IOSR Journal of Computer Engineering (IOSRJCE)
ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 1 (Sep-Oct. 2012), PP 42-50
www.iosrjournals.org

An Efficient Biological Sequence Compression Technique Using
LUT and Repeat in the Sequence

Subhankar Roy', Sunirmal Khatua?®, Sudipta Roy?, Prof. Samir K.

Bandyopadhyay*
'Department of Computer Science & Engineering, GNIT, WBUT, Kolkata, India
234Department of Computer Science and Engineer, University of Calcutta,
92 A.P.C. Road, Kolkata-700009, India

Abstract. Data compression plays an important role to deal with high volumes of DNA sequences in the
field of Bioinformatics. Again data compression techniques directly affect the alignment of DNA sequences.
So the time needed to decompress a compressed sequence has to be given equal priorities as with
compression ratio. This article contains first introduction then a brief review of different biological
sequence compression after that my proposed work then our two improved Biological sequence
compression algorithms after that result followed by conclusion and discussion, future scope and finally
references. These algorithms gain a very good compression factor with higher saving percentage and less
time for compression and decompression than the previous Biological Sequence compression algorithms.
Keywords: Hash map table, Tandem repeats, compression factor, compression time, saving percentage,
compression, decompression process.

I Introduction

Compression arises because approximately 139,266,481,398 bases (139.3 billion) from
151,824,421(153 million) reported sequences are there in the GenBank database in April 15, 2012[1] and the
database size getting two or three times bigger annually. Compression required so that large data sequence after
compression can easily be transferred through network channel to analyst. Data compression decrease
communication cost by speed up transmission due to limited bandwidth communication of modern world and
storage cost. This is very useful when processing, storing or transferring a huge file, which needs lots of
resources. It is a well known fact that biological sequence compression is a useful tool to recover information
from biological sequences. It has also been observed that better compression gives better understanding as it is
sent to different station for its observation. Hence, compression of Biological sequences is a need for analyst for
its storage, alignment and analyzing from remote locations and indeed a very challenging task. The Biological
sequence consist of four nucleotide bases {A, C, G, T}, so only two bits are enough to store each base.
Sometimes a special character N appears in some sequence which have equal probability of being A, C, Gand T
but it is an exceptional case. Other character like R, Y, W, S, M, K, H, B, V and D may appear in some
sequence but they are very rare cases.

General text compression algorithms do not utilize the specific characteristics of DNA sequences i.e.
more redundant nature of Biological sequences. The standard techniques of text compression do not compress
these sequences; rather they expand the size of file with more than 2 bits per bases. Even though these
compression tools are universal compression algorithms are designed for text compression. The regularities in
Biological sequences are more.

It is known that the compression means mapping between source file and destination file, so our

compression algorithm leads to find those relationship.
The objective of this paper is to build a finite LUT in which the combination of three and four characters of
characters A, C, G, T and N are taken as input and by mapping relationship during compression process output
correspond to ASCII character and then find tandem repeats in the sequence for the first case. We compress the
individual DNA sequences, not the whole genome sequence [2].

1. Brief review
Several compression algorithms specialized for Biological sequences have been developed in the last
decade and some of these are; DNABIT compress tool (DBC) [3], GENBIT compress tool (GBC) [4],
HUFFBIT COMPRESS [5] etc. One knows that all such algorithms take a long time but achieving high speed
and best compression factor remains to be a challenging task. In this article, it has been tried to cope the above
said problem. In this work it has been tried to achieve a better compression factor, saving percentage and runs
significantly faster than existing compression program.

www.iosrjournals.org 42 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

Research work has been carried out for developing efficient Biological sequence compression
technique. Some of them use the property similarity of genomic sequence [6], approximate matching [7],
complementary palindrome [8] and cross chromosomal similarities within sequences [9] etc. In present work the
properties tandem repeat in the sequences has been utilized.

1. Proposed work
First step of coding rule is based on LUT.
For algorithm-1, we take all possible three characters combination of characters {A, T, C, G or N}, so total
573=125 combinations are formed. Then we mapped those 125 combinations into 125 chosen ASCII character 8
bit each. The generated LUT is given in table 1.Here it has been also observed that any sequence file of
charactersa, t, g, cornand A, T, G, C or N have same meaning. As an example if a line segment

Table 1: Look up table (map 3 to 1)

Base Character Base | Character | Base | Character | Base Character | Base Character
AAA B TAA | _ CAA |} GAA : NAA b
AAT D TAT |° CAT |~ GAT 3 NAT N
AAC E TAC |b CAC |1 GAC ! NAC (0]
AAG F TAG |d CAG | GAG 2 NAG 0
AAN H TAN |e CAN |¢ GAN » NAN 0
ATA I TTA | f CTA | £ GTA Y NTA (o)
ATT J TIT |h CIT |c GTIT) NTT (o)
ATC K TIC |1 CIC |*¥ GIC % NTC X
ATG ¥ TIG |j CTG GTG i NTG (0]
ATN M TIN [k CIN |§ GIN A NIN U
ACA 0 TCA |1 CCA |~ GCA A NCA U
ACT P TCT |m CCT | © GCT A NCT U
ACC Q TCC |o cce |® GCC A NCC U
ACG R TCG | p CCG |« GCG A NCG Y
ACN S TCN | q CCN |- GCN A NCN P
AGA U TGA |r CGA | - GGA E NGA B
AGT \Y TGT |s CGT | ® GGT G NGT a
AGC W TGC |u CGC |~ GGC E NGC a
AGG X TGG | v CGG |° GGG E NGG a
AGN Y TGN | w CGN | = GGN E NGN a
ANA Z INA | x CNA |2 GNA E NNA i
ANT [INT |y CNT |° GNT I NNT a
ANC INC |z CNC |~ GNC I NNC 2
ANG] ING | { CNG |u GNG I NNG ¢
ANN INN || CNN | ¢ GNN I NNN 3
E

“AAANNNTTTGGGCCC” appeared in the input text, in the output file, it is represented as “BEhE?’. The
generated output is become case-sensitive.

For algorithm-2, we take all possible four characters combination of characters {A, T, C and G}, so
total 4"4=256 combinations are formed. Then we mapped those 256 combinations into 256 ASCII character 8
bit each. We have not taken into account character ‘N’, because this is an exceptional case. The generated LUT
is shown in table 2.For example for line segment “CAAACTTACTGA” output is “€”ce”.

www.iosrjournals.org 43 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

Table 2: Look up table (map 4 to 1)
Base Character | Base Character | Base Character | Base Character
AAAA | (char)0 TAAA | (char)e4 | CAAA | (char)128 | GAAA | (char)192
AAAT (char)1 TAAT | (char)65 | CAAT | (char)129 | GAAT | (char)193
AAAC | (char)2 TAAC | (char)66 | CAAC | (char)130 | GAAC | (char)194
AAAG | (char)3 TAAG | (char)67 | CAAG | (char)131 | GAAG | (char)195
AATA (char)4 TATA | (char)e8 | CATA | (char)132 | GATA | (char)196
AATT (char)5 TATT | (char)69 | CATT | (char)133 | GATT | (char)197
AATC (char)6 TATC | (char)70 | CATC | (char)134 | GATC | (char)198
AATG (char)7 TATG | (char)71 | CATG | (char)135 | GATG | (char)199
AACA | (char)8 TACA | (char)72 | CACA | (char)136 | GACA | (char)200
AACT (char)9 TACT | (char)73 | CACT | (char)137 | GACT | (char)201
AACC (char)10 | TACC | (char)74 | CACC | (char)138 | GACC | (char)202
AACG (char)11 | TACG | (char)75 | CACG | (char)139 | GACG | (char)203
AAGA | (char)12 | TAGA | (char)76 | CAGA | (char)140 | GAGA | (char)204
AAGT (char)13 | TAGT | (char)77 | CAGT | (char)141 | GAGT | (char)205
AAGC | (char)14 | TAGC | (char)78 | CAGC | (char)142 | GAGC | (char)206
AAGG (char)l5 | TAGG | (char)79 | CAGG | (char)143 | GAGG | (char)207
ATAA (char)16 | TTAA | (char)80 | CTAA | (char)144 | GTAA | (char)208
ATAT (char)l7 | TTAT | (char)81 | CTAT | (char)145 | GTAT | (char)209
ATAC (char)18 | TTAC | (char)82 | CTAC | (char)146 | GTAC | (char)210
ATAG (char)19 | TTAG | (char)83 | CTAG | (char)147 | GTAG | (char)211
ATTA (char)20 | TTTA | (char)84 | CTTA | (char)148 | GTTA | (char)212
ATTT (char)21 | TTTT | (char)85 | CTTT | (char)149 | GTTT | (char)213
ATTC (char)22 | TTTC | (char)86 | CTTC | (char)150 | GTTC | (char)214
ATTG (char)23 | TTTG | (char)87 | CTTG | (char)151 | GTTG | (char)215
ATCA (char)24 | TTCA | (char)88 | CTCA | (char)152 | GTCA | (char)216
ATCT (char)25 | TTCT | (char)89 | CTCT | (char)153 | GTCT | (char)217
ATCC (char)26 | TTCC | (char)90 | CTCC | (char)154 | GTCC | (char)218
ATCG (char)27 | TTCG | (char)91 | CTCG | (char)155 | GTCG | (char)219
ATGA (char)28 | TTGA | (char)92 | CTGA | (char)156 | GTGA | (char)220
ATGT (char)29 | TTGT | (char)93 | CTGT | (char)157 | GTGT | (char)221
ATGC (char)30 | TTGC | (char)94 | CTGC | (char)158 | GTGC | (char)222
ATGG (char)31 | TTGG | (char)95 | CTGG | (char)159 | GTGG | (char)223
ACAA (char)32 | TCAA | (char)96 | CCAA | (char)160 | GCAA | (char)224
ACAT (char)33 | TCAT | (char)97 | CCAT | (char)161 | GCAT | (char)225
ACAC (char)34 | TCAC | (char)98 | CCAC | (char)162 | GCAC | (char)226
ACAG (char)35 | TCAG | (char)99 | CCAG | (char)163 | GCAG | (char)227
ACTA (char)36 | TCTA | (char)100 | CCTA | (char)164 | GCTA | (char)228
ACTT (char)37 | TCTT | (char)101 | CCTT | (char)165 | GCTT | (char)229
ACTC (char)38 | TCTC | (char)102 | CCTC | (char)166 | GCTC | (char)230
ACTG (char)39 | TCTG | (char)103 | CCTG | (char)167 | GCTG | (char)231
ACCA (char)40 | TCCA | (char)104 | CCCA | (char)168 | GCCA | (char)232
ACCT (char)4l | TCCT | (char)105 | CCCT | (char)169 | GCCT | (char)233
ACCC (char)42 | TCCC | (char)106 | CCCC | (char)170 | GCCC | (char)234
ACCG (char)43 | TCCG | (char)107 | CCCG | (char)171 | GCCG | (char)235
ACGA | (char)44 | TCGA | (char)108 | CCGA | (char)172 | GCGA | (char)236
ACGT (char)45 | TCGT | (char)109 | CCGT | (char)173 | GCGT | (char)237
ACGC (char)46 | TCGC | (char)110 | CCGC | (char)174 | GCGC | (char)238
ACGG (char)47 | TCGG | (char)11l | CCGG | (char)175 | GCGG | (char)239
AGAA | (char)48 | TGAA | (char)112 | CGAA | (char)176 | GGAA | (char)240
AGAT (char)49 | TGAT | (char)113 | CGAT | (char)177 | GGAT | (char)241
AGAC (char)50 | TGAC | (char)114 | CGAC | (char)178 | GGAC | (char)242
AGAG | (char)51 | TGAG | (char)115 | CGAG | (char)179 | GGAG | (char)243
AGTA (char)52 | TGTA | (char)116 | CGTA | (char)180 | GGTA | (char)244
AGTT (char)53 | TGTT | (char)117 | CGTT | (char)181 | GGTT | (char)245
AGTC (char)54 | TGTC | (char)118 | CGTC | (char)182 | GGTC | (char)246
www.iosrjournals.org 44 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

AGTG (char)55 | TGTG | (char)119 | CGTG | (char)183 | GGTG | (char)247
AGCA | (char)56 | TGCA | (char)120 | CGCA | (char)184 | GGCA | (char)248
AGCT (char)57 | TGCT | (char)121 | CGCT | (char)185 | GGCT | (char)249
AGCC (char)58 | TGCC | (char)122 | CGCC | (char)186 | GGCC | (char)250
AGCG (char)59 | TGCG | (char)123 | CGCG | (char)187 | GGCG | (char)251
AGGA | (char)60 | TGGA | (char)124 | CGGA | (char)188 | GGGA | (char)252
AGGT (char)6l | TGGT | (char)125 | CGGT | (char)189 | GGGT | (char)253
AGGC (char)62 | TGGC | (char)126 | CGGC | (char)190 | GGGC | (char)254
AGGG (char)63 | TGGG | (char)127 | CGGG | (char)191 | GGGG | (char)255

Second step of coding rule is based on ASCII character.

In algorithm-1 as the total number of ASCII required 125 so we can choose ASCII value out of total
256 ASCII value. That is why in this algorithm no problem occurred during the hash mapping.

But in algorithm-2 as all the ASCII value needed some problem arise during the mapping. The problem
is that ASCII character of ASCII value 10 and 13 giving new line, as we compress and decompress file line by
line so if we put those character in LUT during writing to file by hash mapping line break occurs. So we write
the original characters block corresponding to these two values to the compress file. Another problem is five
extended ASCII value (129, 141, 143, 144 and 157) not giving the correct characters so they cannot be map. So
during compression if those ASCII value appear we do not map them using hash map table rather than we write
the original block of characters value. That is why during decompression we have to take into account those
characters block i.e. we have to search for those characters block because for them no reverse mapping is
required.

Third step of coding rule is based on tandem repeats.

For algorithm-1 this feature can be used because during compression we count the number of repeats and write
the corresponding character value to the compressed file. It has been observed that maximum number of repeats
block never exceed 65 i.e. 195 character for any of the used sequences. So value 1 to 65 is used for handling
those repeats except value 10 and 13 cause giving above. The repeat character followed by the number of
repeats is written to the file. For e.g. input “AATAATAATAATAATAAC” have 4 tandem repeats. So these
sequence represented by total 3 characters.

For algorithm-2 this feature cannot used because all ASCII value already used during mapping.

Fourth step of coding rule is based on Segment which consists of 1 or 2 characters.

We compress the input sequence line by line both for algorithm-1 and algorithm-2. For first algorithm
we divide each line of the input sequence into segment of length 3 so if we modulate the line length by 3 i.e.
Line length % 3 = 2 or 1 or 0. So the segments of 2 or 1 character are written as it is to the output file in the
same line i.e. no mapping.

For second algorithm we divide each line of the input sequence into segment of length 4 so if we
modulate the line length by 4 i.e. Line length % 4 =3 or 2 or 1 or 0. So the segments of 3 or 2 or 1 character are
written as it is to the output file no mapping but after a line break because they cannot be identify as 256 ASCI|I
value already being used during mapping.

Algorithm for block size 3 with tandem repeats is given below

3.1 Algorithm-1

3.1.1 Compression algorithm

Input : Text file contain characters A,C,Gand T or a,c,gandtor A,C,G,T and N or a,c,g,t and n respectively.
Output: Compressed file in terms of ASCII characters.

Function Compression (Original file)

Stepl: An ArrayL.ist is made of all possible input characters.

Step2: A HashMap table map string to character is made dynamically at the run time of compression.
Step3: While string <> null do //string reads the content of the file line by line

While string.length > 3 do

Read a combination of three characters block and add them in a list.

End while

Add the last block to the same list.

For String stringX: list do

If stringl.length = 3 then

If string1= temp then //where temp store previous three character, initially null

count = count+1 //count the number of repeats

Else {

If count > 0 then

www.iosrjournals.org 45 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

Write the ASCII value of count.

Else

Write this character to output file by mapping
End if

}

temp = stringl

Else if stringl.length < 3 then

If count > 0 then

Write the ASCII value of count.

End if

Write stringl value to the output file.
End if

End for

If count > 0 then

Write the ASCII value of count.

End if

Read the next line.

temp = null

End while

Step4: Close the output file.

3.1.2 Decompression algorithm

Input : Compressed file.

Output : Original file.

Function Decompression (Compressed file)

Stepl: An ArrayList is made of all possible input characters.
Step2: A HashMap table is made dynamically at the run time of compression.
Step3: Read the content of text file

While string<>null do

For 1 to string.length in step 1 do

Read a character from the string

If character = A’ or ’a’ or ’C” or ’c’ or G’ or ’g’ or *T” or ’t’ or N’ or ‘n’ then
Write character to the output file.

Else {

If count>=1 and <=65 then

For 1 to count in step 1 do

Write string of 3 characters to the file.

End for

Else

Write string of 3 characters to the file.

End if

}

End if

End for

Read the next line

End while

Step4: Close the output file.

Algorithm for block size 4 without tandem repeats is given below

3.2 Algorithm-2

3.2.1 Compression algorithm

Input : Text file contains character A,C,G and T or a,c,g and t respectively.
Output : Compressed file in terms of all ASCII characters.

Function Compression (Text file)

Stepl: An ArrayList is made of all possible input characters.

Step2: A HashMap table map string to character is made dynamically at the run time of compression.
Step3: Read the content of file.

While string <> null do

temp = string //temp store each line temporarily

While string.length() > 4 do

www.iosrjournals.org 46 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

Read a combination of four characters block.
Add them in a list.

End while

Add the last block to the same list.

For String stringl: list do

If stringl.length() = 4 then

Read the mapped character of block.

If i=10 or 13 or 129 or 141 or 143 or 144 or 157 then // i store the integer value of the character.
Write the original block.

Else

Write the character.

End if

Else {

Write newline character followed by block.
}

End if

End for

Read the next line.

End while

Step4: Close the output file.

3.2.2 Decompression algorithm

Input : Compressed file.

Output : Original file.

Function Decompression (Compressed file)

Stepl: An ArrayList is made of all possible input characters.
Step2: A HashMap table map string to character is made dynamically at the run time of compression.
Step3: Read the content of file.

While string <> null do

If (count mod 2 <> 0) then //Initially count=1

A HashMap table, hMap, map integer to string value.

A List intList of integer initially set to null.

Add block corresponding to 10, 13, 129, 141, 143, 144 and 157 to an ArrayL.ist strList.
For String str : strList do

intList := findIndexes(string, str)

For int index : intList do

hMap.put (index, str)

End for

End for

A Set keys of integer store the key value of hMap.

An ArrayList L of integer addAll the keys.

A Collection sort the value in L.

For int midindex : L do

For startindex to midindex in step 1 do //startindex = 0
Read c character from string.

Write the corresponding string value by mapping to file.
End for

Write string value to file of midIndex by mapping.
StartIndex := midIndex+4;

End for

For startIndex to string.length() in step 1 do //Read remaining character
Read c character from string.

Write the corresponding string value by mapping to file.
End for

count := count+1;

Else {

Write the same characters to file.

count := count+1;

Write newline character.

¥

www.iosrjournals.org 47 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

Read the next line.
End while
Step4: Close the output file.

V. Results
We have used three Homo sapiens mRNA: IL4-transcript variant 1, IL4-transcript variant 2 and
MOPT, five funguses Rhizopus oryzae glucoamylase A precursor, gene, partial cds: strain 7, strain 15, strain 30,
strain 45 and strain 52 that lives worldwide in dead organic matter and four Zea mays MRNA:
ZM_BFb0129K09, ZM_BFb0203102, ZM_BFc0025123 and ZM_BFc0038A03 known corn or mielie/mealie, is
a grain.

Table 3: Comparison of Compress Sequence Length (bytes) for different techniques

Sequence Name Original | Deflate + | LZSS + | Block3 Block4
Seq. IMPLOD | PPM +
Length E +LWZ Tandem
repeats
IL4, transcript variant 1 | 660 402 358 234 225
IL4, transcript variant 2 | 610 379 333 214 208
MOPT 712 377 355 254 241
strain 7 591 341 314 209 192
strain 15 589 344 316 210 199
strain 30 445 294 264 156 150
strain 45 594 341 311 210 201
strain 52 542 334 301 192 180
ZM_BFb0129K09 682 385 353 244 231
ZM_BFb0203102 787 425 391 282 266
ZM_BFc0025123 811 417 390 290 262
ZM_BFc0038A03 765 412 381 266 262
Table 4. Comparison of Compression Factor for different techniques
Sequence Name Deflate + | LZSS+ | Block3 | Block4
IMPLOD | PPM +
E +LWZ Tandem
repeats

IL4, transcript variant 1 1.642 1.843 | 2.821 2.933

IL4, transcript variant 2 1.609 1.832 | 2.851 2.933

MOPT 1.889 2.005 | 2.803 2.954

strain 7 1.733 1.882 | 2.827 3.078

strain 15 1.712 1.864 | 2.804 2.960

strain 30 1.514 1.686 | 2.853 2.967

strain 45 1.742 1.909 | 2.829 2.955

strain 52 1.623 1.801 | 2.823 3.011

ZM_BFb0129K09 1.771 1932 | 2.795 2.952

ZM_BFb0203102 1.852 2.013 | 2.791 2.959

ZM_BFc0025123 1.945 2.079 | 2.797 3.095

ZM_BFc0038A03 1.857 2.008 | 2.876 2.921

www.iosrjournals.org 48 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

|#| Table 5: Comparison of Saving Percentage (%0) for different techniques

Sequence Name Deflate + LZSS Block3 | Block

IMPLOD | +PPM | + 4
E+LWZ Tande
m
repeats

IL4. transcript vardant 1 39.091 4575 64545 | 6591
8 0

IL4.transcript varant 2 37.869 4540 64918 | 6590
9 2

MOPT 47.051 50.14 64326 | 66.15
0 2

stran 7 42301 46.86 64636 | 67.51
9 3

stram 15 41596 46.34 64346 | 66.21
9 4

strain 30 33933 40.67 64944 | 66.29
4 2

strain43 42593 47.64 64646 | 66.16
3 2

stram 52 38367 44 .46 64576 | 66.79
4 0

ZM_BFb0129K09 43549 4824 64223 | 66.12
0 9

ZM_BFb0203102 45997 5031 64.168 | 66.20
7 1

ZM_BFc0025123 48.582 5191 64242 | 67.69
1 4

ZM_BFc0038A03 46.144 50.19 65229 | 65.75
6 2

The graphical representation of table 3 is shown in fig-1

Fig 1: Comparison of Compressed sequence length by different compression

technique
H
- . = Deflate + IMPLODE
i L |
4 - B B e
- ——I— HIH LZSS+PPM
iy M= 1 -
HH HH HH Block3 + Tandem
1N inln [l repeats
1 o oo o o ¥ Block4
> BEERTYO8958ER8
S 5505588
= 2 2SS T T s NSO
5 S © ® 55 5 5 9doo 9
g s s » v O 5 o O
S &< T &t L
<4 33 o T m
g == 2| s's E|
§ SNNG
o
A Sequences Name --->
The graphical representation of table 4 is shown in fig-2
Fig 2 Comparison of Compression Factor by different compression
3.2 technique
N
i3
§2.8
I-%2.6
o 24 Deflate + IMPLODE
222 +LWZ
& 2 CZSSF¥PPM
1.8
§1.6 Block3 + Tandem
14 rwre
Sequences Name I ' i

www.iosrjournals.org

49 | Page

An Efficient Biological Sequence Compression Technique Using Lut And Repeat In The Sequence

The graphical representation of table 5 is shown in fig-3

Fig 3: Comparison of Saving Percentage for different compression
70 technique
" 65
gGO-——— —
%55 T
S50 a0 arn, [= Deflate + IMPLODE
§ 45 - — — — - +LWZzZ
& 40 - - = LZSS+PPM
£ 35 - I
z 30 - 5 Block3 + Tandem
? S NG 2 s repeats
QR Q AN\ BN e
FET SO S ST S
& FEFLFTLSLEF S F D
- o s / . 7
\\P‘ \\?‘ @‘ (\?\ (\ﬁ\ (\ﬁ\
Sequences Name --->
V. Conclusion and Discussion

In this article, we have presented two new compression algorithms that are based on LUT of block size
three with tandem repeats and LUT of block size four.

There are various most common compression algorithms like LZSS, WinZIP use deflate, deflate64,
IMPLODE, dynamic LWZ , WIinRAR use LZSS and PPM etc but they are not giving good result for the
compression of biological sequences as the result shown above that our propose compression algorithms gives
better result.

The propose algorithms have high compression factor and giving good saving percentage to other
exiting Biological Sequence Compression. This technique also requires less memory and less coding effort
compare to the other algorithms.

The proposed techniques compress Biological sequences taking block size of three, four and using
tandem repeat in the sequence line. So it will be easier to make sequence alignment and sequence analysis
between compressed sequences.

References
[1] Genbank size from: ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
[2] Hyoung Do Kim and Ju-Han Kim , “DNA Data Compression Based on the Whole Genome Sequence”, Journal of Convergence
Information Technology Vol. 4, No. 3, September 2009.
[3] Pothuraju Rajarajeswari, Allam Apparao, “DNABIT Compress — Genome compression algorithm” Biomedical Informatics,

volume 5, Issue 8, pp. 350-360, 2011.
[4] P.Raja Rajeswari and Dr. Allam AppaRao, “GENBIT COMPRESS TOOL (GBC): A java-based tool to compress DNA sequences
and compute compression ratio (bits/base) of genomes”, IJCSIT, Vol. 2, No. 3, pp. 181-191, June 2010.

[5] P.Raja Rajeswari, Dr. Allam AppaRao and Dr. R. Kiran Kumar, “HUFFBIT COMPRESS — Algorithm to compress DNA
sequences using extended binary trees”, JTAIT, pp. 101-106, 2010.

[6] Heba Afify, Muhammad Islam and Manal Abdel Wahed, “DNA lossless differential compression algorithm based on similarity of
genomic sequence database”, 1JCSIT, Vol. 3, No 4, August 2011.

[7] R.K.Bharti, “A Biological sequence compression Based on Approximate repeat Using Variable length LUT”, International
Journal of Advances in Science and Technology, Vol. 3, No.3,PP:71-75, 2011.

[8] R.K. Bharti, Prof. R.K. Singh, “A Biological Sequence Compression based on Look up Table (LUT) using Complementary
Palindrome of Fixed Size”, ICJA (0975-8887), Volume 35— No.11, December 2011.

[9] R.K.Bharti, “Biological sequence Compression Based on Cross chromosomal properties using variable length LUT”, CSC Journal,
Vol. 4 Issue 6, PP: 217-223., 2011.

[10] Sequences are taken from : http://www.ncbi.nlm.nih.gov/.

[11] Suman Chakraborty, Sudipta Roy, Prof. Samir K. Bandyopadhyay, “Image Steganography Using DNA Sequence and Sudoku
Solution Matrix”, International Journal of Advanced Research in Computer Science and Software Engineering(lJARCSSE),
Volume 2, Issue 2, February 2012.

www.iosrjournals.org 50 | Page

http://www.ncbi.nlm.nih.gov/

