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Abstract: The stochastic optimization techniques were commonly used in solving several optimization 

problems. There are different types of these algorithms that were addressed in several previous works.  In our 

previous work, we implemented a GA and PSO based stochastic optimization model for solving the job shop 

scheduling problem (JSSP). The impacts of these two kinds of initial condition on the performance of these 

two algorithms were studied using the convergence curve and the achieved makespan.  In this work we will 

implement a simulated annealing (SA) based model for solving JSSP. We will compare the performance of SA 

based method with the two other methods which we presented in our earlier works. 
Keywords: Jop Shop Scheduling, JSSP, GA, PSO, Gant-Chart, Simulated Annealing. 

 

I.  INTRODUCTION  
In the modern competitive environment in manufacturing and service industries, the effective 

sequencing and scheduling has become an essential for survival in the marketplace. Companies have to 

produce their product untimely as opposed to due date. Otherwise, it will impinge upon reputation of a 

business. At the same time, the activities and operations need to be scheduled with the intention that the 

available resources will be used in an efficient manner.  As a result, there is a great good scheduling algorithm 

and heuristics are invented. Most of the prevailing practical scheduling problems exist in stochastic and 

dynamic environment.   

Stochastic is a problem where some of the variables are uncertain while dynamic problem is when 

jobs arrive randomly. On the other hand, the problems with ready time is known and fixed are called problems 

static and for problem where all the parameter such as processing times are known and fixed is called 

deterministic problems (French, 1982). In spite of this, it is quite impossible to predict exactly when jobs will 

become available for processing. Additionally, the understanding of scheduling problems where there is no 

uncertainty involved will help us towards the solution of stochastic and dynamic problems.  

The main objective in solving the job shop scheduling problem is to find the sequence for each 

operation on each machine that optimizes the objective function. The most common objective function that has 

been used in scheduling the job shop problem is minimization of makespan value or the time to complete all 

jobs. It has been the principal criterion for academic research and is able to capture the fundamental 

computational difficulty which exists unconditionally in determining an optimal schedule (Jain and Meeran, 

1999). 

The Types of Related Scheduling Problems 

We can group the main classical scheduling problems in five distinct classes: 

 Workshops with only one machine: There is only one machine which must be used for scheduling the 

given jobs, under the specified constraints. 

 Flowshop :  There is more than one machine and each job must be processed on each of the machines - 

the number of operations for each job is equal with the number of machines, the jth operation of each job being 

processed on machine j. 

 Jobshop :  The problem is formulated under the same terms as for the flowshop problem, having as 

specific difference the fact that each job has associated a processing order assigned for its operations. 

 Openshop : The same similarity with the flowshop problem, the processing order for the operations being 

completely arbitrary   the order for processing a job's operations is not relevant; any ordering will do.  

 Mixed Workshop: there is a subset of jobs for which a fixed processing path is specified, the other jobs 

being scheduled in order to minimize the objective function. 

Problem Definition  
The job shop scheduling problem (JSP) may be described as follows: Given n jobs, each composed of 

several operations that must be processed on m machines. Each operation uses one of the m machines for a 
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fixed duration. Each machine can process at most one operation  at  a  time  and  once  an  operation  initiates  

processing  on  a  given  machine  it must  complete  processing  on  that  machine  without  interruption.  The  

operations  of a given  job  have  to  be  processed  in  a  given  order.  The  problem  consists  in  finding a 

schedule  of  the  operations  on  the  machines,  taking  into  account  the  precedence constraints,  that  

minimizes  the  makespan  (Cmax),  that  is,  the  finish  time  of  the  last operation completed in the schedule. 

We focus on job-shop scheduling problems composed of the following elements: 

 Jobs. J = {J1, · · ·, Jn } is a set of n jobs to be scheduled. Each job Ji consists of a predetermined sequence of 

operations. Oi,j  is the operation j of Ji. All jobs are released at time 0. 

 Machines. M = {M1, · · ·, Mm } is a set of m machines. Each machine can process only one operation at a 

time. And each operation can be processed without interruption during its performance on one of the set of 

machines. All machines are available at time 0. 

 Constraints.  The constraints are rules that limit the possible assignments of the operations.  They can be 

divided mainly into following situations: 

- Each operation can be processed by only one machine at a time (disjunctive constraint). 

- Each operation, which has started, runs to completion (non-preemption condition). 

- Each machine performs operations one after another (capacity constraint). 

- Although there are no precedence constraints among operations of different jobs, the predetermined 

sequence of operation for each job forces each operation to be scheduled after all predecessor operations 

(precedence/conjunctive constraint). 

- the machine constraints emphasize the operations can be processed only by the machine from the given set 

(resource constraint). 

 Objective(s).   Most  of  the  research  reported  in  the  literature  is focused  on  the  single  objective case 

of the problem, in which the objective is to find a schedule that has minimum time required to complete  all 

operations  (minimum makespan).   Some other objectives, such as flow time or tardiness are also 

important like the makespan.   

 

Different Approaches for Solving Scheduling Problems 
Job shop scheduling is fundamentally a NP-hard problem with no easy solution. Branch-and-bound, 

Tabu search, GA, Swarm Intelligence and other stochastic model such as simulated annealing algorithm were   

proposed for achieving possible solutions to complex problems like job shop scheduling problems.  During the 

last few periods, Evolutionary Computing (EC) has emerged as a powerful methodology for attempting the 

often highly complex problems of modern society, such as optimizing engineering design, job shop scheduling, 

and transport systems. Such real-world optimization problems typically are characterized by huge, ill-behaved 

solution spaces which are infeasible to exhaustively search and defy traditional optimization algorithms 

because they are for instance non-linear, non-differentiable, non-continuous, or non-convex. EC encompasses 

a class of stochastic, population-based, optimization algorithms inspired by biological evolution and genetics 

which have been shown to perform well on problems with huge, ill-behaved solution spaces. 

Historically JSP has been primarily treated using the following approaches: 

 Exact methods:  Giffler and Thompson (1960),  Brucker  et  al.  (1994)  and Williamson et al. (1997) 

 Branch and bound: Lageweg et al. (1977), Carlier and Pinson (1989, 1990), Applegate and Cook (1991) 

and Sabuncuoglu and Bayiz (1999).  Carlier  and Pinson (1989) have been successful in solving the 

notorious 10´10 instance of Fisher and Thompson proposed in 1963 and only solved twenty years later; 

Heuristic  procedures  based  on  priority  rules:  French  (1982),  Gray  and Hoesada (1991) and Gonçalves 

and Mendes (1994) 

 Shifting bottleneck: Adams et al. (1988). 

      Problems  of  dimension  15´15  are  still  considered  to  be  beyond  the  reach  of  today's exact  methods. 

Over the last decade, a growing number of metaheuristic procedures have been presented to solve hard 

optimization problems. 

 

II.  THE  JSSP AND SA BASED MODEL CONSIDERED FOR SOLVING JSSP 

Mathematical Representation of the JSSP 
Let J = {0, 1, …, n, n+1} represent the set of operations to be scheduled and M = {1,..., m} the  set  

of  machines.  The  operations  0  and  n+1  are  dummy,  have  no  duration  and represent the initial and 

final operations. The operations are interconnected by two kinds of constraints.  First,  the  precedence  

constraints,  which  force  each  operation  j  to  be scheduled  after  all  predecessor  operations, P j,  are  

completed.  Second,  operation j  can only be  scheduled  if  the  machine  it  requires  is  idle.  Further, let dj 

denotes the (fixed) duration (processing time) of operation j. 
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Let Fj denotes the finish time of operation j. A schedule can be represented by a vector of finish times (F1, ,  

Fm, ... , Fn+1). Let A(t) be the set of operations being processed at time t, and let rj,m  = 1 if operation j requires 

machine m to be processed  and rj,m  = 0 otherwise. 

 

 

The conceptual model of the JSP can be described the following way: 

 
Minimize Fn+1 (Cmax)                  ……….(1) 
 
Subject to: 
 

Fk ≤ Fj – dj                                j-1,…,n+2 ; k ϵ Pj  ……….(2) 
 

 ( ) ,jA t j mr ≤ 1                      m ϵ  M ; t ≥  0 ……….(3) 

  
Fj ≥  0   j=1,….,n+1 ……….(4) 

 

The  objective  function  (1)  minimizes  the  finish  time  of  operation  n+1  (the  last operation),   and   

therefore   minimizes   the   makespan.   Constraints   (2)   levy   the precedence relations between operations 

and constraints (3) state that one machine can only process one operation at a time.  Finally (4) forces the 

finish times to be non- negative. The JSP is amongst the hardest combinatorial optimization problems. The 

JSP is NP- hard  (Lenstra  and  Rinnooy  Kan,  1979),  and  has  also  proven  to  be  computationally 

challenging. 

 

Simulated Annealing 
Simulated annealing (SA) is a random-search technique which exploits an analogy between the way 

in which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) and the 

search for a minimum in a more general system; it forms the basis of an optimization technique for 

combinatorial and other problems.   

Simulated annealing was developed in 1980 to deal with highly nonlinear problems. SA approaches 

the global maximization problem similarly to using a bouncing ball that can bounce over mountains from 

valley to valley.  It begins at a high temperature which enables the ball to make very high bounces, which 

enables it to bounce over any mountain to access any valley, given enough bounces. As the temperature 

declines the ball cannot bounce so high and it can also settle to become trapped in relatively small ranges of 

valleys. A generating distribution generates possible valleys or states to be explored. An acceptance 

distribution is also defined, which depends on the difference between the function value of the present 

generated valley to be explored and the last saved lowest valley. The acceptance distribution decides 

probabilistically whether to stay in a new lower valley or to bounce out of it. All the generating and acceptance 

distributions depend on the temperature. It has been proved that by carefully controlling the rate of cooling of 

the temperature, SA can find the global optimum. However, this requires infinite time. 

Simulated Annealing (SA) is moved by an analogy to annealing in solids. The idea of SA comes from 

a paper published by Metropolis etc al in 1953 [Metropolis, 1953). The algorithm in this paper simulated the 

cooling of material in a heat bath. This is a process called annealing. If you heat a solid past melting point and 

then cool it, the structural properties of the solid depend on the rate of cooling. If the liquid is cooled slowly, 

large crystals will be formed. However, if the liquid is cooled quickly (quenched), the crystals will contain 

imperfections.  Metropolis's algorithm simulated the material as a system of particles. The algorithm simulates 

the cooling process by gradually lowering the temperature of the system until it converges to a steady, frozen 

state. In 1982, Kirkpatrick et al (Kirkpatrick, 1983) took the idea of the Metropolis algorithm and applied it to 

optimization problems. The idea is to use simulated annealing to search for feasible solutions and converge to 

an optimal solution. 

Ever since its introduction, independently by Kirkpatrick, Gelatt and Vecchi, simulated annealing 

algorithm has been applied to many combinatorial optimization problems.  The algorithm can be considered as 

a generalization of the well-known iterative improvement approach to combinatorial optimization problems, 

and it can be viewed as an analogue of an algorithm used in statistical physics for computer simulation of the 

annealing of a solid to the state with minimal energy. SA approach can be viewed as an enhanced version of 

local search or iterative improvement, in which an initial solution is repeatedly improved by making small 

local alterations until no such alteration yields a better solution.  SA randomizes this procedure in a way that 

allows occasional alterations that worsen the solution in an attempt to increase the probability of leaving a 
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local optimum. The application of SA as a local search algorithm assumes a cost function calculated for each 

possible solution, a neighbourhood comprising alternative solutions to a given solution and a mechanism for 

generating possible solutions. 

Simulated annealing refers to the annealing process done on a computer by simulation. In this model, 

a parameter T, equivalent to temperature in annealing, is reduced slowly.  

The law of thermodynamics state that at temperature, t, the probability of an increase in energy of 

magnitude, dE, is given by 

 

  P(δE) = exp(-δE /kt) ……..(5) 

 

Where k is known as Boltzmann's constant. 

 

The simulation in the Metropolis algorithm calculates the new energy of the system. If the energy has 

decreased, then the system moves to this state. If the energy has increased then the new state is accepted using 

the probability returned by the above formula.  A certain number of iterations are carried out at each 

temperature and then the temperature is decreased. This is repeated until the system freezes into a steady state. 

 

This equation is directly used in simulated annealing, although it is usual to drop the Boltzmann 

constant as this was only introduced into the equation to cope with different materials. Therefore, the 

probability of accepting a worse state is given by the equation 

  P = exp(-c/t) > r ……..(6) 

Where 

c = the change in the evaluation function 

t = the current temperature 

r = a random number between 0 and 1 

The probability of accepting a worse move is a function of both the temperature of the system and of 

the change in the cost function.  It can be appreciated that as the temperature of the system decreases the 

probability of accepting a worse move is decreased. This is the same as gradually moving to a frozen state in 

physical annealing.  Also, that if the temperature is zero then only better moves will be accepted which 

effectively makes simulated annealing act like hill climbing. 

The following algorithm is taken from (Russell, 1995), will be able to find similar algorithms.  

Function SIMULATED-ANNEALING(Problem, Schedule) returns a solution state 

Inputs :Problem, a problem 

 Schedule, a mapping from time to temperature 

Local Variables :Current, a node 

Next, a node 

T, a “temperature” controlling the probability of downward steps 

Current = MAKE-NODE(INITIAL-STATE[Problem]) 

For t = 1 to  do 

T = Schedule[t] 

If  Termination Condition then  

return Current 

Next = a randomly selected successor of Current 

E = fittness[Next] – fittness[Current] 

if E > 0 then  

Current = Next 

else if (exp(-E/T) > probability then 

Current = Next  

The Representation of JSSP Solutions in Stochastic Models  
The authors give  the formal definition of string representation and then,  in order  to show  that  the  

string  representation  is a valid encoding  for  schedules, they  formulated  two most important theorems 

which are the foundation of this stochastic models.  

 

Definition 1. String Representation.   

       Let  us  consider  three  finite  sets,  a  set  J  of  jobs,  a  set M  of machines  and  a  set O  of  

operations. For  each operation a  there  is a  job  j(a)  in J  to which  it belongs, a machine m(a)  in M  on 

which  it must  be  processed  and  a  processing  time  d(a). Furthermore  for each operation a its successor in 
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the job is given by sj(a), except for the last operation in a job.  The  representation  of  a  solution  is  a  string  

consisting  of  a  permutation  of  all operations in O, i.e. an element of the set:  

StrRep = { s belongs to  On   | n = |O| and  for all i, j with 1 ≤ i < j ≤  n: s(i) ≠ s(j) }    ……..(7) 

Now we can define legal strings. Formal for s in StrRep:  

Legal(s) = For all a, sj(a) belongs to  O: a ~< sj(a) ……..(8) 

Where  a ~< b means: a occurs before b in the string s.  

Theorem 1. (Feasible Solution  →  Legal String)  

Every feasible solution can be represented by a legal string.  More than one legal string corresponding to the 

same feasible solution may exist. 

 

Theorem 2. (Legal String →   Feasible Solution)  

Every legal string corresponds exactly to one feasible solution. To explain the JSSP and valid/legal and 

invalid/illegal solutions, we have chosen the simplest 3x3 JSSP presented in this example of a 3x3 JSSP is 

given in Table 1. The data includes the routing of each job through each machine and the processing time for 

each operation in parentheses.  For example, “2(3)” in the third row represents the operation one of the Job 3 

and  the 2 in “2(3)” represents that that operation should be scheduled to machine 2 and the operation will 

consume 3 units of time. 
 

Table 1 :  A 3x3 JSSP  
 

 
The one of the known optimum schedule of the above problem is   [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 

].Here, for example,  J1,2 represents the operation 2 of the Job 1. Figure1shows one of such a optimum solution 

for the problem represented by “Gantt-Chart". 

 
Figure  1 :  The Gantt-Chart Representation of the Solution of the above 3x3 Problem   

If we denotes the operations of the job as follows, 

Job1: Op1, Op2, Op3  

Job2: Op4, Op5, Op6  

Job3: Op7, Op8, Op9  

Or simply 

1  2  3 

4  5  6 

7  8  9 

then,  the schedule [ J1,1, J1,2, J1,3, J2,1, J2,2, J2,3, J3,1, J3,2, J3,3] or simply [1, 2, 3, 4, 5, 6, 7, 8, 9]  will be the one 

of the known worst case schedule which will satisfy all the conditions of the JSSP. But in this case, the 

makespan will not be optimum. 

The schedule  [ J1,1, J3,1, J2,1, J1,2, J3,2, J2,2, J2,3, J1,3, J3,3 ] or simply [1, 7, 4, 2, 8, 5, 6, 3, 9]  will be the one of 

the best know optimum solution. Here the strings “1, 2, 3, 4, 5, 6, 7, 8, 9” and “1, 7, 4, 2, 8, 5, 6, 3, 9” 

represents solutions and known as valid strings. 

In GA, a legal string or a illegal string (of numbers) which represent the order of the schedule can be 

represented by a chromosome. For example, the known worst case solution can be represented as a 

chromosome of GA by a string “1, 2, 3, 4, 5, 6, 7, 8, 9” . Similarly, the chromosome of GA “1, 7, 4, 2, 8, 5, 6, 

3, 9” will represent a legal string which is an optimal solution of JSSP. 

And for example, the chromosome “3, 9, 4, 2, 1, 5, 6, 7, 8” will be a invalid string which correspond to a 

illegal operation or schedule since this schedule will not satisfy the conditions of JSSP. 

So, if we select the initial chromosomes of GA or initial points of PSO with random values, then there will be 

lot of invalid strings in the initial guess. The scope of the evolutionary algorithm is to permute  the most 

optimal string to better most optimal string which will hopefully make that string as a legal string in 
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proceeding generations/steps and finally we will end up with a string belongs to a better solution or optimal 

schedule with minimum makespan. 

This assumption will be good and can produce meaningful solutions for lower order scheduling problems such 

as 3x3 JSSP or 4x4 JSSP. But, it may produce illegal solutions even after very long runs in the case of higher 

order scheduling problems like 15x15 JSSP. Because, if we randomly chose initial population then there will 

be much chance for getting all illegal strings in the initial set which belongs to no nearby solution. So the 

fitness calculation methods will lead to meaningless fitness values and the selection method will also be 

incapable of selecting a better solution in each generation or step. So in each step of the evolutionary process 

there will not be any guaranty of getting progressive solution.  

So we believe that the random selection of initial solution/seed in an evolutionary algorithm will not lead to a 

better result in higher order scheduling problems such as 15x15 JSSP. So in this work, we have evaluated the 

performance of two evolutionary optimization techniques GA and SA with different initial conditions.  

 

III.  RESULTS AND ANALYSIS 
In the experiments experiment, we have given the known worst case solution as initial “seed” for the 

evolutionary process. We expect that, the system will be capable of producing at latest one meaningful legal 

string in every generation/step/iteration and hence there will be a much good probability of achieving a better 

solution in the succeeding generations or steps. 

 

Analysis of Performance with Different Problem Size 
The GA was run for 100 generations with population size of 100. The PSO was run for 100 steps with 

100 particles. Refer our previous papers and for the further information about this methods. The Proposed SA 

was run for 3000 iterations since this simple SA will only handle one solution at a time (but in the case of GA 

and PSO, 100 solutions are evaluated at each generation or step).  

The Analysis with 3x3 JSSP 

 In the following figures we are presenting the Gantt-Chart found by the SA based method for the 3x3 problem  

presented in table 1. In the following schedules, the forth one is solution already discussed in figure 1. The 

code developed for drawing Gantt-Chart will display the chart in color.  

 

 
Figure  2 :  The Gantt-Chart Representation of the Solutions found by SA based algorithm for the previously 

mentioned 3x3 Problem 

 

The following figure  shows the Gantt-Chart found by the SA based method for a  4x4 problem. 

 
Figure  3 :  The Gantt-Chart Representation of the Solutions found by SA based algorithm for a 4x4 Problem 

The following figure shows the Gantt-Chart found by the SA based method for a  6x6 problem. 
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Figure  4 :  The Gantt-Chart Representation of the Solutions found by SA based algorithm for a 6x6 Problem 

 Performance in terms of speed 
 To measure the performance in terms of speed, with problems of different sizes, the model was run 

with problems of different sizes. 

Table 2 : The time taken for different JSSP size  

Sl.No 
JSSP 

Size 

Time Taken(sec) 

GA PSO SA 

1 3x3 2.87 1.29 8.44 

2 4x4 3.61 1.70 9.14 

3 6x6 5.70 2.72 10.51 

4 10x10 16.75 13.63 12.72 

5 15x15 58.28 33.47 19.82 

 

The following figure shows the performance in terms of time with respect to different JSSP problem size 

JSSP Size vs Time
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Figure  5 : JSSP Size vs Time Chart 

Convergence Capability of the Algorithms 
The convergences measured in terms of makespan for different size of the problem were tabulated below. We 

only considered the convergence upto the first 100 iterations in the case of GA and 100 steps in the case of 

PSO. SA was run for 3000 iterations. Even though the 3000 iterations seems to be high, SA only consider one 

solution at a time and search the best among 3000 solutions during its run.  

 

Table 3 : Startup with known worst case solution 

Sl.No 

JSSP 
Achieved Optimal 

Solution (Makespan) 

Size 

Known 

best 

optimum 

value 

GA PSO SA 

1 3x3 12 12 12 12 

2 4x4 272 272 286 290 

3 6x6 55 68 72 75 

4 10x10 902 2214 2899 3258 

5 15x15 1268 6771 8241 8871 

 

The following figure  shows the performance in terms of Makespan with respect to different JSSP problem size 
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JSSP Size vs Convergence in terms of Makespan
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Figure  6 : JSSP Size vs Makespan Chart 

Even though the arrived solution is far from the optimal solution (since we run this for low generations), the 

better performance in the case of GA is very obvious. Even though the SA is consuming much lesser time, it is 

not producing better results like GA. PSO also producing better results than SA. 

 

IV.  CONCLUSION AND FUTURE WORK 
We have successfully implemented three basic evolutionary models for solving JSSP using SA, GA 

and PSO. The arrived results show that the models produced optimal or near-optimal solutions medium level 

job shop scheduling problems in a shot duration.  While initializing with known, worst case solution, the 

evolutionary process was capable of converging into meaningful and more optimum solutions. 

Further, as shown in the convergence cures in the previous section, The GA was behaved in a very 

better way than PSO and SA.  Future works may address hybrid models for JSSP by combining the several 

aspects of different evolutionary algorithms. For example, we may combine SA and GA and design an 

improved GA. Future works may address the issued involved in designing this kind of hybrid models. 

 

REFERENCES 
[1] Moraglio , H.M.M. Ten Eikelder, R. Tadei,  “Genetic Local Search for Job Shop Scheduling Problem” , Technical Report, CSM-435 

ISSN 1744-8050 
[2] E.L.  Lawler,  J.K.  Lenstra,  A.H.G.  Rinnooy  Kan,  D.B.  Shmoys.  -  Sequencing  and scheduling:  Algorithms  and  complexity.  -  In:  

S.C.  Graves,  A.H.G.  Rinnoy Kan  and P. Zipkin, editors, Handbooks in Operations Research and Management Science 4, North- 
Holland, 1993. 

[3] Dr. Daniel Tauritz, The abstract of the talk "Grand Challenges in Evolutionary Computing - Part II", Missouri S&T 
[4] Hongbo Liu, Ajith Abraham,Zuwen Wang, "A Multi-swarm Approach to Multi-objective Flexible Job-shop Scheduling Problems", School 

of Information Science and Technology, Dalian Maritime University, Dalian 116026, China, Fundamenta Informaticae,IOS Press, 2009 
[5] José Fernando Gonçalves, Jorge José de Magalhães Mendes,Maurício G. C. Resende, “A Hybrid Genetic Algorithm for the Job Shop 

Scheduling Problem”, AT&T Labs Research Technical Report TD-5EAL6J, September 2002.  
[6] Mahanim Binti Omar, “A Modified Multi-Step Crossover Fusion (Msxf) In Solving Some Deterministic Job Shop Scheduling Problem 

(Jssp), A thesis work submitted to Universiti Sains Malaysia, 2008 
[7] Xiangyang Wang, Jie Yang, Richard Jensenb Xiaojun Liu, , "Rough Set Feature Selection and Rule Induction for Prediction of 

Malignancy Degree in Brain Glioma ",Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 
China and Department of Computer Science, The University of Wales, Aberystwyth, UK 

[8] Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, in Evolutionary Programming VII: Proc. EP98, pp. 591-600 
(New York: Springer-Verlag, 1998). 

[9] Takeshi Yamada and Ryohei Nakano, "Genetic Algorithms for Job-Shop Scheduling Problems", NTT Communication Science Labs, 
JAPAN, Proceedings of Modern Heuristic for Decision Support, pp.67, UNICOM seminar, March 1997, London 

[10]  S. Jayasankari, Dr. A. Tamilarasi “Evaluation on GA based Model for Solving JSSP”,   International Journal of Computer Applications   
Volume 43 - Number 7, Year of  Publication: 2012, 10.5120/6113-8248.  

[11]  S. Jayasankari, Dr. A. Tamilarasi “Analysis of Two Stochastic Optimization Techniques for Solving Job Shop scheduling Problem”,  
European Journal of Scientific Research, ISSN 1450-216X Vol. 88 No 3 October, 2012, pp.365-379. 

[12] Bandyopadhyay S., Saha S., Maulik U. & Deb K. A Simulated Annealing-Based Multi-objective Optimization Algorithm: AMOSA, IEEE 
Transactions   on Evolutionary Computation 2008;12(3) 269-283. 


