
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 9, Issue 4 (Mar. - Apr. 2013), PP 80-86
www.iosrjournals.org

www.iosrjournals.org 80 | Page

Peephole Optimization Technique for analysis and review of

Compiler Design and Construction

Mr. Chirag H. Bhatt
1
, Dr. Harshad B. Bhadka

2

1 Research Scholar (Computer Science), RK University, and Lecturer, Atmiya Institute of Technology &

Science, Gujarat Technological University,
2Asst. Prof. and Director, C. U. Shah College of Master of Computer Applications, Gujarat Technological

University,

 Abstract : In term of Compiler optimization, classical compilers implemented with an effective optimization

technique called Peephole optimization. In the early stage of the implementation of this technique basically

applied using string pattern matching performed on the regular expression and which are known as classical

peephole optimizers. In the classical optimizers, the string pattern matching approach is considered as a

processing of the input of the syntax of assembly code but its meaning gets lost. This paper explores prior

research and current research issues in term of ‘Optimizing’ compilers with the implementation of Peephole

optimization using different pattern matching approach that focuses on regular expression. In several research

discussed below targets the implementation of pattern matching approach based on rule application strategy to

achieve optimization of assembly code syntax for specific machine or retargetable [machine independent] in

context of structured programming, procedure oriented programming and Object Oriented Programming.

Keywords - Intermediate Code, Optimization Rules, Pattern Matching Techniques, Peephole Size, Retargetable

Peephole Optimizer

I. Introduction
In compiler optimization theory, the compiler optimization basically refers to the program optimization

to achieve performance in the execution. Program optimization refers to the three aspects (i) frontend: a

programming language code, (ii) intermediate code: an assembly language code generated by the compiler

appropriate to the programming language and (iii) backend: the specific machine or object code generated from

the assembly language code for the actual execution by the compiler. The Peephole Optimization is a kind of

optimization technique performed over a very small set of instructions in a segment of generated assembly code

[Intermediate code]. The set of instructions is called a "peephole" or a "window". It works by recognizing sets of
instructions that can be replaced by shorter or faster set of instructions to achieve speed or performance in the

execution of the instruction sequences [1]. Basically Peephole Optimization is a method which consists of a

local investigation of the generated object code means intermediate assembly code to identify and replace

inefficient sequence of instructions to achieve optimality in targeted machine code in context of execution or

response time, performance of the algorithm and memory or other resources usage by the program [2].

II. Common Techniques Applied in Peephole Optimization
Common techniques applied in peephole optimization [29].

 Constant folding - Assess constant sub expressions in advance.

 Strength reduction - Faster Operations will be replaced with slower one.

 Null sequences – Operations that are ineffective will be removed.

 Combine Operations - Replacement of the few operations with similar effective single operation.

 Algebraic Laws - Simplification and reordering of the instructions using algebraic laws.

E.g. r2 := r1 X 2

 r3 := r2 X 1 becomes r3 := r1 + r1

E.g. r1 := r1 + 0 or r1 := r1 X 1 has no effect

E.g. r1:= r2 X 2 becomes r1 := r2 + r2 then r1 := r2<<1

r1 := r2/2 becomes r1 := r2>>1

E.g. r2 := 3 X 2 becomes r2 := 6

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 81 | Page

 Special Case Instructions - Use instructions designed for special operand cases.

 Address Mode Operations - Simplification of the code using address modes.

III. Prior Research
3.1. Machine Specific Peephole Optimizers

William McKeeman has invented and peephole optimization technique in 1965 [2]. It is very simple but

effective optimization technique. It was noted that when a program gets compiled, the code emitted from the

code generators contained many redundancies around borders of basic blocks like chains of jump instructions. It

becomes complicated case analysis to reduce these redundancies during the code generation phase. So it was

appropriate to define a separate phase that would deal with them. The concept was described as follow:

A peephole, a small window which consisting no more than two assembly code instructions, is passed over the

code. Whenever redundant instructions are found in the sequence, they are replaced by shorter or faster

instruction sequences. For that the peephole optimizer uses the simple hand written pattern rules. These are first
matched with the assembly instructions for the applicability of testing, and if the match found, the instructions

are replaced. Therefore, a typical pattern rule consists of two parts a match part and a replacement part. The

pattern set is usually small as this is sufficient for fast and efficient optimization.

These techniques have been implemented in GOGOL, a translator written by the author for the PDP-1

time sharing system at Stanford. The performance and limitation on how well the optimizer will work seems to

depend primarily on how much time and space are available for recognizing redundant sequences of instructions

[2].

In the above given simple code [2], if the store instruction is nondestructive, the third instruction is redundant

and may be discarded. The action may be accomplished by having the subroutine which emits object code check

every time it produces an LDA to see if the previous instruction was the corresponding STA and behave

accordingly.
Lamb [3] has defined the implementation of a pattern-driven peephole optimizer and published in

1981. The Lamb’s Peephole optimizers consists of three components, a collection of pattern rules, a translator

that works as a parser, and a pattern-matcher framework, The code generator generates assembly code in the

form of a doubly-linked list of nodes so that the peephole optimizer can easily operate on it. For the purpose of

analyzing the code the optimizer uses a compiled version of the patterns, which is then simplified for testing

applicability for set of instruction sequences wherever possible. The patterns are considered a generalization

over specific cases; so, it contains abstract symbols or variables that are instantiated during pattern matching.

The form of the optimization rules:

E.g. r2 := var becomes r2 := 0x500

E.g. r1 := r1 + 1 becomes inc r1

E.g. r1 := r2

r3 := r1 becomes r3 := r2;

< Input pattern line 1 [condition (var)] >

………

< Input pattern line n >

=

< Replacement pattern line 1 >

………

< Replacement pattern line n >

Example:

 Sample Code:

 X: = Y;

 Z: = Z + X;

 Compiled Code:

 LDA Y Load the accumulator from Y

 STA X Store the accumulator in X

 LDA X Load the accumulator from X

 ADD Z Add the content of Z

 STA Z Store the accumulator in Z

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 82 | Page

In the above form pattern matching rule, condition (var) is optional (and so that written with square

brackets); it can only occur in the matching portion of the pattern rule. In an optimization rule a condition over

some variable(s) occurring in the pattern is referred as an Escape by Lamb [3] that must be met. If all the
instructions in the preconditions part can be applied to adjacent assembly code instructions with any particular

conditions over variables evaluate to true then and only then the pattern match is successful. In the replacement

part of the pattern Escapes can also be embedded, where they represent an additional action to be performed

rather than describing a condition over the variables as in the matching part. For example, it is difficult to

represent such an action like negating a variable, as assembly code, whereas it is more preferable to invoke a

subroutine that does the job. Lamb [3] performs matching using backwards strategy, means the optimization

starting with last instructions in the precondition part of the matching rule up to first one to finish, not forwards

as it was first originally approached. Most peephole optimizers adopted this strategy. Forwards refers to the

order of the instructions which are dealt with the compilers and backwards refers to the testing part of the

matching procedure. The advantage through this procedure we can get is that the further optimizations on the

newly inserted instructions and their predecessors can instantly be performed. By interacting with the matching
rules it is very useful for those, new opportunities for optimization arise after replacement. So that the general

strategy that analyses the optimality of the current instruction against its predecessors is reasonable to utilize. As

McKeeman [1] has originally adopted the other approach, until more improvement can be made, one would

have to go through the code several times. Since the code has to be tested once only, the backward strategy is

surely better and effective.

The above discussed style of matching optimization pattern rule and backward strategy are also used by

Fraser’s peephole optimizer Copt [4] through being a retargetable optimizer.

The work discussed in this paper adopts the above mention style of pattern matching rule for the regular

expression and the generic backward strategy, which is very applicable to classical peephole optimizer

implementation.

3.2. Machine Independent Peephole Optimizer
The classical peephole optimizers were machine dependent and so they could only specific to a single

machine. They were directly worked assembly code. For the purpose to use with different machine they, they

had to be modified and rewritten completely. Retargetable optimizers are different then the classical ones in

their capability of being machine independent and therefore easily retargeted to other machines. Retargetable

optimizers are slower in performance than their counterparts.

Jack W. Davidson and Christopher W. Fraser developed the first retargetable peephole optimizer, PO

[5, 6] and published in 1979 (Fraser C. W) and 1980 (Davidson J. W.). Before the code generation, this PO is

brought into action, which allows a machine independent analysis of the code. PO generally takes two inputs,

one is assembly code of the program and second the target machine’s descriptions on which the program

suppose to be executed proceeding as follows. First, it finds out the effects of each assembly code instruction

that can be generated for the specified machine, which are represented as register transfer patterns. This
information forms a bi-directional translation grammar between the assembly code instruction and the register

transfers. Then the each pair of adjacent instructions in the assembly code is analyzed and converts them to

equivalent instantiated register transfer patterns by means of the bi-directional grammar from the previous

analysis. Afterwards, these patterns are simplified by PO. Finally, it finds the best possible single assembly code

instruction that corresponds to the simplified pattern, by which the original instruction in the input assembly

program is then replaced.

As this mechanism defined a machine-independent approach to peephole optimizers that is retargetable

to other machines was simply achieved by invoking PO on a different set of machine descriptions. Operating on

register transfers rather than performing this technique on assembly code also ensured that all possible

optimizations were found without exhaustive case analysis. In the 1980’s, many research works have been done

and published in connection with Retargetable peephole optimization and PO [5, 6, 7, 8, 9, 10]. The GNU C

compiler GCC is implemented with the peephole optimizer which is heavily inspired by PO.
Ralph E. Jonson and Carl McConnell have defined the RTL System using the technique of register transfers as

an intermediate code for compilers [11]. Their work provides an object-oriented framework for optimizing

compilers to implement peephole optimizers.

A different approach of using peephole optimization on intermediate code was introduced by

Tanenbaum et al. [12] in 1982. They attempted by applying peephole optimization to intermediate code instead

of to object code: where they supposed to have a peephole optimization routine that was independent of the

different compiler front and back ends involved. The optimization is performed on the intermediate code to

maintain the portability of the compilers and it is performed with a set of common hand-written pattern

matching rules. Their design does not make use of any specific or refined strategies. The results described in

their work suggest their system to be faster than Davidson and Fraser’s retargetable approach. In their work,

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 83 | Page

Tanenbaum et al. certainly gets the advantage of having optimizations at the intermediate code level in the case

like, flags and register allocation issues do not need to be considered at that stage yet. But some optimization do

not possible at the intermediate code level until code generation performed so this becomes the disadvantage of
intermediate code level optimization.

Davidson and Fraser built a fast peephole optimizer that works at compile time using PO [13, 14] in

1984. Their work focused on automating the development of retargetable optimizers, i.e. PO is applied at

compile time and a ‘training set’ of patterns is obtained, to achieve automatically finding patterns for

optimization rules. As discussed above, Lamb’s optimization rules that approximately similar to patterns to

implement HOP. Without using string pattern matching or tree manipulation, HOP efficiently utilizes hashing to

perform matching and replacement [15]. This is possible here because a fixed format for the specification of

patterns is used by optimization rules. Thus, separating the framework of an instruction from its context-

sensitive parts means operands is clear-cut. In order to perform a match of a sequence of input instructions with

pattern rules, the input instructions and pattern rules are stored in separate hash table; the addresses of the

skeleton patterns are compared. If the match is successful, the context sensitive information of the input is
analyzed for consistency with the optimization rule. Using this way, HOP stay away from dealing with strings

and enhances matching speed to that of byte-to-byte comparison.

Robert R. Kessler has introduced an architectural description driven peephole optimizer known as Peep

and published in 1984 that is being adapted for the use in the Portable Standard Lisp compiler. In which tables

of optimizable instructions are generated prior at the stage of compilation from the architecture description of

the target machine. Peep then performs global flow analysis of the target machine code and optimizes

instructions as defined in the global flow analysis allows optimization across basic blocks of instructions, and

the use of tables created at compiler generation time minimizes the overhead of discovering optimizable

instructions [16]. Kessler P. B. has also developed a compiler construction tool [17] for discovering machine

specific code improvement and published in 1986 which automates much of the case analysis required to

develop special purpose instruction on a target machine, such analysis identifies suitable instruction sequences

that are equivalent to single instruction. During code generation phase such equivalence instruction set can be
used to avoid inefficiency. This approach for instance does not require a training set. It simply utilizes target

machine descriptions in order to find optimization opportunities.

Warfield et al. [18] developed an expert system and published in 1988 that learns optimization rules

and by this way it simplifies the implementation of a retargetable peephole optimizer that can be implemented

with different machines. The research of an optimizer tool described by Whitfield and Soffa in 1991 that is

basically using two tools, an optimization specification language, and an optimizer generator, which

automatically generate global optimizers [19]. It was designed for both traditional and parallelizing

optimizations, which require global dependence conditions. In their research and experiments they found that

the cost benefit ratio of some optimizations is quite large and it can be reduced in some cases by specifying

optimization carefully by different implementations.

Davidson and Fraser has enhanced the functionalities of the original version of PO in 1984 added with
the CSE and divided the new version of the PO in three phases (i) Cacher, (ii) Combiner and (iii) Assigner

where Cacher deals with Common Sub expression Eliminations (CSEs), the Combiner simplifies register

transfers and the Assigner transfers these to assembly code [7, 8].

Ganapathi et al. [20], has given a totally different approach of peephole optimization in compiler construction.

They rather implements tree matching pattern using tree manipulation language called twig. For describing

target machine instructions they utilize attribute grammar parsing techniques Instead of using register transfers.

String pattern matching typically applied here but moreover that context free production consists of a set of

attribute evaluations which forms the Pattern rules. The pattern rules having a preconditions and a replacement

part as we discussed in the earlier work of the peephole optimizers. These rules improve the code while it is

being parsed into a tree-like format.

3.3. Combining Optimization with Code Generation
From review of the above research works we can understand that the retargetablity and platform

independency of the peephole optimizers in compiler construction had been successfully achieved in early

1980’s but speed is always remained an issue. In order to overcome this, the overall execution time for the code

generation and optimization phases (implementation of pattern matching strategy) had to be reduced. As

mentioned at the beginning of this section, allowing for optimization in code generation itself would have

resulted in complicated case analysis. So the goal here was to maintain the efficiency of both phases without

focusing the individual algorithms too much.

The concept of combining two phases of code generation and optimization in to one phase has been

described by Fraser and Wendt in 1986 [15]. Using this concept they extended the initial implementation of

HOP. They described a ‘general rule-based rewriting system’ which is basically a new version of HOP that

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 84 | Page

usually performing by pattern matching through hashing. Lamb’s concept of escapes has also been added to

HOP replacement pattern rules. Fraser and Wendt introduced a ‘recycling’ system in which system utilizes and

saves the time be achieving efficient code generation in one phase rather that in separate phase.
A similar rule based rewriting system is introduced by Ancona [10] in 1995. A simple approach to the

integration of peephole optimization with retargetable code generation is presented. The method is based on an

intermediate code optimizer that is programmable, i.e., driven by user-defined optimization and translation

rules. Optimization and translation rules, specified in form of macros, are written in a simple high-level

language. Three algorithms, intermediate code optimization, target code generation and target code optimization

are unified in a single process, a rule based, pattern matching and replacement algorithm. Three programs

implement the method. The first two are used during the development and test phase of the optimization and

translation rules. The third program generates, from a tested set of rules, an efficient code optimizer and

generator, specialized for a specific target machine, and to be included in a production compiler.

Other research works [7, 9] presents that the peephole optimization can greatly improve code given by

a naïve code generation. Fraser and Hanson’s described the above mentioned idea of combining two phases,
code generation and optimization in lcc [21, 22] in 1989 and 1991. Their retargetable C compiler lcc does not

describe optimizing compiler however optimization implemented or rather then ‘hard-coded’ in to code

generation rules wherever required.

In another lcc-based project called lcc-win32 introduced by Jacob Navia in 1995 – 2005 [23], which is

only targets the windows platform only. Lcc-win32 introduced with a separate and additional peephole

optimizer which is not included in the earlier version of lcc.

There are approximately 20 optimization rules using which lcc-win32’s generated code is improved

and lcc-win32 is utilized as a tool only in the peephole optimizer. Classical approach of optimization is adopted

by the lcc-win32 rather than the modern approach of retargetable optimizers. This method was selected as is

more suitable and efficient to the objective of this work. Lcc-win32 just provides a skeleton that this system can

be used and tested with. The optimizer is not intended to replace Navia’s optimizer in any way as the

optimizer’s rule set is partial in particular.
The pattern matching strategies and its surrounding information to the techniques that are in concern with the

framework of peephole optimization is described in the next segment.

3.4. Optimization Rules (Pattern) Matching Strategies

Much work has been done in the field of pattern matching is done because it is having applicability to

many areas of computer science. The Knuth-Maris-Pratt (KMP) and the Boyer-Moore (BM) algorithms are

classical in context of string pattern matching. Usually, string pattern matching is associated with finding string

pattern in text. Both text and string pattern containing a specific sequence of characters and optionally variables.

The goal of using variables here is to resolve, i.e. associate any variables software that the text portion and

pattern become equal.

Patterns are represented as regular expressions classically, which provide a format for expressing the
sequence of characters to look for. This format allows abstraction over simple characters. If the string represents

a valid occurrence of the pattern then a pattern successfully matches an input string and if at any point during

matching, the input string does not satisfy the requirement of pattern then the pattern fails to match a string.

The earlier pattern matching strategies were basically regular expression base. The grep command of Linux is a

pattern matcher implementing the same strategy for text files and Perl programming language also supports the

same regular expression based pattern matching.

Spinellis D. [24] designed a peephole optimizer written in Perl programming language in Feb-1999,

which performs optimization using a declarative specification of optimization and optimization rules applied

regular string pattern matching, targeting specifically at branch prediction. This approach to pattern matching

allows a simple specification and fast processing of the rules. Capability of grouping regular expressions and

back referencing them, simplifying the reuse of parts of match provides an advantage to pattern matching. This

mechanism saves the programmer from storing matches input in temporary variables which often results in
unnecessarily complicated code. This approach is also used in the regular expression based strategy.

This string-based pattern matching approach can be considered very effective, but the problem is that it just

processes the syntax of the input of the assembly code. It is not observed by the optimizer whether a register, a

constant, or a label definition is parsed or analyzed. There is no semantic conception of the input at all. But

pattern matching should not be considered as just mapping of strings. For the purpose of matching a pattern of

any kind, it has to be identified in the input. Therefore, the input, which represents some form of information,

has to be processed completely. From the above discussion we can say that a pattern matching is an information

processing problem, in which variables have to be bound and constriction have to be satisfied. In-built facilities

for pattern matching are often provided by procedural or functional programming languages with implicit use of

this approach in procedures or rules. The implementation of above mentioned idea in object-oriented languages

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 85 | Page

like Java or C++ is different, because in object-oriented languages, an object represents a smallest unit of

information, so everything is put together around objects. Objects are characterized by their data members and

operations or functions to be performed on them. So when programmer defines an object, we can say he defines
the meaning or concept of object. And so that for applying pattern matching with strings and regular expressions

as mentioned above, the programmer has to work on lower level of abstraction.

The absence of pattern-matching in object-oriented programming languages is felt especially when tackling

source code processing problems. Visser J. described an approach to support pattern matching in mainstream

object-oriented languages without language extension in 2006 [25]. In this approach a pattern is created and be

passed as an argument in a form of a first class entity which provides methods invocation just like other objects.

This approach is implemented by performing matching of the objects in object graph. The pattern is an object

graph that contains variable objects, indicated by empty dashed circles. After matching, these variables are

bound to corresponding objects in the term, indicated by the dotted arrows.

Figure-1 Pattern matching for objects in object graph [25]

JMatch [26] is another attempt to introduce pattern matching in Java, though by language extension. Mostly, in

the case of peephole optimization, one not only wishes to identify patterns, but to replace them as well. So

pattern matching is also a rewriting problem.

Visser E. et al [27] described and published Strategic pattern matching in 1999, and also introduces

Stratego in 2000-2005 [28], which a term rewriting language that provides elasticity in strategy application by

separating rule definitions from strategy specifications. Hence a suitable rewriting strategy can be selected for
applications with a base set of rules according to the input. Peephole optimizers have always implicitly

supported this design: Usually there is a separate rules file and a peephole optimizer skeleton in classical

peephole optimizers. But as for strategically aspects of rule application, only the backwards strategy has been

applied so far.

IV. Research Issues

 As per the earlier research work, Size of peephole is only capable to cover a smaller set of instructions of

the intermediate code for the optimization investigation and so the issue is that, Can Peephole size is

increased that can covers bigger set of intermediate code instructions generated from the longer instruction
sequences of Higher Level Language? And how it is possible?

 As per the study of different Peephole Optimizer, it is also important to choose an efficient pattern matching

strategy for the replacement part. Earlier Peephole Optimizers have commonly implemented string based

pattern matching approach and latter on other pattern matching strategies have been identified like tree

manipulation or object based pattern matching. A question arises from the above study is that, Can other

pattern matching strategy be implemented rather than string based for replacement part?

 Peephole Optimizers were generally focusing on pattern matching strategies and replacement rules to map

and replace redundancy from the code and so that the meaning of the code gets lost. So the issue suggests

Can PO be achieved even more successfully by utilizing the meaning of the code? And how?

 PO is an old technique from the 1980s, and from the observation of above study, we found that the concept

of Peephole Optimization has already applied with structured or procedure oriented programming
approaches to optimize object code but a question arises is that can it be combined with newer concepts &

approaches like OOP with more efficiency for optimizing byte code?

 Optimization Overhead is a major issue to the work of optimizing compiler to be concerned as the number

of scan performed over intermediate code until no more improvement found.

Peephole Optimization Technique for analysis and review of Compiler Design and Construction

www.iosrjournals.org 86 | Page

V. Conclusion

This paper describes the foundation of the Peephole Optimization technique and its implementation for

the construction and design of optimizing compilers along with the optimization rules that suppose to be

matched to investigate and replace redundant instructions of intermediate code. Different pattern matching

approaches like string based, tree manipulation and object based pattern matching of pattern rules have also

been discussed.

As the main section of this paper (Section 3) is divided in to four parts in which first section focuses on

the machine dependent peephole optimizers which were capable to work with object code instruction and to the

specific machine and pattern rules are hard coded. The second part describes the foundation of retargetable

peephole optimizers which were generally machine independent and that are also capable to work upon register

transfers rather than assembly code to avoid exhaustive case analysis. It has also describes the pattern matching

techniques using hashing mechanism. In this section few researches has also covered the concept of automatic
generators of optimization rules means pattern rules can be automated and machine driven. The third part

describes the integration of code generation and optimization in to one phase to achieve speed and efficiency for

optimization. And the last part describes different pattern matching strategies implemented over different

peephole optimizers.

As per the study of all the section of this paper we can also understand the current state and research issues

regarding the peephole optimization in construction and design of optimizing compilers.

References
[1] Aho, A. V., Sethi, R., Ullman, J. D. Compilers: Principles, Techniques, and Tools. Massachusetts: Addison-Wesley,

[2] McKeeman, W. M. (1965) Peephole optimization. CACM 8(7):443-444.

[3] Lamb, D. A. (1981) Construction of a Peephole Optimizer. Software - Practice & Experience.

[4] Fraser, C. W. (1982) Copt, a simple, retargetable peephole optimizer. Software, available at

ftp://ftp.cs.princeton.edu/pub/lcc/contrib/copt.shar.

[5] Davidson, J. W., Fraser, C. W. (1980) the design and application of a retargetable peephole optimizer. ACM TOPLAS 2(2):191-202.

[6] Fraser, C. W. (1979) A compact, machine-independent peephole optimizer. POPL’79:1-6.

[7] Davidson, J. W., Fraser, C. W. (1984) Code selection through object code optimization. ACM TOPLAS 6(4):505-526.

[8] Davidson, J. W., Fraser, C. W. (1984) Register allocation and exhaustive peephole optimization. Software - Practice & Experience

14(9):857-865.

[9] Davidson, J. W., Whalley, D. B. (1989) Quick compilers using peephole optimizations. Software - Practice & Experience 19(1):195-

203.

[10] Ancona, M. (1995) an optimizing retargetable code generator. Information and Software Technology 37(2):87–101.

[11] Johnson, R. E., Mc Connell, C., Lake, J. M. (1991) the RTL System: A Framework for Code Optimization. In Code Generation –

Concepts, Tools, Techniques, Proceedings of the International Workshop on Code Generation, Dagstuhl, Germany, pp. 255–274.

[12] Tanenbaum, A. S., van Staveren, H., Stevenson J. W. (1982) Using Peephole Optimization on Intermediate Code. ACM TOPLAS

4(1):21-36.

[13] Davidson, J. W., Fraser, C. W. (1987) Automatic Inference and Fast Interpretation of Peephole Optimization Rules. Software -

Practice & Experience 17(11):801-812.

[14] Davidson, J. W., Fraser, C. W. (1984) Automatic generation of peephole optimizations. CC84:111-116.

[15] Fraser, C. W., Wendt, A. L. (1986) Integrating Code Generation and Optimization. Proceedings of the SIGPLAN’86 symposium on

Compiler Construction, pp. 242–248.

[16] Kessler, R. R. (1984) Peep – An architectural description driven peephole optimizer. CC84:106-110.

[17] Kessler, P. B. (1986) Discovering machine-specific code improvements. CC86:249-254.

[18] Warfield, J. W., Bauer, III, H. R. (1988) an Expert System for a Retargetable Peephole Optimizer. ACM SIGPLAN Notices

23(10):123–130.

[19] Whitfield, D., Soffa, M. L. (1991) Automatic Generation of Global Optimizers. Proceedings of the SIGPLAN’91 Conference on

Programming Language Design and Implementation.

[20] Aho, A. V., Ganapathi, M., Tjiang, S. W. K. (1989) Code Generation Using Tree Matching and Dynamic Programming. ACM

TOPLAS 11(4):491-516.

[21] Fraser, C. W. (1989) A Language for Writing Code Generators. Proceedings of the SIGPLAN ’89 symposium on Compiler

Construction, SIGPLAN Notices 24(7):238–245.

[22] Fraser, C. W., Hanson, D. R. (1991) a Retargetable Compiler for ANSI C. SIGPLAN Notices 26(10):29–43.

[23] Navia, J. (1999-2005) lcc-win32: A Compiler system for Windows. Available at http://www.cs.virginia.edu/˜lcc-win32/

[24] Spinellis, D. (1999) Declarative Peephole Optimization Using String Pattern Matching. ACM SIGPLAN Notices 34(2):47–51.

[25] Visser J. (2006) Matching Objects Without Language Extension, in Journal of Object Technology, vol. 5, no. 8, November-

December 2006, pages 81–100, http://www.jot.fm/issues/issue 2006 11/article2.pdf.

[26] Liu, J., Myers, A. C. (2003) JMatch: Iterable abstract pattern matching for Java. Proceedings of the 5th International Symposium on

Practical Aspects of Declarative Languages.

[27] Visser, E. (1999) Strategic Pattern Matching. RTA’99, Vol. 1631 of Lecture Notes in Computer Science, pp. 30–44.

[28] Visser, E. et al. (2000-2005) Stratego: Strategies for Program Transformation. http://www.stratego-language.org/

[29] Fischer, C.N. and LeBlanc, R.J. (1988) Crafting a Compiler, Benjamin Cummings, Menlo Park, CA

