
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN : 2278-0661 Volume 1, Issue 1 (May-June 2012), PP 01-09
www.iosrjournals.org

www.iosrjournals.org 1 | Page

Analysis of Binpacking

Mrs. Nirmala J
Assistant Professor ,Department of Information Science and engineering KNSIT, Bangalore, Karnataka,

India. And Research scholar, Department of Studies in Computer Science, Manasa Gangotri, University of

Mysore ,Mysore, Karnataka, India.

Abstract - The main objective of this problem is to pack objects of fixed volume into bins, each of them

having a maximum capacity, so as to minimize the total number of bins used. Binpacking is an Np-complete

problem as the number items increases, to pack the items in n bins, It cannot be done in polynomial time.

Hence we convert the Np problem to P problem in our approach. There are several methods to solve this

problem. The most straightforward solution would be the first fit algorithm. Here each object is compared

against all the bins to try find the first bin which could accommodate the object. Insert a set of n numbers into

as few bins as possible, such that the sum of the numbers assigned to each bin does not exceed the bin

capacity, we firstly prove it to be NP problem and solve as P problem after transformation .

Keywords-NP complete, P complete ,Bin Packing.

I. INTRODUCTION AND OVERVIEW
The BIN-PACKING problem is defined as follows: suppose we have K bins, each of size M, and a

collection of objects of varying sizes. Put the objects into the bins and find an assigment A[O] that assigns a

bin to each object in such a way that, for each bin B, the sum of the sizes of the objects assigned to B is no

more than M. Optimal bin packing one of the classic NP-complete problems [1]. The survey on this problem

concerns polynomial-time approximation algorithms, such as first-fit and best-fit decreasing, and the quality

of the solutions they compute, rather than optimal solutions.. The best existing algorithm for optimal bin

packing is due to [2] [3].

Example, if K=3, M=15, and the objects are A-10, B-8, C-6, D-6, E-4, F-4, G-3, H-2, then one solution

is to put A,G,H in one bin; B,D in the second; and C,E,F in the third.

The paper is divided in to following sections: Section I describes INTRODUCTION AND OVERVIEW

Section II describes the ALGORITHM, Section III presents IMPLEMENTATION to show the problem is

np-hard , Section IV describes the TIME ANALYSIS , Section V describes the ALGORITHM to show it can

be solved as p-complete problem by transformation and using sorting technique(merge sort), Section VI

describes IMPLEMENTATION of the two ways described in the algorithm . Section VII presents the time

analysis and Section VIII presents conclusion.

II. ALGORITHM
This algorithm proves the problem is np-hard

Step 1: Start
Step 2: Read the number of objects from user.

Step 3: Read the objects or generate the values

 randomly.

Step 4: For i 0 to n do
 Assume that ith bin is used with some capacity

Step 5 : For j 0 to n do

If the bin is used before itself(i.e., assign1) then continue i.e., jump to next step

If capacity of ith bin is greater than or equal to the jth object then Subtract the object weight or value from

the ith bin and make bin as used i.e., make assign1

Step 6: End for j loop

End for i loop

Step 7 : This is for one object repeat this for all the

 Objects

Step 7 : Stop

Analysis of Binpacking

www.iosrjournals.org 2 | Page

Here we assign each of the first J objects to each bin and assign the next object to a bin where it fits.

The start state is the empty assignment, and a goal state is an assignment of all the objects.

Other state spaces are also possible. E.g. one can define a state as an assignment, valid or invalid, of

all objects to bin, and operators as moving an object from one bin to another or swapping two objects in

different bins.

Here code is written and the graph is plotted taking n values on x-axis and time as y axis, for

randomly generated numbers using random function. n value is increased by 10 each time. before we start

packing, by calling bin pack function ,considering a maximum of 20 bins for packing.

III. IMPLEMENTATION

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

 int *a,i,n=100,bin[20],*used,*assignment;

 void binpack();

int main()

{
int u,count=0;

FILE *file1,*pipe=fopen("bins2.gnu","w");

double start_time,end_time,diff;

file1=fopen("bin2.txt","w");

fclose(file1);

while(n<=10000)

{

 a=(int *)malloc(n*sizeof(int));

 used=(int *)malloc(n*sizeof(int));

 assignment=(int *)malloc(n*sizeof(int));

 file1=fopen("bin2.txt","a");
 for(i=0; i<n; i++)

 a[i]=random()%100;

 start_time=clock();

 binpack();

 end_time=clock();

diff=(end_time-start_time)/

 (double)CLOCKS_PER_SEC;

fprintf(file1,"%d\t",n);

fprintf(file1,"%f\n",diff);

 fclose(file1);
n=n+10;

}

fprintf(pipe,"set terminal jpeg\n");

fprintf(pipe,"set output \"bins2.jpg\"\n");

fprintf(pipe,"set data style lines\n");

fprintf(pipe,"plot \"bin2.txt\" using 1:2\n");

fclose(pipe);

system("gnuplot bins2.gnu");

system("evince bins2.jpg");

}

void binpack()
{

Analysis of Binpacking

www.iosrjournals.org 3 | Page

int i, j;

 for(i=0;i<n;i++) // all bins

 {

 used[i]=100;

 for(j=0;j<n;j++) //all objects
 {

 if(assignment[j]==1)

 continue;

 if(used[i]>=a[j])

 {

 used[i]-=a[j];

 assignment[j]=1;

 }

 }

 }
}

IV. RESULTED GRAPHS
Graph 1: x-axis : n
 y-axis : time

Fig1: Graph obtained when problem is considered as np-hard.

Graph 2: x-axis : n
 y-axis : time

Fig 2: Graph obtained when problem is considered as np-hard.

Analysis of Binpacking

www.iosrjournals.org 4 | Page

By observing the graphs in fig 1 and Fig 2 we can derive that it requires a non polynomial time to

solve the problem and thus it proved that it is np-complete .

To solve the binsack problem there are two systematic methods of searching :

Looping through the objects and assigning a bin to each object.
Looping through the bins and assigning objects that fit.

V. ALGORITHM

BIN-PACKING is unusual in that there are two natural ways to do a systematic search. The first is to

loop through the objects, and assign a bin to each object .one way of solving is by writing the algorithm as

Looping through the objects and assigning a bin to each object.

Step 1:Start
Step 2: Read the number of objects from user.

Step 3: Read the objects or generate the values

randomly.

Step 4: Sort the objects in descending order using

merge sort

Step 5: Initialize sack[0] -> 0
Step 6: Outer loop for objects for i->0 to < n then
Step 7: Do initialize flag ->0

 Step 8: Inner loop for sacks
For j->0 to <=k then

Step9: Do check if obj[i]+sack[j]<=100 if true

Step10: then sack[j]+=obj[i]

Flag->1
Break

Step 11: Increment j goto step 8 Step 12: End of inner for loop

Step 13: Check if flag == 0 if true Then

Step14: do k=k+1;
sack[k]=obj[i]

Step 15: Increment I goto step6

Step16: end of outer for loop
Step17: print the contents of each sack and the

number of sacks.
Step18: stop

function BIN-PACKING(in K,M, OBJS; out A[OBJS]); for I := 1 to K do capacity[I] := M;

for O in OBJS do

choose bin I between 1 and K such that capacity[I] >= O.size;
capacity[I] =- O.size; A[O] := I;

Here we assign each of the first J objects to a bin and assign the next object to a bin where it fits. The start

state is the empty assignment, and a goal state is an assignment of all the objects.

The second way of solving the problem is to loop through the bins, and assign objects that fit.

Looping through the bins and assigning objects that fit.

Step 1: Start

Step 2: Read the number of objects from user.
Step 3: Read the objects or generate the values

randomly.

Step 5: Initialize all elements of sack[] and done [] to 0

Analysis of Binpacking

www.iosrjournals.org 5 | Page

Step 6: outer loop for bins
for i->0 to < n

then

Step 7: do initialize j ->0

Step 8: inner loop for objects

While j <n then

Step 8: do check if ((obj[j]+sack[i])<=100)and(done[j]!=1)) then
Step 9 : do sack[i]+=obj[j] done[j]->1

Step 10: increment j goto step 7

Step 11: end of inner while loop

Step12: Increment I goto step6

Step13: end of outer for loop

Step14: print the contents of each sack and the

number of sacks.
Step15: stop

function BIN-PACKING(in K,M, OBJS; out A[OBJS]) for I := 1 to K do
C := M;
for O in OBJS do if C >= O.size then
choose CHOICE in {TRUE,FALSE}; if CHOICE then

C =- O.size;

A[O] := I;

We assign some objects to bins 1 .. I and assign a new object to bin I or to increment I and add a

new object to the new bin I. Same start state and goal state.

Other state spaces are also possible. E.g. one can define a state as an assignment, valid or invalid, of

all objects to bin, and operators as moving an object from one bin to another or swapping two objects in

different bins.

Here code is written and executed for the first approach. The graph is plotted taking n values on x-

axis and time as y axis, for randomly generated numbers using random function. n value is increased by 1000

each time. Before we start packing, by calling bin pack function ,Sorting of numbers is done using merge sort

technique and we have considered a maximum of 20 bins for packing.

VI. IMPLEMENTATION
i. Looping through the objects and assigning a bin to each object.

#include<stdio.h> #include<stdlib.h> #include<time.h>
int *a,i,n=1000,bin[20],*used; void binpack();
int * merge(int *a, int p,int q, int r)

{
int i,j,k,*temp; i=p;

j=q+1;

k=0;
temp=(int *)malloc((r+1)*sizeof(int));

while(i<=q && j<=r)

{
if(a[i] >= a[j]) temp[k++]=a[i++];
else

temp[k++]=a[j++];
}

if(i!=q+1)
{

Analysis of Binpacking

www.iosrjournals.org 6 | Page

int x;
for(x=i; x<=q; x++) temp[k++]=a[x];
}
if(j!=r+1)
{
int x;
for(x=j; x<=r; x++) temp[k++]=a[x];
}
for(i=p,j=0; j<k; j++,i++) a[i]=temp[j];
free(temp); return a;
}
int * mergeSort(int *a, int p, int r)
{
int q; if(p < r)
{
q=(p+r)/2; a=mergeSort(a,p,q);

a=mergeSort(a,q+1,r); a=merge(a,p,q,r);
}
return a;

}
int main()
{
int count=0;
FILE *file1,*pipe=fopen("bins1.gnu","w");

double start_time,end_time,diff; file1=fopen("bin1.txt","w"); fclose(file1);
while(n<=10000)
{

//printf("Enter the number of objects\n"); //scanf("%d",&n);
a=(int *)malloc(n*sizeof(int)); used=(int *)malloc(n*sizeof(int)); file1=fopen("bin1.txt","a");

//srand(time(NULL));
for(i=0; i<n; i++) a[i]=random()%100;
a=mergeSort(a,0,n-1); start_time=clock();
binpack();

end_time=clock(); diff=(end_time-start_time)/(double)CLOCKS_PER_SEC;
fprintf(file1,"%d\t",n); fprintf(file1,"%f\n",diff); fclose(file1); n=n+1000;
}
fprintf(pipe,"set terminal jpeg\n"); fprintf(pipe,"set output \"bins1.jpg\"\n"); fprintf(pipe,"set data style

lines\n"); fprintf(pipe,"plot \"bin1.txt\" using 1:2\n"); fclose(pipe);
system("gnuplot bins1.gnu"); system("evince bins1.jpg");
}

void binpack()

{
int i, j; for(i=0;i<n;i++) used[i]=0;
for(i = 0; i < n; i++) // for all objects
{
for(j=0;j<n;j++) // for all bins
{
if (used[j]+a[i]<=100) // maximum capacity fixed to 100
{
used[j]+=a[i];
// printf("adding object %d to bin %d..\n",i+1,j+1); break;
}
}
}

Analysis of Binpacking

www.iosrjournals.org 7 | Page

}

ii. Looping through the bins and assigning objects that fit.

#include<stdio.h> #include<stdlib.h> #include<time.h>
int *a,i,n=1000,bin[20],*used,*assignment; void binpack();

int main()
{
int u,count=0;
FILE *file1,*pipe=fopen("bins2.gnu","w");

double start_time,end_time,diff; file1=fopen("bin2.txt","w"); fclose(file1);
while(n<=10000)
{
a=(int *)malloc(n*sizeof(int)); used=(int *)malloc(n*sizeof(int)); assignment=(int *)malloc(n*sizeof(int));

file1=fopen("bin2.txt","a");
for(i=0; i<n; i++) a[i]=random()%100;
start_time=clock(); binpack(); end_time=clock();
diff=(end_time-start_time)/(double)CLOCKS_PER_SEC; fprintf(file1,"%d\t",n);
fprintf(file1,"%f\n",diff); fclose(file1); n=n+1000;
fprintf(pipe,"set terminal jpeg\n"); fprintf(pipe,"set output \"bins2.jpg\"\n"); fprintf(pipe,"set data style

lines\n"); fprintf(pipe,"plot \"bin2.txt\" using 1:2\n"); fclose(pipe);
system("gnuplot bins2.gnu"); system("evince bins2.jpg");

}

void binpack()
{
int i, j;
for(i=0;i<n;i++) // all bins
{
used[i]=100; for(j=0;j<n;j++) //all objects
{
if(assignment[j]==1) continue; if(used[i]>=a[j])
{
used[i]-=a[j];
//printf("adding object %d to bin %d..\n",j+1,i+1); assignment[j]=1;
}
}
}
}

Analysis of Binpacking

www.iosrjournals.org 8 | Page

VII. RESULTED GRAPHS
Graph 1: x-axis : n
y-axis :time

fig. 1 Looping through the objects and assigning a bin to each object.

Graph 2: x-axis : n
y-axis :time

fig. 2 Looping through the bins and assigning objects that fit.

By observing the graphs in fig 1 we can derive that it requires a non polynomial time to solve the problem

and thus it proved that it is np-complete. Fig 2 shows we convert this np-complete problem into p-complete

and graph is plotted.

VIII. CONCLUSION
It has been shown that the packing of items in bins is np-complete problem. We can derive by looking at the

graphs that the problem of bin packing which was treated as np-complete has been solved as a p-complete

problem in two different ways. The time complexity is high in the first case when considered as np-complete.

It reduces when converted to a p-complete . There are many variations of binsack problem, linear packing,

packing by weight, packing by cost, and so on. They have many applications, such as filling up containers,

loading trucks with weight capacity, creating file backup in removable media and technology mapping in

Field-programmable gate array semiconductor chip design. Both the methods discusses previously work

approximately with equal efficiencies as shown by the curve. Any one of these two methods can be properly

implemented in the required application to successfully solve the binsack problem.

http://en.wikipedia.org/wiki/Packing_problem
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array

Analysis of Binpacking

www.iosrjournals.org 9 | Page

REFERENCES
[1] Garey, M., and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco:

W.H. Freeman.

[2] Martello, S., and Toth, P. 1990a. Bin-packing problem. In Knapsack Problems: Algorithms and Computer Implemen-tations.
Wiley. chapter 8, 221–245.

[3] Martello, S., and Toth, P. 1990b. Lower bounds and reduction procedures for the bin packing problem. Discrete Applied.

[4] Mathematics 28:59–70.

