example for line segment “CAAACTTACTGA” output is “€”œ”.

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 44 | Page

Table 2: Look up table (map 4 to 1)

Base Character Base Character Base Character Base Character

AAAA (char)0 TAAA (char)64 CAAA (char)128 GAAA (char)192

AAAT (char)1 TAAT (char)65 CAAT (char)129 GAAT (char)193

AAAC (char)2 TAAC (char)66 CAAC (char)130 GAAC (char)194

AAAG (char)3 TAAG (char)67 CAAG (char)131 GAAG (char)195

AATA (char)4 TATA (char)68 CATA (char)132 GATA (char)196

AATT (char)5 TATT (char)69 CATT (char)133 GATT (char)197

AATC (char)6 TATC (char)70 CATC (char)134 GATC (char)198

AATG (char)7 TATG (char)71 CATG (char)135 GATG (char)199

AACA (char)8 TACA (char)72 CACA (char)136 GACA (char)200

AACT (char)9 TACT (char)73 CACT (char)137 GACT (char)201

AACC (char)10 TACC (char)74 CACC (char)138 GACC (char)202

AACG (char)11 TACG (char)75 CACG (char)139 GACG (char)203

AAGA (char)12 TAGA (char)76 CAGA (char)140 GAGA (char)204

AAGT (char)13 TAGT (char)77 CAGT (char)141 GAGT (char)205

AAGC (char)14 TAGC (char)78 CAGC (char)142 GAGC (char)206

AAGG (char)15 TAGG (char)79 CAGG (char)143 GAGG (char)207

ATAA (char)16 TTAA (char)80 CTAA (char)144 GTAA (char)208

ATAT (char)17 TTAT (char)81 CTAT (char)145 GTAT (char)209

ATAC (char)18 TTAC (char)82 CTAC (char)146 GTAC (char)210

ATAG (char)19 TTAG (char)83 CTAG (char)147 GTAG (char)211

ATTA (char)20 TTTA (char)84 CTTA (char)148 GTTA (char)212

ATTT (char)21 TTTT (char)85 CTTT (char)149 GTTT (char)213

ATTC (char)22 TTTC (char)86 CTTC (char)150 GTTC (char)214

ATTG (char)23 TTTG (char)87 CTTG (char)151 GTTG (char)215

ATCA (char)24 TTCA (char)88 CTCA (char)152 GTCA (char)216

ATCT (char)25 TTCT (char)89 CTCT (char)153 GTCT (char)217

ATCC (char)26 TTCC (char)90 CTCC (char)154 GTCC (char)218

ATCG (char)27 TTCG (char)91 CTCG (char)155 GTCG (char)219

ATGA (char)28 TTGA (char)92 CTGA (char)156 GTGA (char)220

ATGT (char)29 TTGT (char)93 CTGT (char)157 GTGT (char)221

ATGC (char)30 TTGC (char)94 CTGC (char)158 GTGC (char)222

ATGG (char)31 TTGG (char)95 CTGG (char)159 GTGG (char)223

ACAA (char)32 TCAA (char)96 CCAA (char)160 GCAA (char)224

ACAT (char)33 TCAT (char)97 CCAT (char)161 GCAT (char)225

ACAC (char)34 TCAC (char)98 CCAC (char)162 GCAC (char)226

ACAG (char)35 TCAG (char)99 CCAG (char)163 GCAG (char)227

ACTA (char)36 TCTA (char)100 CCTA (char)164 GCTA (char)228

ACTT (char)37 TCTT (char)101 CCTT (char)165 GCTT (char)229

ACTC (char)38 TCTC (char)102 CCTC (char)166 GCTC (char)230

ACTG (char)39 TCTG (char)103 CCTG (char)167 GCTG (char)231

ACCA (char)40 TCCA (char)104 CCCA (char)168 GCCA (char)232

ACCT (char)41 TCCT (char)105 CCCT (char)169 GCCT (char)233

ACCC (char)42 TCCC (char)106 CCCC (char)170 GCCC (char)234

ACCG (char)43 TCCG (char)107 CCCG (char)171 GCCG (char)235

ACGA (char)44 TCGA (char)108 CCGA (char)172 GCGA (char)236

ACGT (char)45 TCGT (char)109 CCGT (char)173 GCGT (char)237

ACGC (char)46 TCGC (char)110 CCGC (char)174 GCGC (char)238

ACGG (char)47 TCGG (char)111 CCGG (char)175 GCGG (char)239

AGAA (char)48 TGAA (char)112 CGAA (char)176 GGAA (char)240

AGAT (char)49 TGAT (char)113 CGAT (char)177 GGAT (char)241

AGAC (char)50 TGAC (char)114 CGAC (char)178 GGAC (char)242

AGAG (char)51 TGAG (char)115 CGAG (char)179 GGAG (char)243

AGTA (char)52 TGTA (char)116 CGTA (char)180 GGTA (char)244

AGTT (char)53 TGTT (char)117 CGTT (char)181 GGTT (char)245

AGTC (char)54 TGTC (char)118 CGTC (char)182 GGTC (char)246

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 45 | Page

AGTG (char)55 TGTG (char)119 CGTG (char)183 GGTG (char)247

AGCA (char)56 TGCA (char)120 CGCA (char)184 GGCA (char)248

AGCT (char)57 TGCT (char)121 CGCT (char)185 GGCT (char)249

AGCC (char)58 TGCC (char)122 CGCC (char)186 GGCC (char)250

AGCG (char)59 TGCG (char)123 CGCG (char)187 GGCG (char)251

AGGA (char)60 TGGA (char)124 CGGA (char)188 GGGA (char)252

AGGT (char)61 TGGT (char)125 CGGT (char)189 GGGT (char)253

AGGC (char)62 TGGC (char)126 CGGC (char)190 GGGC (char)254

AGGG (char)63 TGGG (char)127 CGGG (char)191 GGGG (char)255

Second step of coding rule is based on ASCII character.

 In algorithm-1 as the total number of ASCII required 125 so we can choose ASCII value out of total

256 ASCII value. That is why in this algorithm no problem occurred during the hash mapping.

 But in algorithm-2 as all the ASCII value needed some problem arise during the mapping. The problem

is that ASCII character of ASCII value 10 and 13 giving new line, as we compress and decompress file line by

line so if we put those character in LUT during writing to file by hash mapping line break occurs. So we write
the original characters block corresponding to these two values to the compress file. Another problem is five

extended ASCII value (129, 141, 143, 144 and 157) not giving the correct characters so they cannot be map. So

during compression if those ASCII value appear we do not map them using hash map table rather than we write

the original block of characters value. That is why during decompression we have to take into account those

characters block i.e. we have to search for those characters block because for them no reverse mapping is

required.

Third step of coding rule is based on tandem repeats.

For algorithm-1 this feature can be used because during compression we count the number of repeats and write

the corresponding character value to the compressed file. It has been observed that maximum number of repeats

block never exceed 65 i.e. 195 character for any of the used sequences. So value 1 to 65 is used for handling

those repeats except value 10 and 13 cause giving above. The repeat character followed by the number of
repeats is written to the file. For e.g. input “AATAATAATAATAATAAC” have 4 tandem repeats. So these

sequence represented by total 3 characters.

For algorithm-2 this feature cannot used because all ASCII value already used during mapping.

 Fourth step of coding rule is based on Segment which consists of 1 or 2 characters.

We compress the input sequence line by line both for algorithm-1 and algorithm-2. For first algorithm

we divide each line of the input sequence into segment of length 3 so if we modulate the line length by 3 i.e.

Line length % 3 = 2 or 1 or 0. So the segments of 2 or 1 character are written as it is to the output file in the

same line i.e. no mapping.

For second algorithm we divide each line of the input sequence into segment of length 4 so if we

modulate the line length by 4 i.e. Line length % 4 = 3 or 2 or 1 or 0. So the segments of 3 or 2 or 1 character are

written as it is to the output file no mapping but after a line break because they cannot be identify as 256 ASCII

value already being used during mapping.
Algorithm for block size 3 with tandem repeats is given below

3.1 Algorithm-1

3.1.1 Compression algorithm

Input : Text file contain characters A,C,G and T or a,c,g and t or A,C,G,T and N or a,c,g,t and n respectively.

Output: Compressed file in terms of ASCII characters.

Function Compression (Original file)

Step1: An ArrayList is made of all possible input characters.

Step2: A HashMap table map string to character is made dynamically at the run time of compression.

Step3: While string <> null do //string reads the content of the file line by line

While string.length > 3 do
Read a combination of three characters block and add them in a list.

End while

Add the last block to the same list.

For String string1: list do

If string1.length = 3 then

If string1= temp then //where temp store previous three character, initially null

count = count+1 //count the number of repeats

Else {

If count > 0 then

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 46 | Page

Write the ASCII value of count.

Else

Write this character to output file by mapping

End if

}

temp = string1
Else if string1.length < 3 then

If count > 0 then

Write the ASCII value of count.

End if

Write string1 value to the output file.

End if

End for

If count > 0 then

Write the ASCII value of count.

End if

Read the next line.

temp = null
End while

Step4: Close the output file.

3.1.2 Decompression algorithm

Input : Compressed file.

Output : Original file.

Function Decompression (Compressed file)

Step1: An ArrayList is made of all possible input characters.

Step2: A HashMap table is made dynamically at the run time of compression.

Step3: Read the content of text file

While string<>null do
For 1 to string.length in step 1 do

Read a character from the string

If character = „A‟ or ‟a‟ or ‟C‟ or ‟c‟ or ‟G‟ or ‟g‟ or ‟T‟ or ‟t‟ or ‟N‟ or „n‟ then

Write character to the output file.

Else {

If count>=1 and <=65 then

For 1 to count in step 1 do

Write string of 3 characters to the file.

End for

Else

Write string of 3 characters to the file.

End if
}

End if

End for

Read the next line

End while

Step4: Close the output file.

Algorithm for block size 4 without tandem repeats is given below

3.2 Algorithm-2

3.2.1 Compression algorithm

Input : Text file contains character A,C,G and T or a,c,g and t respectively.
Output : Compressed file in terms of all ASCII characters.

Function Compression (Text file)

Step1: An ArrayList is made of all possible input characters.

Step2: A HashMap table map string to character is made dynamically at the run time of compression.

Step3: Read the content of file.

While string <> null do

temp = string //temp store each line temporarily

While string.length() > 4 do

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 47 | Page

Read a combination of four characters block.

Add them in a list.

End while

Add the last block to the same list.

For String string1: list do

If string1.length() = 4 then
Read the mapped character of block.

If i=10 or 13 or 129 or 141 or 143 or 144 or 157 then // i store the integer value of the character.

Write the original block.

Else

Write the character.

End if

Else {

Write newline character followed by block.

}

End if

End for

Read the next line.
End while

Step4: Close the output file.

3.2.2 Decompression algorithm

Input : Compressed file.

Output : Original file.

Function Decompression (Compressed file)

Step1: An ArrayList is made of all possible input characters.

Step2: A HashMap table map string to character is made dynamically at the run time of compression.

Step3: Read the content of file.

While string <> null do
If (count mod 2 <> 0) then //Initially count=1

A HashMap table, hMap, map integer to string value.

A List intList of integer initially set to null.

Add block corresponding to 10, 13, 129, 141, 143, 144 and 157 to an ArrayList strList.

For String str : strList do

intList := findIndexes(string, str)

For int index : intList do

hMap.put (index, str)

End for

End for

A Set keys of integer store the key value of hMap.

An ArrayList L of integer addAll the keys.
A Collection sort the value in L.

For int midIndex : L do

For startIndex to midIndex in step 1 do //startIndex = 0

Read c character from string.

Write the corresponding string value by mapping to file.

End for

Write string value to file of midIndex by mapping.

StartIndex := midIndex+4;

End for

For startIndex to string.length() in step 1 do //Read remaining character

Read c character from string.
Write the corresponding string value by mapping to file.

End for

count := count+1;

Else {

Write the same characters to file.

count := count+1;

Write newline character.

}

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 48 | Page

Read the next line.

End while

Step4: Close the output file.

IV. Results
We have used three Homo sapiens mRNA: IL4-transcript variant 1, IL4-transcript variant 2 and

MOPT, five funguses Rhizopus oryzae glucoamylase A precursor, gene, partial cds: strain 7, strain 15, strain 30,

strain 45 and strain 52 that lives worldwide in dead organic matter and four Zea mays mRNA:

ZM_BFb0129K09, ZM_BFb0203I02, ZM_BFc0025I23 and ZM_BFc0038A03 known corn or mielie/mealie, is

a grain.

Table 3: Comparison of Compress Sequence Length (bytes) for different techniques

Sequence Name

Original

Seq.

Length

Deflate +

IMPLOD

E +LWZ

LZSS +

PPM

Block3

+

Tandem

repeats

Block4

IL4, transcript variant 1 660 402 358 234 225

IL4, transcript variant 2 610 379 333 214 208

MOPT 712 377 355 254 241

strain 7 591 341 314 209 192

strain 15 589 344 316 210 199

strain 30 445 294 264 156 150

strain 45 594 341 311 210 201

strain 52 542 334 301 192 180

ZM_BFb0129K09 682 385 353 244 231

ZM_BFb0203I02 787 425 391 282 266

ZM_BFc0025I23 811 417 390 290 262

ZM_BFc0038A03 765 412 381 266 262

Table 4: Comparison of Compression Factor for different techniques

Sequence Name Deflate +

IMPLOD

E +LWZ

LZSS+

PPM

Block3

+

Tandem

repeats

Block4

IL4, transcript variant 1 1.642 1.843 2.821 2.933

IL4, transcript variant 2 1.609 1.832 2.851 2.933

MOPT 1.889 2.005 2.803 2.954

strain 7 1.733 1.882 2.827 3.078

strain 15 1.712 1.864 2.804 2.960

strain 30 1.514 1.686 2.853 2.967

strain 45 1.742 1.909 2.829 2.955

strain 52 1.623 1.801 2.823 3.011

ZM_BFb0129K09 1.771 1.932 2.795 2.952

ZM_BFb0203I02 1.852 2.013 2.791 2.959

ZM_BFc0025I23 1.945 2.079 2.797 3.095

ZM_BFc0038A03 1.857 2.008 2.876 2.921

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 49 | Page

The graphical representation of table 3 is shown in fig-1

125
150
175
200
225
250
275
300
325
350
375
400
425
450

IL
4

, t
ra

n
sc

ri
p
t …

IL
4

, t
ra

n
sc

ri
p
t …

M
O

P
T

st
ra

in
 7

st
ra

in
 1

5

st
ra

in
 3

0

st
ra

in
 4

5

st
ra

in
 5

2

Z
M

_
B

F
b

0
1
2

9
K

0
9

Z
M

_
B

F
b

0
2
0

3
I0

2

Z
M

_
B

F
c0

0
2
5
I2

3

Z
M

_
B

F
c0

0
3
8
A

0
3

S
e
q

u
e
n

c
e
 L

e
n

g
th

 (
b

y
te

s)
 -

--
>

Sequences Name --->

Fig 1: Comparison of Compressed sequence length by different compression
technique

Deflate + IMPLODE
+LWZ
LZSS+PPM

Block3 + Tandem
repeats
Block4

The graphical representation of table 4 is shown in fig-2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

C
o

m
p

r
e
ss

io
n

 F
a
c
to

r
 -

--
>

Sequences Name --->

Fig 2: Comparison of Compression Factor by different compression

technique

Deflate + IMPLODE

+LWZ
LZSS+PPM

Block3 + Tandem

repeats

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

www.iosrjournals.org 50 | Page

The graphical representation of table 5 is shown in fig-3

30

35

40

45

50

55

60

65

70

S
a

v
in

g
 P

e
r
c
e
n

ta
g
e
 (

%
)

--
->

Sequences Name --->

Fig 3: Comparison of Saving Percentage for different compression
technique

Deflate + IMPLODE
+LWZ

LZSS+PPM

Block3 + Tandem
repeats

V. Conclusion and Discussion

In this article, we have presented two new compression algorithms that are based on LUT of block size

three with tandem repeats and LUT of block size four.

There are various most common compression algorithms like LZSS, WinZIP use deflate, deflate64,

IMPLODE, dynamic LWZ , WinRAR use LZSS and PPM etc but they are not giving good result for the

compression of biological sequences as the result shown above that our propose compression algorithms gives

better result.

The propose algorithms have high compression factor and giving good saving percentage to other

exiting Biological Sequence Compression. This technique also requires less memory and less coding effort

compare to the other algorithms.
The proposed techniques compress Biological sequences taking block size of three, four and using

tandem repeat in the sequence line. So it will be easier to make sequence alignment and sequence analysis

between compressed sequences.

References
[1] Genbank size from: ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt

[2] Hyoung Do Kim and Ju-Han Kim , “DNA Data Compression Based on the Whole Genome Sequence”, Journal of Convergence

Information Technology Vol. 4, No. 3, September 2009.

[3] Pothuraju Rajarajeswari, Allam Apparao, “DNABIT Compress – Genome compression algorithm” Biomedical Informatics,

volume 5, Issue 8, pp. 350-360, 2011.

[4] P.Raja Rajeswari and Dr. Allam AppaRao, “GENBIT COMPRESS TOOL (GBC): A java-based tool to compress DNA sequences

and compute compression ratio (bits/base) of genomes”, IJCSIT, Vol. 2, No. 3, pp. 181-191, June 2010.

[5] P.Raja Rajeswari, Dr. Allam AppaRao and Dr. R. Kiran Kumar, “HUFFBIT COMPRESS – Algorithm to compress DNA

sequences using extended binary trees”, JTAIT, pp. 101-106, 2010.

[6] Heba Afify, Muhammad Islam and Manal Abdel Wahed, “DNA lossless differential compression algorithm based on similarity of

genomic sequence database”, IJCSIT, Vol. 3, No 4, August 2011.

[7] R.K.Bharti, “A Biological sequence compression Based on Approximate repeat Using Variable length LUT”, International

Journal of Advances in Science and Technology, Vol. 3, No.3,PP:71-75, 2011.

[8] R.K. Bharti, Prof. R.K. Singh, “A Biological Sequence Compression based on Look up Table (LUT) using Complementary

Palindrome of Fixed Size”, ICJA (0975–8887), Volume 35– No.11, December 2011.

[9] R.K.Bharti, “Biological sequence Compression Based on Cross chromosomal properties using variable length LUT”, CSC Journal,

Vol. 4 Issue 6, PP: 217-223. , 2011.

[10] Sequences are taken from : http://www.ncbi.nlm.nih.gov/.

[11] Suman Chakraborty, Sudipta Roy, Prof. Samir K. Bandyopadhyay, “Image Steganography Using DNA Sequence and Sudoku

Solution Matrix”, International Journal of Advanced Research in Computer Science and Software Engineering(IJARCSSE),

Volume 2, Issue 2, February 2012.

http://www.ncbi.nlm.nih.gov/

